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ABSTRACT

Motivation: DNA copy number variants (CNVs) are gains and losses
of segments of chromosomes, and comprise an important class of
genetic variation. Recently, various microarray hybridization-based
techniques have been developed for high-throughput measurement
of DNA copy number. In many studies, multiple technical platforms
or different versions of the same platform were used to interrogate
the same samples; and it became necessary to pool information
across these multiple sources to derive a consensus molecular
profile for each sample. An integrated analysis is expected to
maximize resolution and accuracy, yet currently there is no well-
formulated statistical method to address the between-platform
differences in probe coverage, assay methods, sensitivity and
analytical complexity.
Results: The conventional approach is to apply one of the CNV
detection (‘segmentation’) algorithms to search for DNA segments
of altered signal intensity. The results from multiple platforms are
combined after segmentation. Here we propose a new method,
Multi-Platform Circular Binary Segmentation (MPCBS), which pools
statistical evidence across platforms during segmentation, and does
not require pre-standardization of different data sources. It involves
a weighted sum of t-statistics, which arises naturally from the
generalized log-likelihood ratio of a multi-platform model. We show
by comparing the integrated analysis of Affymetrix and Illumina SNP
array data with Agilent and fosmid clone end-sequencing results
on eight HapMap samples that MPCBS achieves improved spatial
resolution, detection power and provides a natural consensus across
platforms. We also apply the new method to analyze multi-platform
data for tumor samples.
Availability: The R package for MPCBS is registered on R-Forge
(http://r-forge.r-project.org/) under project name MPCBS.
Contact: nzhang@stanford.edu; junzli@umich.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
In recent years, more and more genetic studies have relied on
collecting genome-scale data on DNA variants. With the rapid
influx of large datasets came the increasingly common problem
of data integration when multiple technical platforms (or different
versions of the same platform) were used to interrogate the
same biological samples. For example, The Cancer Genome Atlas
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(TCGA) project, an NIH-funded initiative to characterize DNA,
RNA and epigenetic abnormalities in tumors, has adopted three
independent platforms for studying DNA copy number variants
(CNVs) in its pilot phase: Affymetrix SNP 6.0 arrays, Illumina
HumanHap 550K SNP arrays and Agilent CGH 244K arrays. The
conventional approach for analyzing these data is to apply one of the
CNV detection (‘segmentation’) algorithms to search for genomic
intervals of altered signal intensity using data from each platform
separately. The segmentation results from three platforms are then
combined. However, when the platforms disagree on the calling
of a CNV, it is difficult to decide what the consensus should be.
Furthermore, the reported DNA copy numbers (i.e. the location and
magnitude of the changes) are often different in different platforms.
At the fundamental level, the three platforms represent three distinct
marker panels and different molecular assay methods:

• Illumina arrays produce allele-specific data, Agilent arrays
produce only the total intensity, whereasAffymetrix arrays have
both allele-resolved SNP probes and invariant CNV probes,
thus effectively containing two sub-platforms.

• Agilent arrays produce two-color ratio data in a test/reference
format, whereas the other two measure each sample
independently.

• In regions of high-fold amplification, Illumina and Affymetrix
tend to have more pronounced signal saturation. In fact, all
three platforms estimate the true levels of copy number change
with different scaling factors, which may be non-linear and
may vary across chromosomes or samples (Bengtsson et al.,
2009).

• The three methods produce data values with distinct noise
characteristics, with different proportions of low-quality SNPs
and distinct local signal trends that are partly due to the sample
amplification procedures used.

• For some, such as the Illumina data, the default normalization
procedure is not tailored to copy number analysis.

In short, each platform has its advantages and disadvantages,
but together they produce a more detailed genome-wide survey
for each sample. If the datasets from the three platforms are
separately segmented, it is difficult to combine their respective
segment summaries because, for the same underlying event, they
will report different magnitudes, with different boundaries and
different degrees of uncertainty. An integrated analysis, where
information from all platforms are used at the same time to
detect CNVs and to estimate the levels of change, is expected to
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maximize resolution and accuracy. Currently, however, there is no
well-formulated statistical method to address the between-platform
differences in probe coverage, sensitivity and analytical complexity.
Simply combining the three data series into a single dataset without
proper normalization will not yield better segmentation results,
because when the underlying true copy number is not known,
it is difficult to determine how to normalize across platforms
given the uneven coverage between the platforms at any genomic
region.

In order to tackle the increasingly common problem of data
integration across multiple sources, we propose a new method
based on a simple multi-platform change-point model. The model
extends existing approaches for detecting change-points in a single
sequence (Zacks, 1983) to the problem of detecting coupled changes
in multiple sequences with differing noise and signal intensities.
The model gives rise to an efficient algorithm, Multi-Platform
Circular Binary Segmentation (MPCBS), which relies on a weighted
sum of t-statistics to scan for copy number changes. MPCBS
sums statistical evidence across platforms with proper scaling, and
does not require a pre-standardization of different data sources.
The statistics are derived through maximizing the likelihood of the
multi-platform model, with the dimension of the model (i.e. the
number of segments) chosen by maximizing a generalized form of
the modified Bayes information criterion (BIC) proposed in Zhang
and Siegmund (2007). Platform-specific quantities, such as noise
variances and response ratios, are also estimated by our method.
Importantly, the method provides a single, platform-free consensus
profile for each sample for downstream analyses.

2 MULTI-PLATFORM MODEL AND METHODS
OVERVIEW

Let the platforms be indexed by k=1,...,K , with K being the
total number of platforms. We observe total intensity data yk=
yk1,...,yknk

for the nk SNPs/clones on the k-th platform, which have
ordered locations (tk1,...,tknk

) along a chromosome. We assume that
for each platform, the data have been normalized to be centered
at 0 for ‘normal’ copy number and to have Gaussian (or near-
Gaussian) noise. Actual data must be transformed with missing
values imputed, sometimes with extreme outliers truncated in order
to approximate Gaussian noise. In some studies, the ‘normal’diploid
state of the genome is difficult to determine, such as when an entire
chromosome has been amplified. When this occurs, other types of
information, such as allelic ratios from SNP arrays, or intensity ratios
from two-color array comparative genomic hybridization (aCGH)
experiments, will be needed to help assign the correct absolute
copy number to each segment. Such complications are expected to
affect all platforms. Here, we deal with the integration of multiple
platforms in detecting changes in CNV and only need to assume that
the baseline ‘normal’ state is shared in common across platforms.

The fact that all {yk :k=1,...,K} are assaying the same biological
sample implies that at any genomic location t there is only one
true underlying copy number µt for all platforms. We define the
observed intensity level for the i-th probe of the k-th platform as
consisting of a signal fk(µtk,i ) plus a noise term that has platform-

specific variance σ2
k . Specifically, we assume the following model

for the data:

yki= fk(µtk,i )+εk,i, (1)

where the noise term εk,i are independently distributed N(0,σ2
k ).

We call fk(·), which quantifies the dependence of the observed
intensity on the underlying copy number, the response function of
platform k.

We model the true copy number as a piecewise constant function,
i.e. constant within a segment, and yet may change to a different level
at a ‘change-point’. For a chromosome of length T , we assume that
there exists a series of change-points 0=τ0 <τ1 < ···<τm <T such
that within each interval,

µt=θi, t∈[τi,τi+1). (2)

The magnitude parameters θ= (θ0,...,θm) and change-points τ=
(τ1,...,τm) are all unknown and, like the response functions, must
be estimated from the data.

For this article, we assume that the response function is linear,
i.e. fk(µ)=rkµ. The parameter rk , which we call the response
ratio, describes the ratio between the change in observed intensity
for platform k and the underlying copy number. The linearity
assumption allows for simple and intuitive test statistics and fast
scanning algorithms.

While the linearity assumption is an oversimplified ideal situation,
empirically the platform response functions are often observed
to be approximately linear for low-amplitude changes. Response
functions are usually non-linear for high-amplitude changes due
to saturation effects. However, the high-amplitude changes usually
have high statistical significance and are relatively less affected by
this simplification in modeling. The main purpose of our method is
to boost power for the low amplitude, statistically borderline cases
through multi-platform integration.

When the platform-specific response ratios rk are known, the
breakpoints τ and true copy numbers θ can be estimated through
a likelihood-based recursive segmentation procedure that builds on
the conceptual foundations of Olshen et al. (2004) and Vostrikova
(1981), which we describe in Section 3.1. Conversely, when τ and
θ are given, fk can also be easily estimated using the procedures
described in Section 3.4. Since both are usually unknown, we
propose the iterative procedure described in Section 3.5.

3 METHODS

3.1 Pooling evidence by weighted t-statistics
First, consider the case where the goal is to test whether there is a CNV at
a window from s to t. Under the null hypothesis that there is no CNV, the
data within this region should have baseline mean fk(0)=0, i.e.

H0 : yki∼N(0,σ2
k ) for k=1,...,K; and i : s≤ tki < t. (3)

If there is a gain (or loss) of magnitude µ, each platform should respond with
signal fk(µ)=rkµ. The signal is a mean shift in a common direction for all
platforms, with the observed magnitude of shift being rkµ for platform k, i.e.

HA : yki∼N(rkµ,σ2
k ) for k=1,...,K; and i : s≤ tki < t. (4)

Since the likelihood ratio statistic maximizes the power over all statistical
tests for this model, we will use the likelihood-based framework to test this
hypothesis. Let nk(s,t)=|{i : tk,i∈ (s,t]}| be the number of probes from the
k-th platform that falls within the interval (s,t]. Let ȳk,(s,t] denote the mean
intensity of probes that map within (s,t]. It can be shown (Supplementary
Material) that under this formulation, the generalized log likelihood ratio
statistic is a weighted sum of platform-specific terms:

Z(s,t)=
[∑K

k=1δk,s,tXk,s,t

]2

∑K
k=1δ2

k,s,t

, (5)
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(a) (b) (c)

Fig. 1. Comparison of the null hypothesis rejection regions between the SC statistic (8) (a), the weighted SC statistic (9) (b) and the weighted t-statistic (5)
(c) on K=2 platforms. In all figures, the axes are the magnitudes of the X variables (6) for platforms 1 and 2. A significance level of 0.05 is used to determine
the decision boundaries of all three statistics. For (b) and (c), weights of δ1=1, δ2=2 are used. The oblique line shows the direction of the weight vector
δ= (δ1,δ2).

where

Xk,s,t= ȳk,(s,t]− ȳk,[1,nk ]

σk

√
nk(s,t)−1−n−1

k

, (6)

is the t-statistic for testing for a change in segment (s,t) using the data from
platform k. The weights

δk,s,t= rk
√

nk(s,t)

σk
(7)

are proportional to the response ratio rk , the square root of the number of
probes from that platform that fall into [s,t), and the inverse of the estimated
error SD σ̂k . When there is only one platform, the statistic (5) is equivalent
to the chi-square statistic used in the Circular Binary Segmentation (CBS)
algorithm of Olshen et al. (2004). Theoretical properties of scans using (6)
and related statistics for a single platform were studied by Siegmund (2007)
and James et al. (1987). Usually σk is unknown and must be estimated
from the data as well, and we replace it with an estimate σ̂k in (6) and (7).
In the simplest case, we assume a common variance for all probes of a given
platform. The estimate of error standard deviation (SD) from platform k, σ̂k ,
can be obtained from the residuals after subtracting the mean within each
segment. The number of data points used to estimate σ is very large and thus
σ̂k is very precise and for all practical purposes can be treated as a known
quantity. In situations where σk is dependent on the underlying copy number
or differs between genomic regions, a generalized likelihood ratio statistic
similar to (5) can also be computed.

Note that the statistic (5), which we call the weighted t-statistic, is different
from the sum of chi-square (SC) statistic proposed in Zhang et al. (2009)
for multi-sample segmentation, where each sample comes from a different
biological source assayed on the same experimental platform. The statistic
used in Zhang et al. (2009) is the SC from N samples,

ZSC(s,t)= 1

N

N∑
n=1

X2
n,s,t . (8)

Intuitively, one may be tempted to extend the above formula to the multi-
platform case by proposing a weighted form (SWC)

ZSWC(s,t)=
∑K

k=1δ2
k,s,tX

2
k,s,t∑K

k=1δ2
k,s,t

(9)

that does not treat all platforms equally. However, this approach has the
drawback that it does not reward agreement between platforms. When

pooling data across samples, independent biological specimens are not
expected to carry the same CNV, and often both deletions and amplifications
can be observed between the samples at the same genome location. Thus, the
statistic (8) is intuitively correct in not ‘rewarding’ agreement in direction
of change between samples. For pooling data across platforms, however,
the underlying CNV is the same, and the statistic in (5) correctly rewards
agreement and penalizes disagreement. For example, consider the case of
K=2, where (5) simplifies to (δ2

1X2
1+δ2

2X2
2+2δ1δ2X1X1)/2. If the signs of

X1 and X2 agree, this statistic is always larger than (8), while if the signs
disagree, it is smaller. This makes the weighted t-statistic more suitable for
pooling evidence across multiple samples that come from the same biological
source.

The difference between the three statistics is shown graphically in Figure 1
for the simple case of two platforms with the response ratio of the second
platform being twice that of the first platform. Note that all three statistics are
functions of X= (X1,X2), which, assuming that σk=1, is bivariate Gaussian
with mean 0 and identity covariance matrix under the null hypothesis.
Figure 1a–c show in gray the region in the (X1,X2) plane where the null
hypothesis will be rejected. That is, X needs to fall into the gray region to
make a CNV call. For example, in Figure 1a, which depicts the situation in
(8), the gray region is {X : ZSC (X)> tSC

α }, where tSC
α is a threshold chosen

for the test to have significance level α. In Figure 1b, which depicts the
situation in (9), the weights δ2/δ1=2 favor evidence from X2 over evidence
from X1, giving an elliptical boundary. In Figure 1c, which depicts the
situation in (5), the boundary of the rejection boundary is {X : δ′X > tα},
which is perpendicular to the vector δ2/δ1. Importantly, note that Figure 1c
rewards agreement between the two platforms, while Figure 1a and b treat
all quadrants of the plane equally. The statistic (5, Fig. 1c) also allows one
platform to dominate the others: In the case where the directions disagree,
e.g. in the upper-left or lower-right quandrants, the consensus can still be
made according to the dominant platform.

3.2 Recursive segmentation procedure
In the previous section, we described the statistic used to test whether a
specific interval [s,t) constitutes a CNV. In reality, there can be multiple
change-points in a chromosome’s copy number. To detect all change-
points, we adopted an extension to the recursive binary segmentation
framework (Olshen et al., 2004; Vostrikova, 1981; Zhang and Siegmund,
2007). Vostrikova (1981) proved the consistency of binary segmentation
algorithms. Olshen et al. (2004) proposed an improvement, called CBS,
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which works better in detecting small intervals of change in the middle
of long regions. Zhang and Siegmund (2007) proposed a BIC criterion for
deciding the number of segments. Both Olshen et al. (2004) and Zhang
and Siegmund (2007) showed that these types of procedures work well
on DNA copy number data. Two independent comparative reviews by
Willenbrock and Fridlyand (2005) and Lai et al. (2005) concluded that the
CBS algorithm of Olshen et al. (2004) is one of the best performing single-
platform segmentation methods. This motivated us to extend CBS to the case
of multiple platforms.

The MPCBS algorithm will be described in detail in the Supplementary
Material. Here, we give an intuitive overview using the following notation:
Let R be an ordered set of segments {(i,j) : 0< i< j<T}, and Z be the
corresponding likelihood ratio statistics. Let M be the maximum number
of change-points tolerated, which is usually determined by computational
resources.

The algorithm proceeds as follows: Sk is the list of estimated change-points
in the k-th iteration, which is initialized to contain only {0,T}. The entire
dataset is scanned for the window [s∗,t∗) that maximizes Z(s,t), that is, where
the evidence for a change is the strongest. This window is added to Sk . Then,
the region (i) to the left of s∗, (ii) between s∗ and t∗ and (iii) to the right of t∗
are each scanned for a sub-segment that maximizes Z(s,t), these maximum
values are called ZL , ZC and ZR, respectively. The corresponding locations of
the maximum are RL , RC and RR. These are kept in the ordered lists Z and R.
At each iteration k of the algorithm, the region whose maximum weighted t-
statistic is the largest, i.e. i∗=argmaxiZ[i], is determined. The change-points
from that region which achieve this maximum, i.e. (s∗,t∗)=R[i∗], are added
to Sk . Since s∗, t∗ splits a previously contiguous region into three regions,
Z and R must be updated to include the maximal z-values and maximizing
change-points for the new regions to the left, center and right of the new
change points. This process is repeated until Sk has at least M change-points
in addition to {0,T}. Finally, the modified BIC criterion described in the
next section is used to determine a best estimate of the number of change-
points and the final segmentation. The modified BIC is a theoretically proven
method for estimating the true number of change-points based on asymptotic
approximations to posterior model probabilities. It is an off-the-shelf method
that automatically determines the trade-off between false positive and false
negative rates. For users who wish to detect CNV using more or less stringent
stopping rules, the software MPCBS allows the option of a user-tunable
z-score threshold for deciding the fineness of the segmentation.

3.3 Estimating the number of segments
To estimate the number of change-points, we use a modified form of the
classic BIC criterion that extends the approach of Zhang and Siegmund
(2007). In Zhang and Siegmund (2007), it was shown that the modified BIC,
when used on top of the CBS procedure of Olshen et al. (2004), improves
its performance for DNA copy number data.

To describe the extension of Zhang and Siegmund (2007) to the case of
multiple platforms, we first define several quantities. For a given genome
position t, let nk(t)=|{i : tk,i < t}| be the number of probes in the region [0,t)
for platform k. Let

Sk,t=
nk (t)∑
i=1

yk,i

be the sum of the intensities of all probes in this region. For a
given set of estimated change-points τ̂= (τ̂0=0<τ̂1 <...<τ̂k=T ), let
δk,i=rk

√
nk(τ̂i)/σk ,

Xk,i=
Sk,τ̂i−nk(τ̂i)Sk,τ̂i+1 /nk(τ̂i+1)

σ̂k
√

nk(τ̂i)[1−nk(τ̂i)/nk(τ̂i+1)] ,

and

Ui(τ̂)=
∑K

k=1δk,iXk,i(∑K
k=1δ2

k,i

)1/2
.

Xk,i is the t-statistic for testing that the change in mean at τ̂i is not zero.
Ui(τ̂) is a weighted sum of Xk,i, just as (5) is a weighted sum of (6).

Let N be the total number of distinct values in {tk,i :1≤ k≤K,1≤ i≤ nk},
that is, the number of different probe locations from all K platforms. For any
natural number n, n! denotes the factorial of n. It is possible to show using
arguments similar to Zhang and Siegmund (2007) that

1

2

m∑
i=1

Ui(τ)2− 1

2

m∑
i=0

log

[
K∑

k=1

nk(τ̂i,τ̂i+1)

]
− log

N !
m!(N−m)! . (10)

is asymptotically within an Op(1) error term of the Bayes factor for
comparing the model with k change-points versus the null model. The number
of change-points should be selected to maximize (10), which we call the
modified BIC.

The first term of the modified BIC is the maximized likelihood, and is
thus the same as the first term of the classic BIC criterion. The second and
third terms are penalties that increase with the number of change-points. The
second term penalizes the θ parameters by summing up the logarithm of the
effective sample size for estimating each θi. The third term is the logarithm of
the total number of ways to select m change-points from N possible values,
which penalizes the change-point parameters τ.

3.4 Estimating the platform-specific response ratio
In this section, we discuss the situation where the segmentation is known,
and we would like to estimate the platform-specific response ratios r=
(r1,...,rK ), the baseline levels α= (α1,...,αK ) and the underlying copy
numbers θ= (θ1,...,θm). For each (τ̂i,τ̂i+1), the data from platform k that
fall within the segment can be used to obtain an estimate of fk(θi):

f̂k,i=nk(τ̂i,τ̂i+1)−1
∑

j:tk,j∈[τi,τi+1)

yk,i, (11)

For each i and k, f̂k,i∼N(fk(θi),vk,i), where vk,i=σ2
k /nk(τ̂i,τ̂i+1) is

proportional to the noise variance of the k-th platform and inversely
proportional to the number of probes in that platform that lies in the i-th
segment. Thus, the negative log-likelihood of the data is

1

2

m∑
i=0

K∑
k=1

v−1
k,i (f̂i,k−αk−rkθi)

2, (12)

where αk is a platform specific shift. The unknown parameter vectors r and
θ should be chosen to minimize the above weighted sum of squares.

If the variances vk,i were identical across i and k, r and θ can be estimated
through the singular value decomposition of the matrix F= (fi,k) or through
a robust approach such as median polish. This model would then be similar
to those proposed in Irizarry et al. (2003) and Li and Wong (2001) for
model-based probe set summary of Affymetrix Genechip data. However,
the differences in variances should not be ignored, because segments with
less data, for which we are less sure of the mean estimate, should be down-
weighted. Similarly, platforms with higher noise variance should also be
down-weighted compared with platforms with smaller noise.

There are many ways to modify existing approaches to minimize (12). We
take the following simple iterative approach: note that for any fixed value
of r, the corresponding minimizer θ̂(r) can be found through a weighted
least squares regression. The same is true if we minimize with respect to
r when the value of θ is held fixed. Thus, joint optimization of r and θ is
achieved through a simple block update procedure which we detail in the
Supplementary Material.

3.5 Iterative joint estimation
Sections 3.1–3.3 detail a method for segmenting the data when the platform-
specific signal response functions are known. Then, Section 3.4 describe a
method for estimating the response functions with the segmentation given.
In most cases both the segmentation and the response functions are unknown.
The following algorithm is an iterative procedure that jointly estimates both
quantities from the data.
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Algorithm: Multi-platform joint segmentation

Fix stopping threshold ε. Initialize f (0)
k (µ)=µ for k=1,...,K . Set i←0.

(1) Estimate the segmentation τ(i) using MPCBS assuming response
functions f (i).

(2) Estimate f (i+1) as described in Section 3.4 assuming the segmentation
τ(i).

(3) If ‖f (i+1)−f (i)‖<ε, exit loop and report:

τ̂=τ(i), f̂k= f (i)
k , k=1,...,K .

Otherwise, set i← i+1, and iterate.

In this algorithm, f (i)
k and τ(i) are, respectively, the response functions

and the segmentation estimated in the i-th iteration. The response functions
are initialized to be equal in all platforms, a setting which in most cases
already gives a decent segmentation. After the first iteration, the estimated
segmentation can be used to obtain a more accurate estimate of the response
functions, which can then be used to improve the segmentation. In all of our
computations we simply set the stopping parameter ε=0.01. The estimates
of fk stabilized within a few iterations for all of the HapMap samples analyzed
in Section 4.1.

4 RESULTS

4.1 Comparison with single platform CBS by using
HapMap data

We applied our approach to the eight HapMap samples analyzed in
Kidd et al. (2008) using fosmid clone end-sequencing. In addition,
we also analyzed the reference genotype data for the same eight
samples from an Agilent platform with over 5000 common copy
number variants (Conrad et al., 2009). We combined the fosmid
and Agilent datasets and collectively referred to them as reference
CNVs. The same HapMap samples have both been analyzed by
Illumina 1M Duo and Affymetrix 6.0 genotyping chips. We used
MPCBS to combine the two platforms in making joint CNV calls,
and compared these calls with those made by running CBS on each
individual platform separately. We also compared MPCBS results
with the union of CBS calls made on both platforms, as well as
the intersection of CBS calls made on both platforms. Details of
data source and normalization are described in the Supplementary
Material. For CBS analysis, we show results using a range of P-
values from 0.0001 to 0.1. For MPCBS, we show results using both
the modified BIC-based stopping criterion described in this article,
as well as a range of z-score thresholds from 4.5 to 9. We assessed
performance by computing, for each method and stopping threshold,
the fraction of calls made by the method that is also reported in Kidd
et al. (2008) or Conrad et al. (2009) (precision), and the fraction of
CNVs reported in these two references that were also detected by
the method (recall).

When the fosmid and Agilent platforms detect a CNV, the
boundaries of the CNV are not precisely defined. We therefore
defined concordance to be any overlap between a CNV called by
CBS/MPCBS and a reference CNV. When multiple calls made by
CBS/MPCBS overlapped with the same reference CNV, only one
of them was counted as concordant. This guarded against over-
segmented CNV regions. This criteria of overlap can be made
more or less stringent, but as long as it is applied consistently in
the comparison between CBS and MPCBS, the conclusion made
would be unbiased. Figure 2 shows the curves of 1-precision versus

Fig. 2. Precision–recall curve for detection of CNVs in eight HapMap
samples. The methods being compared are (I) CBS on Illumina platform only,
(II) CBS on Affymetrix platform only, intersection of (I) and (II), union of
(I) and (II) and MPCBS jointly on Illumina and Affymetrix. The solid black
dot is the result given by MPCBS using the modified BIC stopping criterion.
The horizontal axis is the fraction of calls made by the given method that
fails to overlap with a reference CNV (1−precision). The vertical axis is
the fraction of all reference CNVs that are discovered by the given method
(recall). The curves are obtained by varying the stopping thresholds of CBS
and MPCBS.

recall. We see from these results that concordance with reference is
low across all methods. The low concordance with fosmid-detected
CNVs has also been reported previously, see for example, Cooper
et al. (2008) and McCarroll et al. (2008). Importantly, at comparable
levels of precision, MPCBS gives higher recall rates than either
Affymetrix or Illumina does alone, and higher recall rates than
combining calls from the two platforms by intersection or union. In
general, Affymetrix discovers many more segments than Illumina,
with many more concordant calls, likely due to having more probes
than the Illumina chip.

Is the low concordance between Affymetrix, Illumina and
reference CNVs due to inherent disagreement in the raw data,
or low sensitivity or specificity of the statistical method? To
investigate this issue, for each reference CNV, we computed the
mean intensity of the Affymetrix or Illumina probes mapping within
each reference CNV. We would expect that if the absolute change
in mean probe intensity is high for a given platform, and if the
segment spans a sufficient number of probes, the CNV is more
likely to be also called by that platform. Alternatively, if the mean
probe intensity within the reference CNV is indistinguishable from
baseline, it would be missed by that platform. Figure 3 shows the
Affymetrix versus Illumina mean intensity plot for two of the eight
samples. Each point corresponds to a reference CNV. The points
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Fig. 3. Mean probe intensities within reference CNV calls for Affymetrix
versus for Illumina in samples NA18956 and NA12878. The points are
colored and shaped based on the combination of Affymetrix (Affy), Illumina
(Illu), and MPCBS (Mp) that detected them.

colored in red are reference CNVs also detected by MPCBS, i.e.
overlapping one of the CNVs called by MPCBS. The shapes of
the points reflect whether they are detected by single platform CBS
in none of the individual platforms alone, in only Affymetrix, in
only Illumina or in both Affymetrix and Illumina. Most of the
reference CNVs do not have a shift in intensity in any platform,
suggesting that the microarray-based assays are noisy and prone
to cross-hybridization, especially in repetitive regions or regions
with complex rearrangements (Cooper et al., 2008). By combining
information from the Affymetrix and Illumina platforms, MPCBS

is able to make calls that were not identified in either platform
alone.

Figure 4 shows three examples of CNV calls made by
multiplatform CBS that are missed by one or both of the individual
platforms. In the left panel, the detected CNV region contains too
few probes and is thus missed by CBS on both Affymetrix and
Illumina platforms alone. However, by pooling the information from
both platforms, MPCBS is able to make a call. Similarly, in the
middle panel, neither platform alone has strong signal, but with
pooled evidence the MPCBS call has good agreement with the
reference. The right panel shows that CBS has the tendency to over-
segment CNV regions. The problem is mitigated in MPCBS coupled
with the modified BIC stopping criterion.

4.2 TCGA cancer data
To provide an example of application to somatic CNVs, we analyze
a dataset from TCGA samples. Intensity data from three platforms,
Illumina 550 K, Affymetrix 6.0 and Agilent 244K were downloaded
from TCGA data portal. The segmentation result for CBS and
MPCBS on chromosome 7 of the data is shown in Figure 5. The
top three panels show the results for the standard approach, which
is to call CNVs for each platform separately. But to integrate the
three CBS datasets one is faced with the difficulty that for a true
underlying CNV, the three segmentation summaries may not have
all detected the CNV, and even when they do, they will report
different magnitudes, different boundaries and different degrees of
uncertainty. The MPCBS result in the bottom panel provides a
natural consensus estimate without the problem of having to decide
how to integrate the three CBS segmentation results. While MPCBS
provides a single combined estimate, it remains a statistically
constructed best possible summary, and cannot be automatically
taken as evidence of technical replication. We emphasize that crucial
results in specific regions still require careful validation in further
experiments.

4.3 Computing time
The computation was done on a 1.6 GHz Intel Core 2 Duo
processor. In the analysis of this example region, which contains
30 170 Illumina probes, 98 993 Affymetrix probes and 13 241
Agilent probes, MPCBS took 122 s for each iteration of steps 1–3
in Section 3.5. The algorithm converged in two iterations.
Extrapolating to the full dataset consisting of∼2 million Affymetrix
probes, >1 million Illumina probes and 240K Agilent probes, the
computing time is on the order of 1 CPU-hour per sample, and
fluctuates according to the number of CNVs detected. In general,
computing time scales with the number of samples linearly, and with
the number of probes N as N logN . We have implemented additional
speed-up algorithms that are documented in the R package.

5 DISCUSSION
We have proposed a model for the joint analysis of DNA copy
number data coming from multiple experimental platforms. Under
simplifying assumptions, the maximum likelihood framework can
lead to an easily interpretable statistic and a computationally
tractable algorithm for combining evidence across platforms during
segmentation. By comparing with Agilent and fosmid clone end-
sequencing data on eight HapMap samples, we showed that MPCBS
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Fig. 4. Examples of regions detected by MPCBS. For each panel, the top plot shows the Illumina data with CBS fit, the middle plot shows the Affymetrix
data with CBS fit and the bottom plot shows the MPCBS consensus estimate along with thick horizontal lines depicting the reference CNV call. In all plots,
the horizontal axis is probe location in the unit of base pairs, and the vertical axis is the data intensity for the given platform or the consensus intensity estimate
θ in the case of MPCBS.

Fig. 5. Result of MPCBS on a TCGA sample. The top three plots show
Illumina, Affymetrix, and Agilent data with CBS fit. Bottom panel shows
multi-platform consensus. For all plots, the horizontal axis is probe location
in base pairs, and the vertical axis is the data intensity for the given platform
or the consensus intensity estimate θ in the case of MPCBS.

gives more accurate copy number calls, as compared with a simple
intersection or union of the calls made by CBS separately on each
platform. This method has also been applied to TCGA data, where
it provides consensus copy number estimates that provide a natural
summary of data from Affymetrix, Illumina and Agilent platforms.

A main feature of MPCBS is that it combines scan statistics from
multiple platforms in a weighted fashion, thus without requiring pre-
standardization across different data sources. For a given underlying
copy number change, platform A may report a higher level of
absolute change in signal intensity than platform B, but if A also
shows a higher level of noise, or fewer probes in the genomic
region in question, the scan statistics of A may not be larger than
those of B because such statistics are scaled appropriately within
each platform before being combined in MPCBS. However, careful
normalization and standardization across platforms are still desirable
when running MPCBS. This is because while segmentation per se
is not sensitive to absolute signals of different platforms, the mean

level of change reported by MPCBS can still be sensitive to the scale
of different platforms. Recently, Bengtsson et al. (2009) proposed
a joint normalization method for bringing different platforms to
the same scale and for addressing the issue of non-linear scaling
between platforms. While the method of Bengtsson et al. is not
concerned with joint segmentation, it can be coupled to MPCBS so
that the mean level of copy number change reported by MPCBS is
an even better approximation of the consensus level of change. We
expect that the segmentation result will alter slightly when using data
preprocessed by the method of Bengtsson et al. mainly because the
current version of MPCBS has not considered non-linear response
functions. In short, we recommend pre-standardization of the scale
of copy number changes across platforms before running MPCBS.
This would have little impact on segmentation but may improve the
mean copy number change reported.

MPCBS can be applied also to the situation when a biological
sample is assayed multiple times on the same experimental platform.
In our general specification of the model (2.1), we allow the
SNPs/clones from different assays to overlap. When the same
platform is used for repeated assays of the same sample, model (2.1)
and the MPCBS algorithm still apply without modification. This
does not assume that technical replicates using the same platform
have the same signal response curves, as there may be differential
quality in replicates due to differing handling and hybridization
conditions. However, the user can have the option of constraining the
response ratios to 1 if the samples have already been preprocessed,
e.g. using the method of Bengtsson et al. (2009) to equalize the
signal magnitudes.
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