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ABSTRACT

Motivation: High-dimensional data are frequently generated in
genome-wide association studies (GWAS) and other studies.
It is important to identify features such as single nucleotide
polymorphisms (SNPs) in GWAS that are associated with a disease.
Random forests represent a very useful approach for this purpose,
using a variable importance score. This importance score has several
shortcomings. We propose an alternative importance measure to
overcome those shortcomings.
Results: We characterized the effect of multiple SNPs under various
models using our proposed importance measure in random forests,
which uses maximal conditional chi-square (MCC) as a measure of
association between a SNP and the trait conditional on other SNPs.
Based on this importance measure, we employed a permutation
test to estimate empirical P-values of SNPs. Our method was
compared to a univariate test and the permutation test using the Gini
and permutation importance. In simulation, the proposed method
performed consistently superior to the other methods in identifying
of risk SNPs. In a GWAS of age-related macular degeneration, the
proposed method confirmed two significant SNPs (at the genome-
wide adjusted level of 0.05). Further analysis showed that these
two SNPs conformed with a heterogeneity model. Compared with
the existing importance measures, the MCC importance measure is
more sensitive to complex effects of risk SNPs by utilizing conditional
information on different SNPs. The permutation test with the MCC
importance measure provides an efficient way to identify candidate
SNPs in GWAS and facilitates the understanding of the etiology
between genetic variants and complex diseases.
Contact: heping.zhang@yale.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Successes of genome-wide association studies (GWAS) have
demonstrated that single nucleotide polymorphisms (SNPs) can
be used to identify genetic variants underlying complex diseases,
such as age-related macular degeneration (AMD) and coronary
artery disease (CAD) (Edwards et al., 2005; Haines et al., 2005;
Helgadottir et al., 2007; Klein et al., 2005; McPherson et al., 2007;
Samani et al., 2007). GWAS has emerged as the most effective study
design for identifying candidate genes in the scenario of ‘common
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disease, common variant’(CD–CV). With the advance of genotyping
technology, the number of available SNPs in one assay has soared
from hundreds of thousand to more than 1 million in the past few
years, leading to an outburst of high-dimensional data.

On the contrary, statistical methods available for GWAS remain
limited. Single marker univariate tests such as the chi-square test or
likelihood ratio test are commonly used. While simple, the univariate
tests have produced many successes in identifying genetic variants
for complex diseases (Klein et al., 2005; Li et al., 2006), which some
may regard as ‘low hanging fruits’. In reality, biological systems
are more complex than single variants acting independently, and
most likely, multiple genes may work together in a complex system.
For example, in the case of CD–CV, multiple loci and environment
factors may be involved, and the individual effects may not be large
enough to be detectable with thousands of study subjects. Some
approaches have been proposed for GWAS to consider the effects
of multiple SNPs (Li et al., 2006; Zhang et al., 2008). But, there
are practical limitations in those approaches. For example, SNPs
interactions can be examined only under very limited configurations.
Moreover, genetic variants may manifest different effects such as
multiplicative and heterogeneity effects (Meng et al., 2009; Risch,
1990a, b), further complicating the analysis.

To meet the growing computational demand of the analytic
methods, machine-learning approaches have attracted more
attention in detecting significant SNPs in GWAS. For example,
classification trees and forest-based methods (Breiman, 2001;
Breiman et al., 1984; Zhang and Ye, 2008; Zhang et al., 2003) are
powerful tools for identifying complex relationships between a trait
and a large number of predictors, and these methods also have been
found useful in the analysis of gene expression data (Bureau et al.,
2005; Chen et al., 2007; Diaz-Uriarte and Alvarez de Andres, 2006;
Ye et al., 2005; Zhang and Bonney, 2000). A random forest consists
of many classification trees, and at each node of the trees, a small
subset of randomly selected predictors, instead all predictors, are
considered to split on the node. Within a random forest, the effect
of a predictor is measured by either the permutation importance
or Gini importance (Breiman, 2001). The Gini importance of a
specific predictor directly sums the improvement of weighted Gini
index when this variable is used for splitting a node among all trees
in the forest (Friedman, 2001). The permutation importance of a
predictor calculates the increase of the out-of-bag errors as a result of
permuting the values of the predictor (Breiman, 2001), because the
permutation destroys any potential predictive power of the predictor
on the trait. Previous studies (Jiang et al., 2009; Wang et al., 2009)
have demonstrated that the random forest-based approach is feasible
and efficient for GWAS, although two major issues hamper further
applications of random forests. Firstly, although large importance
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scores are often indicative of SNPs associated with the trait, it is
usually not clear how large is large, and the importance score is not
coupled with the rigorous statistical significance of the investigated
SNPs. Secondly, both the permutation and Gini importance scores
measure the ‘average’ effect of a predictor in a random forest, and
can be easily altered by the presence of the other SNPs.

To overcome the problems stated above, we introduce an
alternative importance score using maximal conditional chi-square
(MCC) statistic to assess the conditional significance of SNPs in
GWAS. For example, with two SNPs (A and B), if SNP B confounds
the effect of SNP A on the trait, failure to control the effects of SNP
B may lead to inefficient tests for SNP A. Like the Mantel–Haenszel
test, a test by stratifying by SNP B is an effective approach to
adjusting for the confounding effect of SNP B.

We make use of the hierarchical tree structure to assess the effect
of SNP A through stratification of the SNPs that precede SNP A in
splitting the nodes in a tree. A conditional chi-square statistic for
SNP A can be calculated whenever it is used to split a node of any
tree in a random forest. The maximal value among all these chi-
squares calculated for SNP A is obtained after the construction of
the random forest. This maximum indicates the relationship between
the trait and the SNP given its preceding SNPs in the random forest,
and can serve as an importance measure. The reason we select the
largest chi-square statistic, instead of the average as used in the Gini
and permutation importance, is that disease-associated SNPs are
usually very rare in the data, and therefore, most of the conditional
chi-square statistics come from the SNPs that are not associated with
the trait. Thus averaging all chi-square values limits the sensitivity
of the permutation test.

Based on the MCC importance score, we developed a permutation
procedure to estimate the significance of each SNP. Simulated
data sets based on various multiplicative and heterogeneity genetic
models were generated to evaluate the performance of the proposed
approach. We compared the results among Gini, permutation, and
MCC importance scores. Finally, the proposed method was applied
to a real data set for GWAS.

2 METHODS

2.1 Definition of MCC importance
Let Lj

i be the list of SNPs that precede SNP i in its split of the j-th node of

a tree. Let Xj
i be the chi-square statistic resulting from the split of the j-th

node from SNP i . Define set Si as:

Si ={Xj
i |Lj

i , j=1, ...,ni} i=1, ...,M (1)

where M is the number of SNPs and ni is the number of nodes split by SNP
i in the forest.

The MCC importance of SNP i is then defined as:

MCCi =max(x,x∈Si). (2)

Let mi be the node at which MCCi is reached. If it is not unique, we select
the first one by starting from the root node and left to right. Let

LMCC
i =Lmi

i . (3)

We should note that when the node size is small, the chi-square statistic is
not reliable. Thus we used the corrected chi-square statistic. In addition, we
imposed a reasonable minimum size (5) on a node for splitting as typically
done.

2.2 Random forest construction
Computing importance scores through permutation for the whole genome
is theoretically possible but practically unrealistic. To overcome this
computational issue, SNPs are screened using a single-marker analysis before
being used in the construction of a random forest. Obviously, we need to
choose a threshold for the screening. Because the concern is computational,
the threshold can be relatively flexible based on the number of SNPs and
computing capacity. Whenever feasible, we should try to be inclusive. For
this report, we chose the threshold corresponding to the false discovery rate
(FDR) below 0.75, which is a high threshold with a low chance of missing
any important SNPs while enough to reduce the computational burden due
to the much fewer number of SNPs considered. In each random forest, 1000
trees were generated, and the number of SNPs to be considered for splitting
a node was set to be the square root of the total number of the post screening
SNPs (Breiman, 2002).

2.3 Permutation test
Theoretical understanding of tree and forest based methods is known to
be very difficult if not impossible. As a result, permutation procedures are
commonly adopted to assess the significance level of a test (Chen et al., 2007;
Rodenburg et al., 2008; Wang et al., 2009). In this study, we also applied
permutation to estimate empirical P-values for MCC, Gini and permutation
importance scores in random forests. After a random forest was built from
the original data, the trait values were permuted randomly. Then, a new
random forest was built and the importance values were recalculated for the
permuted data set. The maximum importance value over all the SNPs in
every permutation was recorded and thereby an empirical distribution of the
maximum importance was estimated. We used this estimate to further assess
the significance of each SNP in the data. To balance the heavy computational
burden and the size of the probability to be estimated, we performed 1000
replications that seemed large enough to estimate the empirical P-value at
significance levels of 0.01 and 0.05 in simulation studies. Others have taken
similar strategies in related simulations (McDonough et al., 2009; Sohn et al.,
2009). In a real analysis, more permutations could be carried out if necessary.

2.4 Genetic models for simulation
To reflect complex diseases under the CD–CV assumption, we adopted the
genetic models studied by Lunetta et al. (2004) and Meng et al. (2009),
which incorporate both genetic heterogeneity and multiplicative interactions
in terms of penetrance factors defined by Risch (1990a and b). For example,
in a simple two-locus model, denote the genotypes of the two SNPs (namely
A and B) by Ai, i = 0, 1, 2, and Bj , j = 0, 1, 2, respectively, where i and j
denotes the number of risk alleles, and p= (p0,p1,p2) and q= (q0,q1,q2) are
penetrance factors for SNPs A and B, respectively. Then, for a multiplicative
model, the penetrance of genotype AiBj is wij = piqj ; for a heterogeneity
model, wij = 1−(1−pi)(1−qj)=pi +qj −piqj (Meng et al., 2009; Risch,
1990a, b).

For clarity, the penetrance factors for 0, 1 and 2 risk alleles are set the
same at each risk SNP in each simulation model, namely q= (q0,q1,q2).
Furthermore, in a combined heterogeneity and multiplicative model, define a
multi-locus genotype as G= (g11,g12 ,... ,gHM ), where H denotes the number
of heterogeneous model, M denotes the number of multiplicatively acting
loci in each model, and g is denoting the number of risk alleles at each locus.
Then the penetrance for genotype G is calculated as:

wG =1−
H∏

h=1

(
1−

M∏
m=1

qghm

)
(4)

According to the notation in Lunetta et al. (2004) and Meng et al. (2009), each
model is abbreviated as ‘HhMm’, where h is the number of heterogeneous
groups and m is the number of multiplicatively acting loci in each group.
These groups are sometimes referred to as genetic networks or systems. For
example, the genetic model
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Table 1. Genetic models used to simulate GWAS data

Model Risk alleles Penetrance factor

Total
number

Hetero-
geneity
alleles

Multipli-
cative
alleles

Allele
frequency

0 1 2

H4M2 8 6 2 0.160 3.8E−4 0.5 1
H4M4 16 12 4 0.282 1.2E−8 0.79 1

H4M4 means that the model contains four heterogeneous groups each
with four multiplicative risk SNPs (Table 1). As in real data, noise SNPs
in linkage equilibrium with allele frequencies distributed uniformly (0.01,
0.99) were generated. For each simulated data set, 200 cases and 200 controls
were generated with a total of either 100 or 1000 SNPs. See Table 1 for more
details.

3 RESULTS

3.1 Performance evaluation
As a starting point, we analyzed the data generated by models H4M2
and H4M4 to show whether the MCC importance is a preferable
statistic in association studies. Scatter plots of raw MCC importance
scores and P-values from univariate tests (uncorrected for multiple
comparisons) were calculated for these genetic models, as shown
in Figure 1. The agreement between uncorrected single marker
P-values and MCC importance scores for risk SNPs is apparent
in Figure 1. While for most of the noise SNPs with single marker
P-value ranging from 0.01 to 1, the corresponding MCC importance
scores are 0, indicating that the MCC importance is robust to the
abundant, non-informative SNPs in the data. At the same time, with
the increase of complexity in the genetic models and decrease of the
signal-to-noise ratio in data, the overlap in MCC between risk and
noise SNPs is expected. As indicated by the vertical and horizontal
lines, if we try to distinguish risk SNPs from noise SNPs, the MCC
importance is far more effective than the single marker P-values
(see Fig. 1). Thus, our results suggest that the MCC importance has
gained discriminant power by incorporating conditional information
in multiple SNPs.

Next, we compared the empirical P-values obtained from the
permutation test using different kinds of importance measures in
random forests. Figure 2 illustrates the estimated genome-wide
significance levels for all risk SNPs in the simulation data sets. For
genetic model H4M2, both the MCC and permutation importance
scores performed well in terms of identifying risk factors under the
genome-wide 0.05 significance level (indicated by the horizontal
line), although the MCC revealed much stronger evidence. The
Gini importance, however, failed to identify seven out of eight risk
SNPs with a genome-wide significance level of 0.05 when a total of
100 SNPs are tested. When a total of 1000 SNPs are included, none
of the risk SNPs were identified. For the data sets generated from
model H4M4 with more interactions, the MCC importance score
consistently produced the best results. Moreover, we replicated the
simulation 50 times and calculated the average of sensitivity and
specificity under two thresholds, genome-wide significance levels of
0.05 and 0.01, based on the empirical P-values from the permutation
test using different importance measures and univariate test (after

Fig. 1. Scatter plots of raw MCC importance scores and P-values from
single-SNP tests in models H4M2 and H4M4.

Fig. 2. Empirical P-values of risk SNPs in models H4M2 and H4M4. White,
grey and black bars represent the permutation importance, Gini importance
and MCC importance scores, respectively. Two dash lines represent the
genome-wide significance level of 0.05 and 0.01, respectively.

Bonferroni correction for multiple comparisons) (shown in Table 2).
All four methods investigated in this study have 100% specificity
throughout all tests. This is a critical feature for GWAS as there are
usually more than 100 k SNPs in one assay and most of them are
non-informative. For the sensitivity, the permutation test using the
Gini importance has the highest missing rate in all tests, even worse
than the simple univariate test. The permutation test using the MCC
importance is significantly (P < 10−4) superior to the other three
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Table 2. Comparison of prediction performance of different methods with different significance levels using models H4M2 and H4M4

H4M2 H4M4

N=100 N=1000 N=100 N=1000

sn (%) sp (%) sn (%) sp (%) sn (%) sp (%) sn (%) sp (%)

Significant level 0.01 MCC RF 95.2∗∗∗ 100 68.0∗∗∗ 100 38.9∗∗∗ 100 9.4∗ 100
Permutation RF 69.5 100 28.5 100 12.2 100 2.2 100
Gini RF 27.2 100 13.0 100 3.0 100 2.0 100
Univariate 55.0 100 27.5 100 7.6 100 2.8 100

Significant level 0.05 MCC RF 98.0∗∗ 100 78.0∗∗∗ 100 53.1∗∗∗ 100 15.8∗∗ 100
Permutation RF 85.0 100 47.2 100 21.9 100 5.2 100
Gini RF 36.2 100 21.0 100 8.8 100 4.8 100
Univariate 67.0 100 43.8 100 15.9 100 6.5 100

sn: sensitivity; sp: specificity; N : number of SNPs.
Significance of paired t-test between MCC RF and the best among other three methods: *: <1E−2, **: <1E−5, ***: <1E−10.

tests, and for instance, increases the sensitivity by a range of 6–40%
relative to the univariate test. These results underscore the usefulness
of the MCC importance in identifying SNPs for complex diseases.
We also performed a limited number of simulations using larger
sample sizes. The results are shown in Supplementary Figure S1
and Supplementary Table S1, and confirm that the MCC importance
is consistently better than other methods.

3.2 Effect of linkage disequilibrium (LD)
We should note that LD may reduce the importance scores of risk
SNPs in random forests due to the strong correlation among them.
Also, it is possible that some of the risk SNPs are not genotyped.
To assess the impact of LD and ungenotyped risk SNPs on the
performance of the MCC importance, we followed the approach
in Lunetta et al. (2004) and Meng et al. (2009). Let K represent
the number of genotyped risk SNPs, S the number of genotyped
SNPs within each multiplicative model, and LD the number of
SNPs in LD with a risk SNP. The SNPs in LD with a risk SNP
but without functional effect on the trait were treated equally as
the risk SNP, since they identify the correct region of the genome
associated with the trait. We selected four risk SNPs in models H4M2
(SNPs 1–4 of the first two heterogeneity groups in Fig. 2a and b)
and H4M4 (SNPs 5–8 of the second heterogeneity group in Fig. 2c
and d), and added four extra SNPs in LD with each genotyped risk
SNP. To indicate the genetic models, for example, H4M2K4S2LD4
means that two heterogeneous groups are genotyped out of all four
groups, and four additional SNPs are in LD for each risk SNP.
Following Lunetta et al. (2004) and Meng et al. (2009), all LD
levels were simulated using r2 = 1. The empirical genome-wide
P-values are shown in Figure 3. The performance of the permutation
test using the MCC importance is largely unaffected by LD. In
model H4M2K4S2LD4 with 100 SNPs (Fig. 3a), all four risk SNPs
and the SNPs in LD with them show similar significance levels
as they did in the unmodified model H4M2 (Fig. 3a). Also the
significant risk SNP in the selected heterogeneity group (SNP 6)
of H4M4 with 100 SNPs still can be distinguished in the more
complicated new model (Figs 2c and 3c). There is one risk SNP
with reduced significance in each model. For example, the first risk

Fig. 3. Empirical P-values of risk SNPs and SNPs in LD with them in models
H4M2K2S2LD4 and H4M4K4S2LD4. White, grey and black bars represent
the permutation importance, Gini importance, and MCC importance scores,
respectively. Two dash lines represents the genome-wide significance level
of 0.05 and 0.01, respectively.

SNP in H4M2K4S2LD4 with 1000 SNPs (Fig. 2b) has genome-
wide P-value <0.01; however, the corresponding LD region 1 in
the modified model is no longer significant (Fig. 3b), probably due
to missing information of other risk SNPs. At the same time, the
permutation test using Gini or permutation importance become less
powerful in both models.

We further compared performance of different methods on these
modified models based on 50 replications (see in Table 3), and the
results show that the permutation test using the MCC importance
achieves the best performance and it is significantly (P < 10−5)
better than the next runner-up in all scenarios. For example,
compared to the other methods, at least 25% improvement in
sensitivity can be observed by using the MCC importance in models
H4M4K4S4LD4 with 1000 SNPs at genome-wide significance
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Table 3. Comparison of prediction performance of different methods with different significance levels using models H4M2K2S2LD4 and H4M4K4S4LD4

H4M2K2S2LD4 H4M4K4S4LD4

N=100 N=1000 N=100 N=1000

sn (%) sp (%) sn (%) sp (%) sn (%) sp (%) sn (%) sp (%)

Significant level 0.01 MCC RF 76.6∗∗ 100 54.2∗∗ 100 45.0∗∗∗ 100 11.0∗∗ 100
Permutation RF 18.6 100 12.8 100 2.3 100 1.2 100
Gini RF 0 100 4.4 100 0 100 0.3 100
Univariate 56.0 100 29.5 100 7.0 100 1.0 100

Significant level 0.05 MCC RF 89.6∗∗ 100 66.5∗∗ 100 58.6∗∗∗ 100 17.3∗∗∗ 100
Permutation RF 45.9 100 26.9 100 10.9 100 2.9 100
Gini RF 0 100 10.2 100 0 100 1.2 100
Univariate 72.0 100 42.0 100 18.5 100 4.0 100

sn: sensitivity; sp: specificity; N : number of SNPs.
Significance of paired t-test between MCC RF and the best among other three methods: *: <1E−2, **: <1E−5, ***: <1E−10.

Fig. 4. Probability of SNPs in LMCC of risk SNPs in model H4M4. 1–16:
risk SNPs, >16: noise SNPs.

level of 0.01. Without exceptions, the permutation tests using
the other importance measures perform worse than the univariate
test. We also performed a limited number of simulations using
larger sample sizes. The results are shown in Supplementary
Figure S2 and Supplementary Table S2.

3.3 Inference on SNP interactions
We have demonstrated the use of the MCC importance in random
forests. Another important question remains: can we identify risk
SNPs and their interactions beyond chance from the list of preceding
SNPs during the course of computing the MCC importance? To
answer this question, we investigated the relationship between a
risk SNP and its preceding SNPs. First let us define Pa to be the
probability that the specific SNP appears in LMCC. Pa was then
estimated from a random forest with 1000 replications from the
H4M4 model (see Fig. 4). The 16×16 grids with grayscale represent
Pa for all 16 risk SNPs in the data, the column ‘>16’ represents the
average Pa for all noise SNPs. We can easily identify four 4×4
blocks in Figure 4, which represent four heterogeneity groups.

Within these blocks, Pa scores in the diagonal are zero, because a
SNP can not be in LMCC of itself. The averaged Pa of multiplicative
interacting SNPs is 0.18, ∼10 times of the averaged probability of
the risk SNPs outside the corresponding group. At the same time,
the results in Figure 4 also indicate that noise SNPs have a much
lower chance to be included in LMCC, and the averaged Pa for noise
SNPs is as low as 2.6×10−3. Moreover, also let us define Pn to be
the probability that for a specific SNP, none of risk SNPs is included
in LMCC. It is very unlikely for LMCC of the risk SNPs to include
only noise SNPs: the averaged Pn of all risk SNPs is 1.4×10−2,
suggesting that the MCC importance for the risk SNPs is indeed
dependent on the other risk SNPs, beyond chance. These results
suggest that using the MCC importance random forests makes it
feasible to identify multiple risk SNPs.

3.4 Application in GWAS
We applied the proposed method to a GWAS of AMD (Klein
et al., 2005). AMD is the most common cause of vision loss in
the elderly. Many researchers have studied the genetic mechanism
of this complex disease (Daiger, 2005; Marx, 2006). This dataset
contains 116 212 SNPs in 96 cases and 50 controls, and we removed
SNPs that had more than 5% missing ratio or <5% minor allele
frequency. Two significant SNPs: rs1329428 and rs10272438 were
successfully identified under genome-wide significance level of
0.05, which have been previously reported by different studies of
AMD (Chen et al., 2007; Klein et al., 2005; Ng et al., 2008).
We then investigated the LMCC of these two SNPs and showed
detailed information in Figure 5. It turns out that they cooperate
in a scenario that both SNPs have the strongest association with
the disease when they are dependant on each other. For example,
in the 94 patients with AMD and 36 healthy people which have at
least one ‘T’ allele in rs10272438, genotype ‘GG’ in rs1329428
was identified in 67 patients while only seven in the control
group (Fig. 5a), resulting in a maximal chi-square score 28.52. For
rs10272438, a maximal Chi-square score 28.87 was achieved with
the same SNPs and genotype splitting criteria (Fig. 5b). Furthermore,
we performed a logistic regression using both rs10272438 and
rs1329428, and the coefficient of the interaction term is −0.1234
with an insignificant P-value of 0.84, suggesting that these two
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Fig. 5. Illustration of LMCC for two significant SNPs identified: rs10272438
and rs1329428.

SNPs belong to a heterogeneity genetic model involved in AMD.
It is noteworthy that Figure 5 is presented to illustrate the tree
structures in the random forest and how the selected SNPs may
interact. However, in the context of random forest, we are not aimed
in comparing the performance of one tree against another in the
forest.

4 DISCUSSION
Random forests, as a powerful machine learning method, has been
successfully applied in many classification problems, especially with
a large number of predictors. The permutation and Gini importance
scores are commonly computed for random forests to evaluate the
overall contribution of a predictor in classification. The reason for
the reduced power they exhibited in identification of risk SNPs in
GWAS is probably that the risk SNPs are extremely sparse in the
data and they usually cooperate as a complex system associated with
the phenotype; therefore averaging over all scores may significantly
reduce its sensitivity in the permutation test. Moreover, there
are other practical issues with the permutation importance. For
example, highly correlated SNPs due to link age disequilibrium
act as surrogates to each other, causing an underestimation of
the permutation importance when they appear in one tree. During
the calculation of permutation importance, the permutation of one
SNP will break its intrinsic relationship with other SNPs which
leads to inaccurate estimation of permutation importance. Some
approaches (Amaratunga et al., 2008; Jiang et al., 2009; Meng et al.,
2009) have been proposed to address these issues, but they are too
computationally intensive for ultra high throughput data. Therefore,
a powerful and yet simple statistic is very important to detect subtle
effects between casual SNPs.

In this article, we proposed and studied the maximal chi-square
statistic as a new importance measurement in random forests and
its application in the permutation test for GWAS. We first evaluated
the performance of the MCC importance in detecting risk SNPs
using empirical P-values under null hypothesis and discovered
that there is no association between SNPs and a trait. We also
compared this method with the permutation tests using different
importance scores in random forests and single marker analysis.
We further modified the genetic models in simulation by including
LD, reflecting real data in GWAS. The results indicated that the

permutation test using the MCC importance was consistently the
best. Moreover, we showed that it is possible to make inference
on risk SNPs from the preceding list of SNPs while deriving
the MCC importance. Finally we applied this method to a GWAS
data for AMD. Two AMD-related SNPs: rs10272438 and rs1329428
were successfully identified with the genome-wide significance level
0.05. Our analysis suggested that these two SNPs belong to a
heterogeneity model involved in etiology.
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