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ABSTRACT

Motivation: Thermodynamics-based dynamic programming RNA
secondary structure algorithms have been of immense importance
in molecular biology, where applications range from the detection
of novel selenoproteins using expressed sequence tag (EST)
data, to the determination of microRNA genes and their targets.
Dynamic programming algorithms have been developed to compute
the minimum free energy secondary structure and partition
function of a given RNA sequence, the minimum free-energy and
partition function for the hybridization of two RNA molecules,
etc. However, the applicability of dynamic programming methods
depends on disallowing certain types of interactions (pseudoknots,
zig-zags, etc.), as their inclusion renders structure prediction
an nondeterministic polynomial time (NP)-complete problem.
Nevertheless, such interactions have been observed in X-ray
structures.
Results: A non-Boltzmannian Monte Carlo algorithm was designed
by Wang and Landau to estimate the density of states for complex
systems, such as the Ising model, that exhibit a phase transition. In
this article, we apply the Wang-Landau (WL) method to compute the
density of states for secondary structures of a given RNA sequence,
and for hybridizations of two RNA sequences. Our method is shown
to be much faster than existent software, such as RNAsubopt.
From density of states, we compute the partition function over all
secondary structures and over all pseudoknot-free hybridizations.
The advantage of the WL method is that by adding a function
to evaluate the free energy of arbitary pseudoknotted structures
and of arbitrary hybridizations, we can estimate thermodynamic
parameters for situations known to be NP-complete. This extension
to pseudoknots will be made in the sequel to this article; in contrast,
the current article describes the WL algorithm applied to pseudoknot-
free secondary structures and hybridizations.
Availability: The WL RNA hybridization web server is under
construction at http://bioinformatics.bc.edu/clotelab/.
Contact: clote@bc.edu

1 INTRODUCTION
RNA is an important biomolecule, now known to play both an
information carrying role, as well as a catalytic role. Indeed, the
genomic information of retroviruses, such as the hepatitis C and
human immunodeficiency viruses, is encoded by RNA rather than
DNA, while the peptidyl transferase reaction, arguably the most
important enzymatic reaction responsible for life, is catalyzed not by
a protein, but rather by RNA (Weinger et al., 2004). It has recently
emerged that RNA plays a wide range of previously unsuspected
roles in many biological processes, including retranslation of the
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genetic code [selenocysteine insertion (Böck et al., 1991), ribosomal
frameshift (Bekaert et al., 2003)], transcriptional and translational
gene regulation (Lim et al., 2003; Mandal et al., 2003), temperature-
sensitive conformational switches (Chowdhury et al., 2003; Tucker
and Breaker, 2005), chemical modification of specific nucleotides in
the ribosome (Omer et al., 2000), regulation of alternative splicing
(Cheah et al., 2007), etc.

A secondary structure for a given RNA nucleotide sequence
a1,...,an is a set S of base pairs (i,j), such that ai,aj forms
either a Watson–Crick or GU (wobble) base pair, and such that
there are no base triples or pseudoknots in S.1 For example,
the secondary structure of Y RNA2 with EMBL access code
AAPY01489510/220-119 is displayed in Figure 1a and b, while
Figure 1c and d depicts the pseudoknotted structure of the
Gag/pro ribosomal frameshift site of mouse mammary tumor
virus (Van Batenburg et al., 2001). In conventional dot-bracket
notation, this latter structure is given as follows, where it should
be noted that two kinds of bracket are needed due to the pseudoknot

AAAAAACUUGUAAAGGGGCAGUCCCCUAGCCCCGCUCAAAAGGGGGAUG
..............(((((.[[[[[[[.)))))........]]]]]]].

It is computationally intractable to compute the minimum free-
energy tertiary structure of RNA; indeed, determining the optimal
pseudoknotted structure is nondeterministic polynomial time (NP)-
complete Lyngso and Pedersen (2000). In contrast, by disallowing
pseudoknots, secondary structure prediction is algorithmically
tractable; there are dynamic programming algorithms to compute the
minimum free-energy structure for a single RNA molecule, as well
as for the hybridization of two or more RNA molecules. In particular,
such methods can be loosely grouped into two types of algorithm—
those that use (i) a stochastic context free grammar to compute a
covariation model and (ii) free-energy parameters obtained from
UV absorbance (optical melting) experiments, in order to determine
the minimum free energy structure (i.e. thermodynamic-based
algorithms). Examples of stochastic context-free grammars are the
programs Infernal (Nawrocki et al., 2009) and Pfold (Knudsen and
Hein et al., 2003). Examples of thermodynamics-based algorithms
are the programs mfold (Zuker and Stiegler, 1981), UNAFOLD
(Markham and Zuker, 2008), RNAfold (Hofacker et al., 1994),
RNAstructure (Mathews et al., 2004). Thermodynamics-based
algorithms for hybridization of two structures are given inUNAFOLD
(Dimitrov and Zuker, 2004), RNAcofold (Bernhart et al., 2006;
Mückstein et al., 2006), while the NUPACK software considers
hybridization of three or more RNA molecules. (Dirks et al.,

1A base triple in S consists of two base pairs (i,j), (i,�)∈S or (i,j), (k,j)∈S.
A pseudoknot in S consists of two base pairs (i,j), (k,�)∈S with i<k < j<�.
2According to Reinisch and Wolin (2007), one of the functions of Y RNA is
to bind to certain misfolded RNAs, including 5S rRNA, as part of a quality
control mechanism.
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Fig. 1. (a and b) Pseudoknot-free secondary structure of Y RNA with EMBL access code AAPY01489510/220-119, depicted in (a) in Feynman circular form,
and in panel (b) in classical form. (c and d) Pseudoknotted structure for the Gag/pro ribosomal frameshift site of mouse mammary tumor virus, depicted in
(c) in Feynman circular form, and in (d) in classical form. Images produced with sofware jViz (Wiese et al., 2005) from structures taken, respectively, from
Rfam (Griffiths-Jones et al., 2003) and Pseudobase (Van Batenburg et al., 2001).

2007). Such thermodynamics-based algorithms are particularly
important, since the tertiary structure of RNA is believed to be
largely determined by secondary structure, which acts as a scaffold
for tertiary contacts; see Banerjee et al. (1993) for experimental
data supporting this view.3 Computing the minimum free-energy
pseudoknotted structure for a given RNA sequence is NP-complete
Lyngso and Pedersen (2000) for the Turner nearest neighbor energy
model.4 For that reason, pseudoknot structure prediction algorithms
fall into three categories: (i) exponential time exact algorithms,
(ii) dynamic programming algorithms that restrict pseudoknots to
a particular class and (iii) heuristic methods. Examples of exact
algorithms for pseudoknot structure prediction are the branch-and-
bound algorithm of (Bon, 2009) and the method using tree-width
decomposition of Zhao et al. (2008). Examples of algorithms that
consider only pseudoknots of a particular class are found in the
pioneering work of Rivas and Eddy (1999) and Lefebvre (1995),
with subsequent refinements in Dirks and Pierce (2003); Reeder
and Giegerich (2004) and Ren et al. (2005) Examples of heuristic
approaches include Monte Carlo methods Metzler and Nebel (2008),
genetic algorithms Abrahams et al. (1990) and a simple, yet elegant
algorithm calledProbKnot (D.H. Mathews, to appear) that appears
to be the state-of-the art method according to recent benchmarking
studies. Finally, it is beyond the scope of this article to provide
additional background on algorithms for RNA structural alignment,
motif detection or tertiary structure prediction.

As will be shown later, by Wang-Landau (WL) Monte Carlo
methods, we can obtain essentially the same results as by dynamic
programming computation of the partition function from UNAFOLD
and RNAcofold; however, the advantage of the WL approach is
that by extending the energy evaluation function for a given structure
or hybridization, we can estimate the partition function for arbitrary
pseudoknotted structures, known to be an NP-complete problem.

Before proceeding, we formally define a secondary structure
as follows. Given an RNA sequence s=a1,...,an, a secondary

3There is some controversy about the extent to which RNA secondary
structure constrains the tertiary structure. See Cho et al. (2009) for more
on this point.
4The minimum energy pseudoknotted structure can be computed by
maximum weight matching in O(n3) time for the simple Nussinov energy
model (Tabaska et al., 1998).

structure S on s is defined to be a set of ordered pairs corresponding
to base pair positions, which satisfies the following requirements.

(1) Watson–Crick or GU wobble pairs: if (i,j) belongs to S, then
pair (ai,aj) must be one of the following canonical base pairs:
(A,U), (U,A), (G,C), (C,G), (G,U) and (U,G).

(2) Threshold requirement: if (i,j) belongs to S, then j−i>θ.

(3) Non-existence of pseudoknots: if (i,j) and (k,�) belong to S,
then it is not the case that i<k < j<�.

(4) No base triples: if (i,j) and (i,k) belong to S, then j=k; if
(i,j) and (k,j) belong to S, then i=k.

For steric reasons, following convention, the threshold θ, or
minimum number of unpaired bases in a hairpin loop, is taken
to be three. For any additional background on RNA and dynamic
programming computation of secondary structures, see Clote and
Backofen (2000) and the recent review Eddy (2004).

2 APPROACH
The non-Boltzmannian WL Monte Carlo algorithm was developed
by Wang and Landau (2001a, b) to estimate the density of states and
partition function for complex systems, such as the Ising model, that
exhibit a phase transition. While the Metropolis-Hastings Monte
Carlo algorithm samples low energy states, the WL algorithm is
designed to visit states uniformly across all energies in a discrete
energy landscape. Indeed, for the Metropolis–Hastings algorithm,
the expected frequency, or stationary probability, p∗

mc(x) of visiting
the state x, whose energy is E, is given by the uniform probability

1
g(E) times the Boltzmann probability p∗

mc(x)= e−E/RT

Z , where g(E)

is the number of states having energy E and the partition function
Z =∑z e−E(z)/RT ; in contrast, for the WL algorithm, the expected
frequency or stationary probability, of visiting state x is p∗

wl(x)=
1

g(E)·E , where E is the total number of distinct energies E (in the

discrete case), or of energy bins (in the continuous case). It follows
that non-Boltzmannian sampling strategies, such as that devised by
Wang and Landau (2001a, b), Kou and Wong Kou et al. (2006a), etc.
are potentially useful in biopolymer folding, where one searches for
a global energy minimum in a landscape having many local energy
minima. Indeed in Chen and Xu (2006), Chen and Xu applied the
WL algorithm for the structure prediction of helical transmembrane
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proteins, while the equi-energy sampling method of Kou and Wong
Kou et al. (2006a), related to Monte Carlo with replica exchange,
has been applied to estimate the density of states for lattice protein
folding under the hydrophobic–hydrophilic (HP) energy model Kou
et al. (2006b), as well as in protein structure prediction by the
fragment assembly Zhang et al. (2009).

In this article, we apply the WL algorithm to compute the density
of states and partition function for RNA secondary structure as
well as for the hybridization of two RNA sequences. We begin by
validating and benchmarking the WL method against the exhaustive
method RNAsubopt Wuchty et al. (1999), that enumerates all
secondary structures of a given RNA sequence. Next, we compute
the partition function over all secondary structures and over all
pseudoknot-free hybridizations. We describe as well how to compute
the partition function Z(T ) over all temperatures from 0◦C to 100◦C
by performing two WL computations, followed by convolution
calculations. Although the computation of the partition function over
all secondary structures and over all pseudoknot-free hybridizations
can be done using the existent software RNAfold (Hofacker,
2003), respectively, RNAcofold (Bernhart et al., 2006), UNAFold
(Markham and Zuker, 2008) and a recently published method
of Chitsaz et al., the real advantage of our method is that by
adding a function to evaluate arbitary pseudoknotted structures
and arbitrary hybridizations, we can approximately compute the
partition function, heat capacity, melting temperature, etc. for a
context known to be NP-complete Lyngso and Pedersen (2000).

The density of states is defined to be the absolute frequency
function for energy; i.e. density of states g(e) counts the number
of states having energy e. In the context of RNA secondary
structure, a state is a secondary structure for an arbitrary but
fixed RNA sequence s. In Cupal et al. (1996), described the
first efficient algorithm, running in O(m2n3) time, to compute
the density of states for an RNA sequence of length n, where
energy is discretized into m bins. The program of Cupal et al.
(1996) is no longer available, since it has been superceded by the
program RNAsubopt, developed by Wuchty et al. (1999), which
enumerates all secondary structures, whose free energy is within
a user-defined bound above the minimum free energy. Though
not documented, the RNAsubopt program additionally admits the
option -D, which, instead of outputting structures, outputs only
the number of secondary structures in each energy bin above the
minimum free energy (bin size 0.1 kcal/mol).

3 METHODS
Monte Carlo algorithms have been implemented by a number of groups, to
study RNAkinetics of folding. In particular, KinFold, developed by Flamm
et al. (2000), computes the mean first passage time (MFPT) of folding, by
using a variant of the Gillespie algorithm in an event-driven simulation with
a choice of Metropolis–Hastings and Kawasaki dynamics. In Isambert and
Siggia (2000) and Xayaphoummine et al. (2005) a similar time-driven Monte
Carlo simulation program, KineFold, is described to compute kinetically
determine pseudoknotted structure for a given RNA sequence. Danilova et al.
(2006) describe the RNAkinetics web server used to study the kinetics
of the folding transitions of a growing RNA molecule, as in the case of
transcriptional folding.

We now begin by providing background definitions and describing the
WL algorithm.

1. procedure Metropolis-Hastings( )

2. T =Thi

3. x = initial state

4. while (T >Tlo){

5. repeat M times {

6. choose random neighbor y∈Nx

7. if (E(x)≤E(y)) then

8. x=y

9. else

10. choose random z∈ (0,1)

11. if
(

z<
e−E(y)/RT /Nx

e−E(x)/RT /Ny

)
then x=y

12. }

13. T = T * 0.9

14. }

15. return x

Fig. 2. Pseudocode for Metropolis–Hastings algorithm with simulated
annealing (Kirkpatrick et al., 1983).

3.1 WL
The WL algorithm, (Wang and Landau, 2001a, b) was designed in order
to compute the density of states and partition function, neither of which
can be computed directly by classical Monte Carlo methods, such as the
Metropolis–Hastings algorithm, simulated annealing, replica exchange, etc.

Recall the definition of Markov chain. Let Q={1,...,n} be a finite set of
states, let π= (p1,...,pn) be the distribution for initial state, and let P = (pi,j)
be a matrix of transition probabilities, satisfying

∑
j pi,j =1 for all i. A

(first-order, time-homogeneous) Markov chain M = (Q,π,P) is a stochastic
process, whose state qt at time t is a random variable determined by

Pr[q0 = i] = πi,

Pr[qt+1 = j|qt = i] = pi,j .

Define pi(t)=Pr[qt = i] and p(t)
i,j =Pr[qt = j|q0 = i]. Clearly, the (i,j)-th entry

of the t-th power Pt of P equals p(t)
i,j ; moreover, by time-homogeneity it

follows that p(t)
i,j =Pr[qt0+t = j|qt0 = i], for all t0. The stationary probability

of state i is defined by limt pi(t)=p∗
i , provided the limit exists. It is a

classical result that every finite, aperiodic, irreducible Markov chain has
an equilibrium distribution of stationary probabilities; see the text of Clote
and Backofen (2000) for a new, self-contained proof of this result. A Markov
chain with state set Q and stationary probabilities p∗

1,...,p
∗
n is reversible, if

for all i,j∈Q, p∗
i pi,j =p∗

j pj,i.
Figure 2 presents pseudocode for the classical Metropolis–Hastings

Monte Carlo algorithm with simulated annealing (Kirkpatrick et al., 1983;
Metropolis et al., 1953), which implements a random walk on the Markov
chain whose transition probabilities pi,j of moving from state xi to xj is
given by

pi,j = P(xi →xj)=min

(
1,

exp(−E(xj)/RT )/Z

exp(−E(xi)/RT )/Z
· N (xj)

N (xi)

)

= min

(
1,

exp(
−(E(xj )−E(xi))

RT )

N (xi)

)
. (1)

where N (xi) is the set of immediate neighbors of state xi and N (xj) the set
of immediate neighbors of state xj ; i.e. N (xi) is the set of states that can be
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1. procedure WangLandau(s)
2. S =∅ // empty initial structure
3. c=exp(1) // initial modification factor
4. while c>1+ε {
5. for all energies bins e: g(e)=1
6. while h is not flat {
7. for i=1 to NumSteps
8. choose random T ∈N (S) of S
9. e0 =bin(E(S)); e1 =bin(E(T ))
10. choose random z∈ (0,1)

11. if z<
g(e0)
g(e1)

12. S =T
13. e=e1
14. else // S remains unchanged
15. e=e0
16. g(e)=c ·g(e) // update d.o.s.
17. h(e)=h(e)+1 // update histogram
18. }
19. c=√

c // reduce modification factor
20. }
21. return relative density of states g,
where g(i)=g(i)/sumjg(j)

Fig. 3. Pseudocode for WL algorithm, as applied to RNAsecondary structure
density of states computation. In line 8, N (S) denotes the collection of
immediate neighbors of structure S; i.e. those obtained by adding or removing
a single base pair. In line 16, d.o.s. abbreviates density of states.

reached by a single move from state xi. It can be proved that the stationary
probabilities for this Markov chain are given by the Boltzmann probabilities

p∗
i = e−E(i)/RT

Z , as shown in Clote and Backofen (2000).
In contrast, Figure 3 presents pseudocode for the WL algorithm,

which implements a random walk on the Markov chain whose transition
probabilities pi,j of moving from state xi to xj are given by

pi,j = P(xi →xj)= 1

N (xi)
·min

(
g(E(xi))

g(E(xj))
,1

)

= P(ei →ej)= 1

N (xi)
·min

(
g(ei)

g(ej)
,1

)
. (2)

In this case, the stationary probability of state xi is are given by g(E(xi))
E .

The mathematical–justification for applying the Metropolis-Hastings
Monte Carlo method (Metropolis et al., 1953) to determine the minimum
energy conformation of a biopolymer (Bradley et al., 2005; Das and Baker,
2007; Ortiz et al., 1998) depends on two facts: (i) every finite, irreducible,
aperiodic Markov chain has a stationary probability distribution and (ii)
if the Markov chain is reversible, a situation called detailed balance by
the physics community, then the stationary distribution of the Markov
chain corresponding to the Metropolis–Hastings algorithm is the Boltzmann
distribution, defined by P(x)= exp(−E(x)/RT

Z , where E(x) is the energy of
state (i.e. conformation) x, R is the universal gas constant 1.986 cal/mol,
T is absolute temperature, and the partition function Z is defined by∑

x exp(−E(x)/RT , where the sum is taken over all states x in the Markov
chain. As temperature T approaches zero, the Boltzmann probability of the
minimum energy state approaches 1, in the case of a unique minimum energy
state, or more generally 1/m, in the case of m distinct minimum energy states.
See Clote and Backofen (2000) for details.

In contrast to the Metropolis–Hastings algorithm, which performs a
random walk on the Markov chain of states (secondary structures), the WL
algorithm performs a random walk on the energy space of the Markov chain
of states (secondary structures), where the stationary probability of visiting

energy ei is proportional to 1
g(ei)

, then the histogram of energies encountered
in the random walk will be flat.

In this article, we consider the Markov chain, whose states are the
secondary structures of a given RNA sequence, and for which permissible
local moves correspond to the addition or removal of a single base pair
(Flamm et al., 2000). Although detailed balance holds for the Metropolis–
Hastings algorithm in Figure 2, it does not necessarily hold for the Metropolis
algorithm, obtained by replacing line

11. if (z<
e−E(y)/RT /Nx

e−E(x)/RT /Ny
) then x=y

by

11. if (z< e−E(y)/RT

e−E(x)/RT ) then x=y

Indeed for the case of RNA secondary structures, detailed balance does
not hold in this situation, since if we define the stationary probability p∗

i

for state xi to be the Boltzmann probability p∗
i = exp(−E(xi)/RT

Z , and the
transition probabilities given by Equation (1), then it is not always the
case that p∗

i ·pi,j =p∗
j ·pj,i. For instance, the empty structure S = . . . . . . . . . .

on the 10-mer GGGGGCCCCC has 18 immediate neighbors, one of which
is T = ( . . . . . . ). The structure T has 11 immediate neighbors, one of
which is the empty structure S. Letting xi =S and xj =T , we have E(xi)=
0 kcal/mol, E(xj)=2.70 kcal/mol, ensemble free energy is −RTln(Z)=
−3.96, hence Z =exp(3.96/RT ) where T =310◦C so Z =621.5 and we
have stationary probabilities p∗

i = 1
621.5 =0.00161, p∗

j = 0.012456
621.5 =0.00002,

pi,j = 0.012456
18 and pj,i = 1

11 . We compute that

p∗
i ·pi,j = 0.00161 ·0.012456/18=692.01×10−6

p∗
j ·pj,i = 0.00002 ·1/11=1.82×10−6.

Summarizing, in the Metropolis algorithm (with modified line 11),
reversibility of a Markov chain depends on the permissible local moves,
while in the Metropolis–Hastings algorithm (with line 11 as in Fig. 2),
reversibility is always ensured. In the case at hand, if every secondary
structure is an immediate neighbor of every secondary structure, then in
the Metropolis algorithm, transition probabilities would be

pi,j = P(xi →xj)=min

(
1,

exp(−E(xj)/RT )/Z

N ·exp(−E(xi)/RT )/Z

)

= min

(
1,

exp(
−(E(xj )−E(xi))

RT )

N

)
, (3)

where N is the number of secondary structures. In this case, an easy
computation shows that the Markov chain is reversible. Despite the non-
reversible nature of the Markov chain corresponding to the Metropolis
algorithm, whose states are the secondary structures of a given RNA
sequence, and whose local moves consist of the addition or removal of a
single base pair, it has been a standard practice to apply the Metropolis
algorithm in this case (Danilova et al., 2006; Flamm et al., 2000; Isambert
and Siggia, 2000; Xayaphoummine et al., 2005). For that reason, we do not
hesitate to apply the WL algorithm for the study of RNA secondary structure
formation.

Note that in Figure 3, the WL computes the relative density of states,
defined by g(i)=N(ei)/N , where N(ei) is the number of states having energy
ei and N is the total number of states. In the case of RNAsecondary structures,
it is simple to compute the total number of secondary structures by dynamic
programming, given as follows. Given an RNA sequence of length n, let
BPi,j =1 if positions i,j can form a Watson–Crick or wobble pair, otherwise
let BPi,j =0. Let θ=3 denote the minimum number of unpaired bases in
a hairpin loop. Letting Ni,j denote the number of secondary structures on
subsequence [i,j] of the given RNAsequence, we have that Ni,j =0 if j< i+3,
and otherwise

Ni,j =Ni,j−1 +
j−θ−1∑

k=i

BPk,j ·Ni,k−1 ·Nk+1,j−1.
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Fig. 4. (a) Density of states for free energy of secondary structures of the 45 nt flavivirus cHP with EMBL access code AB010982/1-45 and sequence
AUGAACAACC AACGAAAAAG GACGGGAAAA CCGUCUAUCA AUAUG. Overlaid on the graph is the best fitting normal distribution and the best fitting
extreme value distribution. (b) Sum of squared differences between the density of states and the best fitting normal distribution, respectively extreme value
distribution. The x-axis of both panels depicts free energy in kcal/mol.

It follows that the total number of secondary structures is then N1,n. From
the relative density of states computed by WL algorithm, we compute the
absolute density of states by

g(ei)=g(ei)·N .

For fixed temperature T for which the WL computation was done, we can
compute the partition function Z(T )=∑S exp(−E(S)/RT ) by

Z(T )=
∑

E

g(E) ·exp(−E/RT ). (4)

In their original article Wang and Landau (2001a, b) mentioned that
in the case of the Ising model, Equation (4) allows one to compute the
partition function at any desired temperature T from the density of states.
Unfortunately, this is no longer the case for the Turner nearest neighbor model
Xia et al., 1999 of RNA secondary structure, since the free energy parameters
for stacked base pairs, hairpins, bulges, internal loops, etc. all depend on
temperature. We can nevertheless proceed by computing the density of states
for free energy at T =37◦C, and the density of states for enthalpy (assumed
to be temperature independent), and then by convoluting these values, we
obtain the density of states for free energy at any desired temperature.

3.2 Partition function for a single RNA
Figure 4a displays the relative density of states for the free energy of
secondary structures of the 45 nt flavivirus capsid hairpin (cHP) with
EMBL access code AB010982/1-45. Figure 4b displays the sum of squared
differences between the density of states and the best fitting normal
distribution, respectively, extreme value distribution. The cHP is a conserved
RNA hairpin structure in the capsid-coding region of flavivirus genomes.
Note that the relative density of states, or energy histogram, is approximately
normal. In Clote et al. (2009) it is rigorously proved that the relative density
of states is asymptotically normal; specifically, it is shown that the limit, as
n approaches infinity, of the relative density of states for an RNA sequence
of length n is normal, where for the purpose of mathematical analysis it is
assumed that any base can pair with any other base (homopolymer model)
and that the energy of a secondary structure S is −1 times the number of
base pairs in S (Nussinov energy model; Nussinov and Jacobson, 1980).

3.3 Partition function of hybridization
Following the approach in program RNAcofold of Bernhart et al. (2006),
we can modify the WL program of Figure 3 to compute the density of states
for all hybridizations of two RNA sequences, where both intermolecular
and intramolecular base-pairing is allowed, provided that there are no
pseudoknots.

In the case of the hybridization of twoRNA secondary structures, the
first of length n and the second of length m, we can compute the total
number of hybridizations as follows. Given an RNA sequence A=a1,...,an

of length n and an RNA sequence B=b1,...,bm of length m, let HPi,j =1
if positions ai,bj can hybridize, forming a Watson–Crick or wobble pair,
otherwise let HPi,j =0. For 1≤ i,j≤n, 1≤k,�≤m, let Hi,j;k,� denote the
number of hybridizations of the subsequence ai,...,aj with bk,...,b�. From
Equation (3), we can compute the number NAx,y, respectively, NBx,y of
secondary structures on subsequence ax,...,ay of A, respectively, bx,...,by

of B. If j< i or �<k, then defined Hi,j;k,� =0; otherwise define Hi,j;k,� by

Hi,j−1;k,�−1 ·(1+HP(j,�))

+
∑j−1

x=i
HP(x,�)·Hi,x−1;k,�−1 ·NAx+1,j

+
∑�−1

y=k
HP(j,y)·Hi,j−1;k,y−1 ·NBy+1,�

(5)

It follows that the total number of pseudoknot-free hybridizations is then
H1,n;1,m.5 The previous algorithm is clearly O(n4).

By considering the number of hybridizations to be the same as the number
of secondary structures of a chimeric sequence, formed by concatenating A,B
to form c1,...,cn+m =a1,...,an,b1,...,bm, we have an O(n3) algorithm, as
follows. For 1≤ i,j≤n+m, if j< i or (1≤ i,j≤n,j− i≤θ=3), then Ni,j =0,
while if 1≤ i≤n,n+1≤ j≤n+m, then Ni,j =1; otherwise Ni,j is equal to

Ni,j−1 +
j−1∑
k=i

BPk,j ·Ni,k−1 ·Nk+1,j−1.

It follows that the total number of hybridizations is then N1,n.

5In the literature, various types of hybridization are allowed. In Dimitrov-
Zuker (2004), no intramolecular structure is allowed, while in Bernhardt
et al. (2006) pseudoknot-free hybridizations are allowed with intramolecular
structure.
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We now describe how to compute the melting temperature TM of
hybridization.

(1) Compute number of structures for each of five species (temperature
independent): S(A), S(B), S(AA), S(BB) and S(AB).

(2) For temperature T ∈{0◦C,...,100◦C}, compute relative density of
states f (A,T ), f (B,T ), f (AA,T ), f (BB,T ) and f (AB,T ) for each
species by WL.

(3) For temperature T ∈{0◦C,...,100◦C}, compute partition functions
Z(A,T ), Z(B,T ), Z(AA,T ), Z(BB,T ) and Z(AB,T ) by

Z(T )=�Eg(E)·e −E
RT

where absolute density of states g(E) is relative density times number
of structures. For instance

g(AB,T )(E)= f (AB,T )(E)·S(AB).

(4) Following Dimitrov and Zuker (2004), for temperature
T ∈{0◦C,...,100◦C}, compute ensemble free energy �G(A,T ),
�G(B,T ), �G(AA,T ), �G(BB,T ) and �G(AB,T ). This involves the
following.

(a) Redundancy correction:

ZAA = ZAA −Z2
A

ZBB = ZBB −Z2
B

ZAB = ZAB −ZA ·ZB

(b) Symmetry correction:

ZAA = ZAA

2

ZBB = ZBB

2

(c) Temperature-dependent chemical equilibrium constants:

KA = ZAA

Z2
A

KB = ZBB

Z2
B

KAB = ZAB

ZA ·ZB

(d) Temperature-dependent concentration (number) of molecules A
and B:

2·KA ·N2
A +KAB ·NA ·NB +NA −N0

A = 0

2·KB ·N2
B +KAB ·NA ·NB +NB −N0

B = 0

where N0
A,N0

B are given and KA,KB,KAB are obtained from the
previous step. Values NA and NB are gotten by using, for example,
Newton’s method for solving two nonlinear functions; due to issues
of numerical instability, Markham uses binary search (p. 43 of
Markham, 2006).

(e) Letting Z(A,B,AB,AA,BB) equal the following expression:

N0
A!N0

B!
NA,NB,NAB,NAA,NBB

·ZNA
A ·ZNB

B ·ZNAB
AB ·ZNAA

AA ·ZNBB
BB

it follows that the total partition function Z satisfies

Z =
∑

NA,NB,NAB,NAA,NBB

Z(A,B,AB,AA,BB)

which can be approximated by the term Z(A,B,AB,AA,BB)
where NA,NB,NAB,NAA,NBB obtained as previously explained. The
chemical potential µX for each species X is the partial derivative

∂−RT lnZ
∂NX

of ensemble free energy with respect to number of
molecules of X , hence

µA = −RT∂lnZ(A,B,AB,AA,BB)

∂NA

so

µA = −RT ln(ZA)+RT ln(
NA

N0
A

µB = −RT ln(ZB)+RT ln(
NB

N0
B

µAB = −RT ln(ZAB)+RT ln(
NAB

N0
A ·N0

B

µAA = −RT ln(ZAA)+RT ln(
NAA

N0
A ·N0

A

µBB = −RT ln(ZBB)+RT ln(
NBB

N0
B ·N0

B

.

Total free energy satisfies

F =µA ·NA +µB ·NB +µAA ·NAA +µBB ·NBB +µAB ·NAB

which simplifies to

F =µA ·N0
A +µB ·N0

B

(f) Normalize the ensemble free energy in terms of energy per mole
of solute:

�G= µa ·N0
A +µb ·N0

B

max(N0
A,N0

B)

(5) Determine heat capacity as a function of temperature by

Cp(T )= ∂�H

∂T
=−T

∂2�G

∂T2

by computing the second partial of a fitting parabola determined by

2m+1 evenly spaced points, using the approximation for ∂2�G
∂T2 given

by

30

m(m+1)4m2(2m+3)δT2
�−m≤i≤m(3i2 −m(m+1)�G(T0 +iδT ).

In a post-processing step, smooth the heat capacity curve by
computing a running average. The melting temperature TM (Cp) is
computed by determining the temperature at which heat capacity
achieves a maximum.

4 DISCUSSION
The Figure 5a displays the run time of the WL method, compared
with that of RNAsubopt from the Vienna RNA package, while the
Figure 5b of the same figure shows sample output from our WL
program. Figure 5 clearly shows the advantage of WL over existent
methods in computing the density of states for both single RNA
molecules and for hybridization complexes of two RNA molecules.
Figure 6a and b depicts the heat capacity computed by the WL
method (Fig. 5a) and the program UNAFold (Fig. 5b). Melting
temperature, which is usually defined as the temperature at which
half of the molecules are single-stranded, while the other half are
hybridized, is determined as that temperature where heat capacity
achieves its maximum. The program UNAFold does not allow any
intramolecular structure (base pairing between 2 nt of the same
structure), a feature that our WL method permits, as does the
RNAcofold program. While it is clear that additional work must be
done to improve heat capacity computation with the WL method, the
melting temperature TM computed by WL agrees reasonably well
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Fig. 5. (a) Comparison of execution times of WL and program RNAsubopt-D (Wuchty et al., 1999), in computing density of states. Since the program of
Cupal et al. (1996) is no longer publicly available, and is superceded by RNAsubopt (private correspondence from. Hofacker), we computed the execution
time in seconds as a function of logn, where n is RNA sequence size. Horizontal green line is slightly above the value of exp(25) seconds, or equivalently
a day. It appears that for sequences of length ≥46 nt, the WL method is more efficient than RNAsubopt. (b) Sample output of WL method on sequence
CUGCUUUGAGGACAAAGAGAAUAAAGACUUCAUGUU, after 17402000 WL Monte Carlo steps, where the value of ε in line 4 of Figure 3 is defined to be 0.001.
The leftmost column contains the energy bin, the middle column contains the relative frequency in the WL sampling run, and the rightmost column contains
the lowest energy secondary structure in the associated energy bin. Though our WL program allows the user to modify bin size, the default energy bin size
(here) is 0.1 kcal/mol; empty bins, where no structure has yet been sampled, are not displayed. The lowest energy structure sampled by the WL method is
((.(((((....)))))))................. with energy −3.3 kcal/mol, which is identical to the minimum free energy structure, as computed by
RNAfold. Only a portion of the output is displayed. In particular, the largest energy of any sampled structure is 48.8 kcal/mol; in that energy bin the least
energy structure is .(..(...).)((...)(...).((...)(...))).

Fig. 6. Computation of heat capacity cP(T ) for the toy sequence 5′-AGCGA-3′, hybridized to its reverse complement 3′-UCGCU-5′. (a) Graph generated by
WL method described in this article. (b) Graph generated by the program UNAFold (Markham and Zuker, 2008).

with that computed by O(n3) methods UNAFold, RNAcofold,
and the recent O(n6) method of Chitsaz et al. (2009) each of which
methods admits slightly different interactions.

We now describe how to approximately compute the partition
function Z(T ) over all secondary structures and over all pseudoknot-
free hybridizations, simultaneously over all temperatures from 0◦C
to 100◦C, by performing two WL computations, followed by a
computation of the convolution of enthalpy relative frequency with
free-energy relative frequency. Similar computations using existent
methods require over 100 cubic time computations.

• Compute the relative density of states ph for free energy using
WL with temperature T =−273◦C (absolute zero Kelvin). It
follows that ph is the relative density of states for enthalpy,
Due to the fundamental thermodynamic relation

�G=�H −T�S (6)

where T (K) is absolute temperature and �G, �H, �S,
respectively, denote the change in free energy, enthalpy and
entropy.
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• Compute the relative density of states pg for free energy using
WL with temperature T =37◦C (310 K).

• From Equation (6), we have that

�S = �H −�G

T
.

• Given arbitrary absolute temperature T , compute the relative
density of states for free energy at temperature T by the
following pseudocode, representing a kind of convolution of
pg with ph.

1. for all z initialize p(z)=0
2. for x ranging over enthalpy bins
3. for y ranging over free energy
bins
4. z= x−y

T
5. p(z)+=ph(x)∗pg(y)

• Compute the absolute density of states g(z)=p(z)·N , where
N is the total number of secondary structures, computed by
Equation (3).

By this method, one can approximate the partition function Z(T )
for all temperatures from 0◦C to 100◦C, by performing two WL
sampling runs, respectively, at temperatures −373◦C and 37◦C,
and then to repeatedly perform a fast convolution. The method
just described, which involves two WL computations, together
with convolution computations, has until now not worked well in
practice, for certain technical reasons. This direction needs further
exploration.

Another issue concerning any sampling method is the required
time to obtain reasonably good estimates of the quantity in question.
In the case of RNA kinetics, computations of MFPT to reach the
minimum free-energy structure take inordinate amounts of time,
when using Metropolis–Hastings Monte Carlo methods, which are
time-driven simulations. For this reason, the program KinFold
(Flamm et al., 2001) uses an event-driven simulation, where time
is incremented by an exponentially distributed random variable. It
may be possible to use similar ideas to increase efficiency of our
WL program, which should further improve the accuracy in the
computation of heat capacity. Finally, we intend to implement a
new energy evaluation function, that allows arbitrary pseudoknots,
zig-zags, etc. using energy parameters from the recent dissertation
of Bon (Bon, 2009). This will allow us to estimate the partition
function, ensemble free energy, heat capacity, melting temperature,
etc. for a context known to be NP-complete.

5 CONCLUSION
In this article, we have implemented the WL algorithm to compute
the relative density of states for RNA secondary structures and
hybridizations. Separately computing the number of structures and
hybridizations, we obtain the absolute density of states, which then
yields the partition function, and thence, in the case of hybridization,
the melting temperature. The WL method is much faster than
existent software RNAsubopt in computing the density of states,
but could not be benchmarked with the binning method of Cupal
et al. (1996) which runs in O(m2n3) time, for length n sequence
and m energy bins, since the latter software is no longer available,
being superceded by RNAsubopt-D. In preliminary tests, we
obtain roughly the same melting temperature for duplex RNA, as

that computed by existent methods; however, the real advantage
of the WL method is that there is no restriction on types of
allowed interaction, unlike the situation with dynamic programming
approaches that disallow pseudoknots, zig-zags, etc.
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