
BIOINFORMATICS APPLICATIONS NOTE Vol. 25 no. 5 2009, pages 684–686
doi:10.1093/bioinformatics/btp026

Systems biology
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ABSTRACT

Motivation: Multivariate experiments applied to mammalian cells
often produce lists of proteins/genes altered under treatment versus
control conditions. Such lists can be projected onto prior knowledge
of kinase–substrate interactions to infer the list of kinases associated
with a specific protein list. By computing how the proportion of
kinases, associated with a specific list of proteins/genes, deviates
from an expected distribution, we can rank kinases and kinase
families based on the likelihood that these kinases are functionally
associated with regulating the cell under specific experimental
conditions. Such analysis can assist in producing hypotheses that
can explain how the kinome is involved in the maintenance of
different cellular states and can be manipulated to modulate cells
towards a desired phenotype.
Summary: Kinase enrichment analysis (KEA) is a web-based
tool with an underlying database providing users with the
ability to link lists of mammalian proteins/genes with the
kinases that phosphorylate them. The system draws from several
available kinase–substrate databases to compute kinase enrichment
probability based on the distribution of kinase–substrate proportions
in the background kinase–substrate database compared with
kinases found to be associated with an input list of genes/proteins.
Availability: The KEA system is freely available at http://amp.pharm.
mssm.edu/lib/kea.jsp
Contact: avi.maayan@mssm.edu

1 INTRODUCTION
Protein phosphorylation causes the addition of a phosphate group
onto serine, threonine or tyrosine amino-acid residues of proteins.
Phosphorylations are precise reversible changes that are used to
regulate intracellular events such as protein complex formation,
cell signaling, cytoskeleton remodeling and cell cycle control.
Consequently, protein kinases, which are responsible for the
phosphorylations, play an important role in controlling protein
function, cellular machine regulation and information transfer
through cell signaling pathways. Kinase activities therefore have
definitive regulatory effects on a broad variety of biological
processes, in which activated kinases typically target a large number
of different substrate proteins. There are over 500 protein kinases
encoded in the human genome, and it is approximated that 40% of all
proteins are phosphorylated at some stage in different cell types and
at different cell states (Manning et al., 2002). Furthermore, kinases
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regulate each other through phosphorylation, resulting in a complex
web of regulatory relations (Ma’ayan et al., 2005).

High-throughput techniques such as stable isotope labeling
coupled with affinity purification and mass-spectrometry proteomics
are now able to identify phosphorylation sites on multiple proteins
under different experimental conditions. Databases that integrate the
results from such studies are emerging, e.g. phosphosite (Hornbeck
et al., 2004). However, such data does not provide the kinases
responsible for the phosphorylation. Several resources are available
to link identified phosphorylation sites to the kinases that are
most likely responsible for protein phosphorylations (Huang et al.,
2005; Linding et al., 2008). For example, NetworKIN (Linding
et al., 2007; Linding et al., 2008) uses an algorithm to predict
the most probable kinase that is responsible for phosphorylating an
identified phosphosite. The NetworKIN algorithm is accompanied
with a database containing ∼1450 predicted mammalian substrates
that are mapped to 73 upstream protein kinases belonging to
21 kinase families. Although useful, the coverage of this dataset
is not comprehensive enough for kinase statistical enrichment
analysis. To achieve more comprehensive prior knowledge
kinase–substrate dataset, large enough for statistical enrichment
analysis, we merged interactions from several other online sources
reporting mammalian kinase–substrate relations. Additionally, we
included binary protein—-protein interactions involving kinases
from protein–protein interaction databases as these were recently
proposed to be highly enriched in kinase–substrate relations: in
a recent study that identified ∼14 000 phosphosites at different
stages of the cell cycle in Hela cells (Dephoure et al., 2008) it
was shown that many phosphosites experimentally identified using
phosphoproteomics can be associated with four known kinases
(CDC2, PLK1, Aurora-B and Aurora-A) using the literature-based
protein–protein interactions from the HPRD database (Mishra et al.,
2008). Hence, having a large background knowledge dataset of
kinase–substrate interactions and protein–protein interactions that
involve kinases, we can associate large lists of proteins/genes with
many kinases that phosphorylate them. This allows the computation
of statistical enrichment which can be used to suggest the kinases
that are most likely to be involved in regulating the proteins/genes
from a list generated under specific experimental conditions.

2 IMPLEMENTATION
We first constructed a database that consolidates kinase–
substrate interactions from multiple online sources. We integrated
data describing kinase–substrate interactions from NetworKIN
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(Linding et al., 2008), Phospho.ELM (Diella et al., 2004), MINT
(Chatr-aryamontri et al., 2007), HPRD (Mishra et al., 2008),
PhosphoPoint (Yang et al., 2008) and Swiss-Prot (Quintaje and
Orchard, 2008) as well as phosphorylation interactions we manually
previously extracted from literature (Ma’ayan et al., 2005). The
NetworKIN database contains 3847 kinase–substrate unique pairs
made of 73 kinases (21 families) linked to 1452 substrates. HPRD
contains 1794 kinase–substrate pairs made of 229 kinases linked
to 864 substrates. Phospho.Elm has 1451 interactions between 225
kinases and 784 substrates. MINT has 269 interactions between 145
kinases and 184 substrates. In phosphoPoint there are 436 kinases,
3076 substrates, 9251 kinase–substrate relations from which only
1587 are unique in this dataset, while the rest overlaps with the
other databases. In Ma’ayan et al., there are 66 interactions between
19 kinases and 43 substrates. There is some overlap among these
sources such that the number of unique kinase–substrate relations
totals 6414 links between 352 kinases and 2014 substrates in the
combined dataset. We consolidated interactions from mouse and
rat into human by converting all protein/gene IDs to human Entrez
gene symbols. Each kinase–substrate data record is associated with a
specific kinase, kinase family and kinase subfamily. To group kinases
into families, we used the kinome tree from Manning et al. (2002)
where kinases are classified into 10 major classes and 119 families.
To further increase the size of our background dataset, we included
all direct protein–protein interactions involving kinases from HPRD
(Mishra et al., 2008) and MINT (Chatr-aryamontri et al., 2007).
By this expansion the current dataset contains a total of 11 923
interactions between 445 kinases having 3995 substrates.

The analysis begins with an input list of gene symbols entered by
the user for kinase enrichment analysis (KEA). Before performing
the KEA, we remove all input entries that do not match a substrate
in the consolidated background kinase–substrate dataset. This step
is necessary for achieving proportional comparison. The expected
value for a randomly generated list of kinase–substrates can be
found by determining the cardinality of the set of substrates that
are targeted by specific kinases (or family of kinases) dividing such
number by the total number of substrates in the background dataset.
In order to detect statistical significant deviations from this expected
value, we use the Fisher Exact Test (Fisher, 1922). The P-value can
be used to distinguish specific kinases among the large number of
kinases appearing in the output table.

To implement the web-based system we use Java Server Pages
(JSP) and MySQL database running on a Tomcat server. All reported
results can be exported to Excel via CSV files. Additionally, users
can mouse over on the number of targets for each kinase, kinase
family or class to see the list of substrates and view a connectivity
diagram that visualizes known protein–protein interactions within
the substrates using a database of protein–protein interactions we
previously published (Berger et al., 2007). The map is dynamic
where users can move nodes around and click on nodes for more
detail (Fig. 1). The visualization of these connectivity diagrams was
achieved using Adobe Flash CS4 with ActionScript. Such subgraphs
can be used to link kinase specific substrates to pathways and
complexes.

As prior knowledge is increasingly used to interpret high-
throughput results, e.g. Balazsi et al. (2008), we anticipate that
KEA is going to be especially useful for the analysis of proteomics
and phosphoproteomics data. KEA can be used for analyzing
multivariate datasets collected on a time-course to observe trends

Fig. 1. Screenshot of the KEA user interface. Users can paste lists of Entrez
gene symbols, representing human proteins; select the level of analysis:
kinase-class, kinase-family or kinase and then the program outputs a list
of ranked kinase-classes, kinase-families or kinases based on specificity
of phosphorylating substrates from the input list. Substrates can be then
connected based on their known protein–protein interaction using an original
network viewer developed using Adobe Flash CS4.

in kinase activity overtime. Results that show changes in kinase
enrichment under different conditions can be due to one of the
following reasons: change in kinase enzymatic activity, change in
kinase subcellular localization or changes in kinase concentration.
Furthermore, KEA can help researchers understand how they can
perturb cellular systems toward a desired phenotype by targeting a
kinase or group of kinases with pharmacological or gene silencing
means. Kinase signaling is well-established to be disturbed in many
disease states, especially in cancer (Blume-Jensen and Hunter,
2001), while it is apparent that phenotypic integrity is controlled
by the activity of the regulated behavior of multiple kinases. Hence,
mapping kinase activation patterns based on different experimental
conditions and time points when measuring many genes/proteins
at once in diseased/perturbed versus normal/control may directly
suggest combinations of kinase inhibitors that would shift the
cellular state towards a desired phenotype.
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