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ABSTRACT

Motivation: Identifying regulatory elements in genomic sequences
is a key component in understanding the control of gene expression.
Computationally, this problem is often addressed by motif discovery,
where the goal is to find a set of mutually similar subsequences within
a collection of input sequences. Though motif discovery is widely
studied and many approaches to it have been suggested, it remains
a challenging and as yet unresolved problem.
Results: We introduce SAMF (Solution-Aggregating Motif Finder), a
novel approach for motif discovery. SAMF is based on a Markov
Random Field formulation, and its key idea is to uncover and
aggregate multiple statistically significant solutions to the given
motif finding problem. In contrast to many earlier methods, SAMF
does not require prior estimates on the number of motif instances
present in the data, is not limited by motif length, and allows
motifs to overlap. Though SAMF is broadly applicable, these features
make it particularly well suited for addressing the challenges of
prokaryotic regulatory element detection. We test SAMF’s ability to
find transcription factor binding sites in an Escherichia coli dataset
and show that it outperforms previous methods. Additionally, we
uncover a number of previously unidentified binding sites in this
data, and provide evidence that they correspond to actual regulatory
elements.
Contact: cyanover@fhcrc.org, {msingh,elenaz}@cs.princeton.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
A central challenge in molecular biology is understanding the logic
and mechanisms of gene regulation. An important step towards
this lies in identifying regulatory elements within genomes. The
prominent role of sequence specificity in controlling gene expression
allows regulatory element detection to be performed via motif
discovery, where the goal is to find approximately repeated patterns
in unaligned sequences that are thought to share a common regulator
and thus possess a common motif. Such sets of sequences can be
obtained through DNA microarray studies (Tavazoie et al., 1999),
ChIP-chip (Lee et al., 2002) or ChIP-seq (Robertson et al., 2007)
experiments or protein binding microarrays (Mukherjee et al., 2004).
Alternatively, sets of regulatory regions of orthologous genes, which

∗To whom correspondence should be addressed.

may be partly or wholly aligned, can be searched for regulatory
elements (e.g. Stark et al., 2007).

Because it represents the most basic type of first step analysis
towards uncovering regulatory networks, de novo motif finding is
a classic and widely studied problem in computational biology.
Despite numerous motif finding approaches, based on various
formulations and algorithmic techniques [see reviews of Das and
Dai (2007); MacIsaac and Fraenkel (2006), and references therein],
no single currently existing method can solve them completely [e.g.
see Das and Dai (2007); Hu et al. (2005); Tompa et al. (2005)].

Here, we introduce a novel motif finding algorithm, SAMF
(Solution-Aggregating Motif Finder), which builds upon powerful
techniques in machine learning by modeling the problem as a
Markov Random Field (MRF) and iteratively inferring an ensemble
of highly probable model configurations (or top scoring solutions)
using the Best Max-Marginal First (BMMF) algorithm (Yanover
and Weiss, 2004). We utilize an exact calculation of statistical
significance (Zaslavsky and Singh, 2006) to determine the number
of configurations to be considered, and derive coherent motifs
by applying a new technique for aggregating and clustering the
ensemble of significant configurations. Each such configuration is
assigned a weight that depends on its score in the model, and
the algorithm predicts a final set of putative motifs corresponding
to sufficiently highly weighted clusters. This ensemble-based
procedure enables SAMF to detect both distinct multiple motifs and
repeated motif instances within each sequence without requiring an
estimate on the number of binding sites. The spirit of our work
agrees with the recent observation that considering an ensemble of
solutions to motif finding (Reddy et al., 2007) and optimization
problems in general (Webb-Robertson et al., 2008) is more suitable
than simply searching for a single optimal solution. Our approach
and the meaning ascribed to the term ‘ensemble’ is different from
that of a number of recent methods, which combine the findings
of several motif discovery algorithms, each potentially utilizing
entirely different methodologies and objective functions, to produce
a final motif prediction (Hu et al., 2006; Wijaya et al., 2008). Here,
we explicitly aim to enumerate and aggregate an ensemble of distinct
solutions obtained via the same underlying MRF model.

While our method can be used in any motif finding application,
whether in DNA, RNA or protein sequences, we apply it to
detect regulatory elements in prokaryotic genomes. In prokaryotes,
regulation of gene expression is carried out primarily during
transcription, and is modulated by transcription factors that carry
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out their function by binding DNA fragments in the immediate
upstream vicinity of the gene being regulated. Though much
recent attention has focused on computational methods for the
difficult problem of identifying regulatory elements in eukaryotes
[e.g. Tompa et al. (2005)], prokaryotic transcription factor binding
site detection comes with its own set of challenges. Prokaryotic
promoter regions contain binding sites that tend to be long [10–
48 bp, Robison et al.]; this limits the applicability of motif finders
based on pattern enumeration—which are the basis of some of the
most successful motif finders in eukaryotes (Elemento et al., 2007;
Tompa et al., 2005)—as they typically consider binding sites of at
most 12 bp. Additionally, prokaryotic binding sites can overlap and
often appear in tandem (Hermsen et al., 2006; Karp et al., 2007),
mechanisms that are used to selectively modulate gene expression.
The overlapping nature of the binding sites poses a problem to
some motif finders (Bailey and Elkan, 1995; Roth et al., 1998),
as they are often constrained to look for non-overlapping motifs.
Additionally, many methods require the expected number of motifs
and their occurrences to be specified as parameters.

Our algorithm, SAMF, is based on a novel formulation and
robustly addresses the issues above. The motifs we are able to
find are not length constrained and can overlap. We can uncover
multiple distinct motifs and multiple occurrences without having to
provide an estimate on the number of binding sites. Indeed, we
obtain excellent results in practice. In particular, we test SAMF
on sets of genes experimentally determined to be regulated by a
common Escherichia coli transcription factor (McGuire et al., 2000;
Robison et al., 1998), and apply our algorithm to look for regulatory
motifs in the corresponding upstream regions. We compare our
results with those of a representative set of previous approaches,
and demonstrate that our algorithm outperforms the others both in
sensitivity and specificity when identifying regulatory elements in
bacteria. Additionally, we predict a number of putative sites and
wholly conserved motifs in this dataset, and provide biological
evidence that they likely are real transcription factor binding sites.

2 METHODS
We first introduce a simple motif finding model, one that allows a single
motif instance per sequence, and then extend it to multiple motifs.

2.1 Problem formulation
We cast motif discovery as the problem of finding an ungapped local
multiple sequence alignment (MSA) of fixed length with the best sum-of-
pairs (SP) score (Zaslavsky and Singh, 2006). That is, given K sequences
and a block length parameter �, the goal is to find an �-long subsequence
(�-mer) from each input sequence so that the total similarity among selected
blocks is maximized, where similarity between the subsequences is defined
by summing shared background-corrected identity along the sequence.

More formally, denote by Si the set of all �-mers in input sequence i. Given
a similarity score sim(si,sj) between pairs of �-mers si,sj , the objective is to
maximize the SP-score of a motif defined in terms of the pairwise similarities:

SP-score(S)=
∑
i<j

sim(si,sj) (1)

where S = (s1,...,sK ),si ∈Si denotes a selection of �-mers for each input
sequence, and sim(si,sj) is calculated by assigning a score of log(1/f (b))
for a base b match, where f (b) is the non-zero frequency of base b in the
background [see Osada et al. (2004) for details], and 0 for any mismatch.
Such a similarity computation combined with the SP-scoring scheme was

shown to perform well in the context of motif finding (Hon and Jain, 2006;
Zaslavsky and Singh, 2006).

2.2 MRF model
Since we have a discrete optimization problem and an objective function that
is a sum of pairwise terms, we can transform the problem into a graphical
model with pairwise potentials. Each model variable (or node in the graphical
representation) corresponds to an input sequence, and the state of each node
represents the selection of a particular position and corresponding �-mer
within the sequence (hereafter we use position and �-mer interchangeably).
To enable search for motif instances on the reverse-complemented strand,
we extend the state space of each variable to include states corresponding
to subsequences on that strand. We define the pairwise energies E(si,sj)=
−sim(si,sj) for all pairs of node states. The existence of non-zero similarity
scores between some states for all pairs of nodes results in a complete (fully
connected) graphical model. With this definition, the probability of a given
configuration, P(S), is given by the following equation:

P(S)= 1

Z
e

SP-score(S)
T = 1

Z
e−

∑
i<j

E(si ,sj )

T (2)

where Z is an explicit normalization factor and T is the system temperature
(used as a free parameter, set to 1).

Finding the best motif with a single occurrence in each sequence
under the SP-score is equivalent to identifying the most probable, or the
maximum a posteriori (MAP), configuration of the model above. The MAP
configuration can be obtained using a quantity known as max-marginals
(MMs):

MMi(si)= max
S|Si=si

P(S) (3)

for which it can be shown (Pearl, 1988) that assignment of:

s∗
i =arg max

si∈Si

MMi(si) (4)

for each sequence yields the most probable motif selection s∗.

2.3 Belief propagation
The inference task of calculating the MMs and finding the MAP configuration
in a graphical model is often addressed by the belief propagation (BP)
algorithm and its variants (Pearl, 1988; Yedidia et al., 2001). BP is a
message passing algorithm that efficiently utilizes inherent locality in the
graphical model representation. Messages are passed between neighboring
(interacting) variables, and message contents describe one variable’s ‘belief’
about its neighbor, based on their pairwise energy and the input of other
messages. At a given iteration, assuming a complete graph and no singleton
energies, the max product BP message, passed from variable i to variable j
regarding j’s state sj is:

mi→j(sj)=max
si


e

−E(si ,sj )
T

∏
k �=j

mk→i(si)


 (5)

Messages are uniformly initialized and are iteratively recalculated (‘passed’)
using Equation 5, until numeric convergence. Max-beliefs are then computed
as the product of all incoming messages:

bi(si)=
∏

k

mk→i(si) (6)

where bi(si) is the belief of state si ∈Si, corresponding to some �-mer in
sequence i.

The BP algorithm was originally formulated for singly connected
graphical models (i.e. when no ‘loops’ exist). For such graphs, the beliefs
calculated in Equation 6 are equivalent to the MMs defined in Equation 3. For
non-tree graphs the BP algorithm is not guaranteed to converge, and in theory
even when it does converge, the obtained beliefs might differ significantly
from the MMs. In practice, BP has been shown to be empirically successful
in converging to optimal solutions when run on graphs with many cycles
(e.g. Yanover and Weiss, 2003); we find this to also be the case in the current
application.
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2.4 Multiple solutions
The basic MRF framework presented above allows for finding a highly
scoring motif with one occurrence per input sequence. While such motifs
show good correspondence with known regulatory elements (Zaslavsky
and Singh, 2006), extending the methodology to identifying multiple motif
occurrences is desirable, as many transcription factors exhibit multiple
binding locations upstream of genes (Karp et al., 2007).

To extend the model to multiple motifs, consider the following example.
Suppose that the data consist of (K −1) sequences with a single binding site
si ∈Si for a particular transcription factor within each, and one sequence,
wlog sequence 1, with two such sites, denoted s1 and s′

1. Then, the motifs
S = (s1 ∈S1,...,sK ∈SK ) and S′ = (s′

1 ∈S1,...,sK ∈SK ) in the constrained
1-per-sequence formulation would both correspond to highly probable
configurations of the MRF model.

Following this observation, we consider multiple highly probable
configurations of the model to derive multiple motif occurrences. To obtain
the M top-scoring solutions we apply the BMMF algorithm (Yanover and
Weiss, 2004). At iteration m the algorithm determines the m-th solution, Sm.
Conceptually, the next highest scoring configuration must differ from all
previous top configurations in at least one sequence. As such, the BMMF
algorithm partitions the solution space so that Sm and the next highest scoring
solution are included in two different sub-spaces. The computed MMs are
used to both infer solution Sm and guide the space partitioning. Pseudocode
of the BMMF algorithm is presented in Supplementary Algorithm 1. Herein
we describe in detail the first two iterations of the algorithm. At iteration 1
the algorithm chooses the assignment that maximizes the local beliefs [see
Equation 4] as S1. It then calculates the highest relative MM probability
(termed BMM for ‘best’ MM) over every sequence i and position si within
it, while excluding solution S1:

BMM1 = max
i,si : si �=S1

i

MMi(si)

Let i1 and si1 denote the sequence and position associated with BMM1,
respectively. The definition of MMs [Equation 3] implies that in S2, the
second best motif, the position associated with sequence i1 is si1 (that is,
S2
i1 =si1). Therefore, the algorithm partitions the solution space into two

sub-spaces:

(1) The sub-space in which sequence i1 is constrained to have a binding
site at the maximizing position si1 (by imposing the constraint Si1 =
si1). BMMF determines the next highest scoring solution S2 and its
next BMM (BMM2) by running BP on that sub-space.

(2) The sub-space in which sequence i1 is constrained not to have a
binding site at position si1 (Si1 �=si1). BMMF runs BP on this sub-
space (given the additional negative constraint) to compute the MMs
and the corresponding BMM, associated with the next highest scoring
solution within the sub-space.

The maximal BMM (obtained from either of these sub-spaces) is used to
define the next partition and, subsequently, the next solution, S3. Runs of BP
are as described in Equations (5) and (6).

2.5 Statistical significance
The framework above gives us the ability to generate multiple solutions
that correspond to highly probable configurations of the MRF model. Every
solution represents a particular selection of �-mers, one from each input
sequence, and has a corresponding SP-score. We now assess the statistical
significance of MRF configurations by comparing their corresponding scores
to scores of motifs expected to arise from random data with the same
characteristics. More specifically, to evaluate the significance of a solution
with a particular SP-score σ , we calculate its e-value, or the expected number
of solutions of equal or better quality. We first compute P�(X), the probability
distribution of solution scores for �-mers in K sequences in the following
two steps. (1) We calculate the exact probability distribution P1(X) for a

single column of K random bases [see Zaslavsky and Singh (2006) for
details]. (2) Assuming independence between columns, we calculate the
probability distribution P�(X) for � random columns by convolution of P1(X)
as in Tatusov et al. (1994), where we inductively construct a distribution for
i columns based on the distribution for (i−1) columns, Pi−1(X), and the
single column distribution P1(X).

Finally, to infer the e-value of score σ , we compute the probability that
an �-long pattern has a score greater than or equal to σ by chance alone,
equal to

∑
x>=σ P�(x), and multiply it by the total number of possible motifs

of length � in the data. If the sequences have lengths L1,...,LK , then the
expected number of MSA solutions with score at least σ by chance alone,
or the e-value, is equal to

e-value(σ )=
∏

i

(Li −l+1)×
∑

x>=σ

P�(x) (7)

2.6 Aggregation and clustering
We enumerate 10 000 successive solutions by applying the BMMF algorithm.
We then use the significance computation, and setting the e-value cutoff to
1 (though the algorithm is robust to other e-value thresholds in a reasonable
range), consider all solutions with a score that falls above the significance
threshold.

To aggregate the solutions and obtain multiple motifs, we make the
following observations. (1) A group of solutions that exhibits a high
degree of overlap, i.e. agreement on the motif positions for a majority of
sequences, potentially point to multiple motif occurrences for sequences
without absolute agreement. (2) Two seemingly different solutions may
correspond to positive/negative shifts of the same motif. (3) Completely
different non-overlapping groups of solutions may, indeed, indicate the
presence of two entirely distinct motifs in the data.

As an example, consider the following few top solutions:

S1 = (19,122,566,6,172,93,106,87,165,250)

S2 = (17,120,564,4,170,91,104,85,163,248)

S3 = (21,124,501,8,174,95,108,89,141,252)

The notation lists consecutive solutions, indicating the positions of their
corresponding motif occurrences in the respective input sequences. The first
solution, S1, finds the best motif instances to occur in position 19 of sequence
1, position 122 of sequence 2, etc. Applying the rules above, notice that
solutions S1 and S2 are exact shifts by 2 of one another, and solution S3 is
part of the same cluster as well, since it agrees with solution S1 on most
sequences. Note, however, that S3 differs from the others in binding site
locations in sequences 3 and 9; this might indicate the presence of multiple
motif occurrences in these sequences if support for those alternate sites is
strong enough based on the solution ensemble in the cluster.

We consider shifts of up to half the length of the motif, �, where a lower
scoring solution is shifted to the higher scoring one (like S2 shifting by two
bases to be in phase with S1). Solutions that agree (up to shift) on at least
half of the sequences are clustered together; we discard clusters with less
than K (number of input sequences) solutions.

Aggregating this information by sequence for each computed cluster, we
get a histogram, specifying the number of times each binding site position
within the sequence was observed among the solutions belonging to the
cluster. Furthermore, since more highly ranked solutions are comprised
of better scoring motifs, their histogram contribution is up-weighted
accordingly. Specifically, we use a Boltzmann scheme and assign the weight
of a putative motif position in solution Sm to:

w(Sm)=α ·exp

(
SP-score(Sm)

T

)
(8)

where T is an arbitrary temperature set to be 1% of SP-score(S1) and α

normalizes the sum of weights {w} to M, which is the number of significant
solutions considered, capped at 10 000. While ideally all solutions above
the statistical significance threshold should be considered, every additional
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solution is found at a cost in runtime. Since the weighting scheme assigns
much lower weights to low-scoring solutions, considering at most 10 000
solutions provides a reasonable trade off between motif accuracy and
algorithm runtime.

Multiple motif instances correspond to peaks in the histograms, and are
readily evident among a vast background landscape (see Supplementary
Fig. 1). To automatically detect the peaks, we use the criteria of minimal peak
height, total weight and support (the weight of a peak relative to all remaining
ones), as well as distance between peaks; various parameters settings obtain
similar results.

2.7 Missing motifs
As a final step to our algorithm, we attempt to identify if any of the input
sequences do not contain a motif occurrence. Our overall strategy is to find
a group of sequences that might not have a motif instance, and compare
the set of solutions in the original dataset to the one found after removal
of the candidate sequences. Interestingly, the number of solutions below an
equivalent e-value threshold in various subsets of the input data is a good
indicator of the quality of the motif, and we use it as the criterion for deciding
which subset of sequences to retain.

Consider the set of sequence positions contributing to an ensemble of
solutions for a sequence with no motif occurrences. Since such a sequence
has no ‘consensus’ position matching the motif, intuitively, the ensemble
of positions is expected to be more diverse than that of sequences with
motif instances. We therefore associate an entropy score with each such
position ensemble and group these scores into three clusters (using complete
linkage clustering): low, intermediate and high entropy clusters. We exclude
the sequences placed in the high entropy cluster, and rerun BMMF on the
remaining subset. If the number of significant solutions obtained by this new
run of BMMF increases, we designate the left-out sequences as those missing
motif instances and repeat this procedure, starting from the remaining subset
of sequences; otherwise, we use the solutions for all current sequences to
predict the motif. When less than 100 significant solutions are attained by
BMMF (and entropy-based clustering might not be accurate), we compute the
score contribution of each sequence to the top solution, remove the sequence
with the lowest score, and rerun BMMF as before.

2.8 Dataset and performance metrics
We utilize a dataset consisting of collections of upstream regions for 36
E.coli transcription factors (Table 1, column 1) that is constructed from sets
of experimentally derived binding sites cataloged by McGuire et al. (2000);
Robison et al. (1998) and is described in detail in Osada et al. (2004).

To evaluate the quality of motif predictions, we employ some of the
statistics used in a large-scale study by Tompa et al. (2005). These statistics
(defined in Supplementary Materials), measure the degree of overlap between
the predictions made by our approach and the known motifs at the nucleotide
and site levels. The first measure, nucleotide performance coefficient (nPC),
is a stringent statistic, penalizing a method for both failing to identify any
nucleotide belonging to the motif (false negative) as well as falsely predicting
any nucleotide outside the motif (false positive). The other statistic we
consider is site-level sensitivity (sSn).

3 EXPERIMENTAL RESULTS

3.1 Performance evaluation
We apply SAMF to our dataset of 36 E.coli transcription factors
(Table 1). For each transcription factor in the dataset, SAMF
analyzes all statistically significant individual solutions, each of
which requires two runs of BP (runtime up to 10 s, and much faster
for majority of the datasets), and assigns them to distinct motifs by
performing the clustering procedure detailed above. The solutions
within clusters are then aggregated to determine all occurrences of

Table 1. Listing of E.coli transcription factor datasets (columns 1–4) and
the details of motif finding by SAMF (columns 5–7)

TF K �
Known Significant

Motifs
Predicted

TFBSs solutions TFBSs

adaa 3 31 3 2 1 3
araC 4 48 6 43 1 5
arcA 11 15 13 10 000 1 13
argR 8 18 17 10 000 1 15
crp 33 22 49 8912 1 60
cpxR 7 15 9 407 1 10
cytR 5 18 5 6 1 5
dnaA 6 15 8 526 1 9
fadR 5 17 7 23 2 5, 5
fisb 7 35 18 0 0 0
flhCD 3 31 3 106 3 3, 3, 3
fnr 10 22 12 10 000 1 16
fruR 10 16 11 863 1 16
fur 7 18 9 10 000 1 9
galR 6 16 7 10 000 1 10
glpRa 4 20 11 4 1 4
hnsb 5 11 5 0 0 0
ihfa 19 48 24 1 1 19
lexA 17 20 19 10 000 1 22
lrp 4 25 14 7 1 4
malT 6 10 10 22 2 8, 8
metJ 5 16 15 2723 1 5
metR 6 15 8 46 1 7
modE 3 24 3 5 1 3
nagC 5 23 6 51 1 6
narLa 10 16 10 8 1 10
narP 7 16 7 76 2 7, 7
ntrC 4 17 5 492 1 7
ompRb 3 20 9 0 0 0
oxyRb 4 39 4 0 0 0
phoB 8 22 14 10 000 1 15
purR 18 26 20 10 000 1 25
soxSa 9 35 13 2 1 9
trpR 4 24 4 35 1 4
tus 5 23 5 10 000 1 5
tyrR 9 22 17 10 000 1 11

K is the number of sequences (each up to 600 bp long) that contain binding sites for the
given TF. � is the length of the motif [as reported by Robison et al. (1998)] searched for.
Known TFBSs is the total number of known binding sites in dataset. Significant solutions
is the number of MRF configurations passing the significance threshold (10 000 at most).
Motifs is the number of distinct motifs produced by SAMF as the result of the clustering
procedure. Predicted TFBSs is the comma-separated list of predicted numbers of binding
sites in each cluster.
aEntries for which no clustering was performed by SAMF due to too few significant
solutions; the top scoring solution is used as the motif prediction in this case.
bEntries for which no solution passed SAMF’s significance threshold.

the motif represented by the cluster. Thus, for every transcription
factor SAMF predicts potentially more than one distinct motif. The
number of distinct motifs found for each transcription factor is
typically one or two, and the motif best overlapping with the known
one is always within the top two clusters. This is consistent with the
findings of Tompa et al. (2005) which suggest allowing each motif
finder to predict multiple motifs for increased sensitivity.

We compare SAMF’s performance on our dataset with the
performance of three other methods, Weeder (Pavesi et al.,
2004), MEME (Bailey and Elkan, 1995) and MotifSampler
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(Thijs et al., 2001). We select these methods since they have been
found to be the best performing among their algorithm type in
the study of Tompa et al. (2005) applied to finding eukaryotic
transcription factor binding sites. Together, they represent a broad
range of motif finding techniques: Weeder is an enumerative
algorithm, and MEME and MotifSampler are based on probabilistic
position-specific scoring matrices (PSSMs), with MEME searching
the space via Expectation Maximization and MotifSampler
searching the space via Gibbs sampling. While MEME and
MotifSampler can be run on the motif lengths found in our E.coli
dataset, Weeder can only enumerate binding sites of length at
most 12. Nevertheless, since Weeder is the best performing method
in Tompa et al. (2005), we attempt to utilize it for uncovering
bacterial transcription factor binding sites as well. Finally, in the
performance evaluation, for each method we use the predicted
motif that best corresponds to the known motif in the data.

Comparison to Weeder: Despite trying a range of parameters, we
have found that Weeder is not effective in finding motifs on our
prokaryotic dataset, as the algorithm predicts motifs vastly different
from the known ones for all the test cases. The reason for the poor
performance likely stems from the fact that, like most enumerative
combinatorial methods, Weeder is not able to handle the lengths of
the motifs in the dataset (which vary from 10–48). As a result, the
motifs Weeder finds are vastly different from the known binding
motifs (see Supplementary Fig. 2 for an example).

Comparison to MEME: We run MEME (Bailey and Elkan, 1995)
with parameters to search for two distinct motifs, allowing any
number of motif occurrences per sequence, and keeping all other
parameters at their defaults. We disregard MEME’s significance
assessment of the found motifs, since otherwise no significant
motifs are discovered for more than half the dataset, rendering the
evaluation meaningless. To be fair, we allow SAMF to predict a
motif in the four cases where no solutions pass its significance
threshold (Table 1), using the top-scoring solution as the prediction.

The results of the performance comparison are shown in Fig. 1.
Each bar in the chart measures the difference in nPC (Fig. 1A) or sSn
(Fig. 1B) between SAMF and MEME. Considering both statistics,
SAMF outperforms MEME, with the difference in performance
between the two methods being statistically significant as measured
by the Wilcoxon matched-pairs signed ranks test (P-values less than
0.0018 and 0.0043 for nPC and sSn, respectively). There are large
differences notable for a few transcription factors. In particular,
SAMF is able to find the narL and narP motifs almost completely,
whereas MEME entirely misidentifies them. Another interesting
case is that of flhcd, where SAMF’s ability to find all solution
clusters in the data aids motif discovery. Indeed, it is the second,
less significant cluster that corresponds to the known motif.

Comparison to MotifSampler: We run MotifSampler (Thijs et al.,
2001) on our dataset using a provided E.coli background model.
We set the parameters to look for two distinct motifs, allowing
any number of motif occurrences per sequence. With these settings,
MotifSampler returns motifs for only 17 of the 36 datasets, mostly
the ones with a greater number of sequences. In contrast, SAMF
finds significant motifs in 32 of the datasets. Even considering just
the 17 transcription factors where both SAMF and MotifSampler
find motifs, SAMF’s average nPC is 0.48 and average sSn is 0.71;
these numbers are 0.33 and 0.42 for MotifSampler. Overall, SAMF
clearly outperforms MotifSampler on our dataset.
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Fig. 1. Performance comparison for SAMF and MEME, given in terms
of nucleotide performance coefficient (A) and site-level sensitivity (B).
Significance assessment for both methods is disregarded. For every
transcription factor dataset, the height of the bar indicates the difference
in the metric, with bars above zero specifying better performance for SAMF
and bars below zero for MEME. Plotted are only those datasets for which
there is a difference in performance between the methods.

3.2 Sensitivity to noise
To evaluate SAMF’s sensitivity to presence of noise, we perform
motif finding on datasets, in which a number of the original
sequences containing motif occurrences are randomly reshuffled.
In particular, we have selected four transcription factor datasets of
varying size and containing motifs of varying quality (as measured
by information content). Applying motif finding to these noisy
datasets, we track SAMF’s performance using the sSn and nPC
statistics as the fraction of random sequences varies between 0 and
0.5. SAMF’s performance as measured by nPC (Fig. 2) remains
steady with an increasing fraction of random sequences, and its
overall ability to identify motifs in the data does not degrade
considerably. The sSn trends are similar (data not shown). In one
case SAMF fails to find the relatively poorly conserved tyrR motif
as the noise rate approaches 0.5 and few of the sequences contain a
motif instance.

We have also evaluated SAMF’s sensitivity to correct motif length
specification on the same sample datasets. When varying the motif
lengths by up to 5 nt of the known binding site lengths (20–26 bp),
we find practically no difference in the algorithm’s ability to identify
existing motifs (see Fig. 3 in Supplementary Materials).

3.3 Analysis of predictions
The performance evaluation of any method is only as good as
the state of knowledge of the underlying biology. Indeed, some of
SAMF’s predictions, characterized as false positives, may be true
binding sites, and can guide biological experiments. For instance, in
the case of phoB, which is a signal transduction response regulator
activated in phosphate depletion conditions, we correctly identify
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Fig. 2. SAMF’s performance on datasets with noisy input sequences, given
in terms of the nucleotide performance coefficient (nPC) plotted against
fraction of random sequences. The nPC coefficients for motifs found by
SAMF in the original data correspond to x=0. For each subsequent data
point, the nPC statistic is computed based on the portion of the motif
remaining in the data. Number of sequences in each dataset and motif
information content are indicated following TF names in the legend.
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motif logo
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reverse-complemented logo

Fig. 3. Motifs predicted for the malT dataset. Shown in (A) is the prediction
corresponding to the known malT motif logo, and in (B) the second predicted
motif with the logo being the reverse complement of the known one.

almost all of its known targets in the dataset, and predict three
additional ones. Two of these predictions, located upstream of genes
phoA/psiF and phoH, are 11 bp away from a known binding site.
Interestingly, structural studies of phoB effector domain complexed
with its target DNA sequence reveal a tandem arrangement in
which several phoB monomers bind head to tail to successive 11 bp
sequences (Blanco et al., 2002). A similar phenomenon is observed
with another transcription factor, arcA, which is also a part of the
larger phoB/ompR subfamily of response regulator proteins, and is
known to regulate transcription by binding in tandem to target DNA
sequences (Toro-Roman et al., 2005). Three arcA sites that SAMF
predicts and are deemed false positives, are, indeed, found 11 bp
away from a known site.

We also analyze the additional motifs predicted by SAMF in
alternate solution clusters. Using the STAMP tool (Mahony and
Benos, 2007) and Pearson correlation coefficient as the distance
measure, we compare alternate motifs against the E.coli database
(Robison et al., 1998). The most significant hit (e-value 4.36e−7)
is produced for a motif found in the fadR dataset and matching
the known arcA signature. This would imply that the transcription
factor arcA is involved in regulating some of the known fadR
targets. Indeed, when checked against the EcoCyc database (Karp
et al., 2007), an arcA binding site exists upstream of fadR regulated
genes fadB/fadA and fadD that are in our fadR dataset, and a direct
interaction between arcA and the promoters of genes in the fadR
regulon was detected via ChIP analysis (Cho et al., 2006).

Finally, we note an interesting finding for the malT dataset.
MalT is a transcriptional activator that controls the expression of
all the operons comprising the maltose regulon in E.coli (Larquet
et al., 2004). SAMF identifies 8 of 10 known binding sites
and recovers the known malT motif logo in one of the two
significant clusters (Fig. 3A). The other predicted motif follows a
distinct pattern, with its occurrences separated by 22/23 bp either
upstream or downstream from a known motif occurrence on the
same strand. Moreover, the sequence logo of this motif is exactly
the reverse complement of the known malT motif (Fig. 3B).
Additionally, weaker sites are found alongside the known ones,
providing evidence for sites in both direct repeat and inverted
repeat configurations. The binding mechanism of malT to its
diverse array of regulatory elements is still a subject of ongoing
research (Larquet et al., 2004); our discoveries may provide insights
into that mechanism as well as the oligomeric structure for this
transcription factor.

4 DISCUSSION
We have introduced a new formulation of motif finding based on
MRFs. This framework allows us to use a BP-based algorithm to
enumerate a set of distinct highly probable solutions. As a result, our
algorithm SAMF is able to identify multiple binding sites in each
input sequence, and can predict entirely distinct motifs as well. This
approach is similar in spirit to a recent successful method (Reddy
et al., 2007), which produces a motif prediction based on multiple
runs of a standard algorithm such as a Gibbs sampler. Compared
with that approach, we explicitly constrain SAMF to find distinct
solutions, which allows a faster exploration of the search space.
Indeed, whereas the approach of Reddy et al. (2007) requires a few
hours on a high-performance parallel computer to uncover yeast
binding sites, our approach typically runs within a similar time range
but on a standard desktop.

Since SAMF’s performance depends upon the quality of the
solutions it uncovers, we have investigated how well SAMF finds the
optimal and successively near-optimal solutions to the underlying
optimization problem. Accordingly, we compare the best solution
found by BMMF against the globally optimal solution, earlier
determined for most of the transcription factors in our dataset
by a combinatorial optimization method (Zaslavsky and Singh,
2006). Indeed, for all but a single case, BMMF retrieves this
optimal solution or finds a comparable one (e.g. a shift of the
MAP solution). This is consistent with previous studies (Fromer
and Yanover, 2009; Yanover and Weiss, 2004) showing that BMMF
works well in practice and obtains a better set of top configurations
than other algorithms, such as those based on Gibbs sampling.
Though finding the optimal solution to the underlying optimization
problem is an important goal, for any formulation, the quantity
being optimized is a mathematical approximation of what we expect
from biological motifs. We presume that obtaining multiple distinct
solutions provides our algorithm with an additional benefit in that
it enables SAMF to mitigate such weaknesses inherent in any
formulation of motif finding.

We also note that our MRF framework is independent of the
particular choice of sequence similarity function, and multiple such
scoring schemes, as long as they are pairwise, can be applied. In
particular, if it is known that a motif of interest is palindromic, as
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is the case for many bacterial transcription factor binding sites, this
can be incorporated at the level of the similarity function.

Overall, SAMF produces excellent results when applied to a
dataset of E.coli transcription factors and their target upstream
regions, finding most known binding sites better than other methods,
and predicting novel sites whose veracity is supported by several
lines of evidence. Interestingly, as part of SAMF’s evaluation, we
have found that methods that work well for detecting eukaryotic
transcription factor sites (Tompa et al., 2005) may need to
be modified to be applied successfully for uncovering bacterial
transcription factor binding sites. In particular, the length constraint
is a major limitation of enumerative methods, and the significance
evaluation of the PSSM-based methods may be too conservative.
Finally, we note that while SAMF has been tested on a dataset of
prokaryotic upstream regions for binding site discovery, it can be
readily applied and tested in other motif finding settings as well.
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