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ABSTRACT

Summary: Coordinated Gene Activity in Pattern Sets (CoGAPS)
provides an integrated package for isolating gene expression driven
by a biological process, enhancing inference of biological processes
from transcriptomic data. CoGAPS improves on other enrichment
measurement methods by combining a Markov chain Monte Carlo
(MCMC) matrix factorization algorithm (GAPS) with a threshold-
independent statistic inferring activity on gene sets. The software
is provided as open source C++ code built on top of JAGS software
with an R interface.
Availability: The R package CoGAPS and the C++ package GAPS-
JAGS are provided open source under the GNU Lesser Public
License (GLPL) with a users manual containing installation and
operating instructions. CoGAPS is available through Bioconductor
and depends on the rjags package available through CRAN to
interface CoGAPS with GAPS-JAGS.
URL: http://www.cancerbiostats.onc.jhmi.edu/cogaps.cfm
Contact: ejfertig@jhmi.edu; mfo@jhu.edu
Supplementary Information: Supplementary data is available at
Bioinformatics online.
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1 INTRODUCTION
Many biological processes (BPs) and phenotypes result from
coordinated activity among sets of genes, so that inference from
transcriptional measurements using gene sets is more powerful for
inferring BPs than inference based on isolated genes. However,
gene reuse in BPs is common, so genes are typically multiply
regulated. Thus, inference on sets of genes should ideally begin
by identifying the portion of each gene’s behavior related to its use
in a BP. We have developed Coordinated Gene Activity in Pattern
Sets (CoGAPS), which infers biological activity by identifying
overlapping, coregulated sets of genes and applying Z-score based
statistics. CoGAPS can presently be used to isolate transcription
factor (TF) or BP activity in datasets of thousands of genes and tens
to thousands of samples.
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Several methods exist to infer activity of gene sets (GSs).
Hypergeometric tests have been used to determine if genes
in sets are differentially expressed across samples (Draghici
et al., 2003; Tavazoie et al., 1999). These statistics have been
extended to rank membership (e.g. Goeman and Buhlmann, 2007).
However, these methods do not account for multiple regulation of
genes. Matrix factorization techniques have been applied to infer
overlapping patterns of coregulation in gene expression, including
Non-negative Matrix Factorization (NMF; Lee and Seung, 1999),
Bayesian Decomposition (BD; Ochs et al., 1999) and Bayesian
Factor Regression Modeling (BFRM; Carvalho et al., 2008).
Comparison of matrix factorization techniques on Saccharomyces
cerevisiae transcriptomic data suggested that MCMC techniques
more accurately find patterns that relate to BPs and phenotypes
(Kossenkov and Ochs, 2009), inspiring our use of the GAPS MCMC
matrix factorization in CoGAPS. Moreover, CoGAPS infers activity
in specific gene sets related to the inferred BPs by applying the
Z-score based statistic from Ochs et al. (2009) to patterns identified
with GAPS.

CoGAPS is based on JAGS (Plummer, 2003) and includes an R
interface. CoGAPS has been applied in the DESIDE algorithm to
identify transcriptional responses to signaling through estimation of
the activity of TFs (Ochs et al., 2009). CoGAPS inferred expected
decreased activity in the KIT pathway and unexpected activity in
p53 and STAT3 pathways from microarrays generated from treated
gastrointestinal stromal tumor cell lines and tumor sample data. We
provide the data with CoGAPS and an R/Sweave document for this
analysis in the Supplementary Material.

2 METHODS
CoGAPS takes as input preprocessed microarray measurements in a data
matrix D of N genes and M conditions, an uncertainty matrix σ , whose ij
entry is the standard deviation of the i-th gene and j-th sample of D, and a list
of gene sets Gk , where k indexes the sets. First, CoGAPS implements GAPS
to infer common underlying patterns in gene expression across columns of
D by factorization into a pattern matrix (P) and a corresponding amplitude
matrix (A). GAPS seeks P and A matrices whose product is from the
distribution for D, which is assumed normal. That is,

Dij =
(
AP

)
ij +εij, (1)

where εij is independent, normal noise with mean zero and variance σ 2
ij .

Estimates must be provided for σ , which we have typically obtained from
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sample covariance of replicates (Bidaut et al., 2006; Ochs et al., 2009).
The rows of P form a set of non-orthogonal basis vectors that describe the
patterns of coexpression behavior across the samples in the columns of D.
The rows of A quantify the amount of the behavior of a gene that is explained
by each of the patterns (the rows of P). The number of rows in P sets the
number of patterns that GAPS will infer. GAPS presently constrains the
entries in A and P to be non-negative. Even so, the A and P matrices are not
mathematically uniquely determined independent of prior information.

As noted in the Section 1, MCMC techniques recover BPs better than
other factorization techniques. The Kossenkov and Ochs (2009) study found
that inference of sparse matrices with atomic priors for MCMC inference
(Sibisi and Skilling, 1997), such as in BD, has a particular advantage in
retaining minimally varying patterns across samples, which define many
BPs. These atomic priors also naturally enforce non-negativity and sparsity
in the corresponding elements of A and P. Therefore, GAPS is implemented
in GAPS-JAGS by incorporating the model in Equation (1) with an atomic
prior in JAGS.

When running GAPS-JAGS, the user specifies a hyperparameter for the
expected number of atoms (αA and αP for matrices A and P, respectively) and
a parameter for the number of patterns (np) that provides the dimensionality
required to reproduce D. The α parameters represent the sparsity of A
and P and have default values of 1%. While the algorithm is insensitive
to small changes in these parameters, order of magnitude changes will
significantly alter the estimated A and P matrices. At 1%, GAPS was found
to retain the sparsity of our previous successful MCMC studies, and we
recommend this value for most applications. The appropriate number of
patterns is data dependent and typically unknown. Dimensionality estimation
prior to MCMC sampling can be obtained from new techniques (Leek,
2010) or by trying multiple matrix factorizations of different np (Bidaut
et al., 2006). While there is no guarantee that the A and P matrices are
uniquely identifiable, we have found in practice that a unique solution within
uncertainty estimates from the sampling is typical for MCMC microarray
analysis. However, we recommend multiple MCMC simulations to reduce
the probability of finding a local maximum in the posterior distribution.

In order to infer activity of a BP, CoGAPS estimates the probability that
genes in a set are overrepresented in a pattern from a statistic based on
the average Z-score for all Asp for s∈GS (Ochs et al., 2009). This score
can be used to rank sets and a frequentist interpretation is provided through
permutation of the gene labels on a pattern-by-pattern basis.

3 IMPLEMENTATION
The software is run through the CoGAPS R package. The central
R function for the CoGAPS algorithm inputs files containing D
and σ , as well as sparsity parameters αA and αP , the number of
patterns, and gene sets in a format specified in the Users Manual.
This function also allows users to specify a folder and prefix for
output files summarizing the statistics computed by CoGAPS. The
Users Manual also describes additional runtime options.

CoGAPS first factors the matrix of microarray data through a
C++ package called GAPS-JAGS (Plummer, 2003) as described in
Section 2. This package is an extension of JAGS (version 1.0.3) that
includes a module for GAPS, and this is required by the CoGAPS

R package. With N �M and typical data size of thousands of genes
by hundreds of samples, the computational cost is O

(
N logN

)
and

memory requirements are moderate (see Supplemental Material for
specifics). The MCMC chain for A and P are output as temporary
files, and the summarized estimates of the statistics for A and P are
retained in output files. Optionally, CoGAPS also plots the identified
patterns and creates a heatmap for the corresponding A intensities.

CoGAPS computes Z-scores and P-values for each GS in each
pattern. An ‘activity’ is also calculated that rescales the p-value
estimates from −1 to +1, suitable for pictorial representation of
TF activity. These statistics are output into three separate files.

We have developed open-source C++ software, GAPS-JAGS,
with an R interface, CoGAPS, for inferring GS enrichment from
transcriptomic data. When applying GSs defined by TFs, the
DESIDE algorithm used this approach to infer the changes in cell
signaling during treatment of gastrointestinal tumors. We note that
any high-throughput biological data representable as a quantitative
matrix of biomolecule measurements across samples is amenable to
this approach, if these biomolecules can be linked in GSs.
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