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ABSTRACT

Motivation: There is growing discussion in the bioinformatics
community concerning overoptimism of reported results. Two
approaches contributing to overoptimism in classification are (i) the
reporting of results on datasets for which a proposed classification
rule performs well and (ii) the comparison of multiple classification
rules on a single dataset that purports to show the advantage of a
certain rule.
Results: This article provides a careful probabilistic analysis of the
second issue and the ‘multiple-rule bias’, resulting from choosing
a classification rule having minimum estimated error on the dataset.
It quantifies this bias corresponding to estimating the expected true
error of the classification rule possessing minimum estimated error
and it characterizes the bias from estimating the true comparative
advantage of the chosen classification rule relative to the others by
the estimated comparative advantage on the dataset. The analysis
is applied to both synthetic and real data using a number of
classification rules and error estimators.
Availability: We have implemented in C code the synthetic
data distribution model, classification rules, feature selection
routines and error estimation methods. The code for multiple-rule
analysis is implemented in MATLAB. The source code is available
at http://gsp.tamu.edu/Publications/supplementary/yousefi11a/.
Supplementary simulation results are also included.
Contact: edward@ece.tamu.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Three recent articles in Bioiformatics have lamented the difficulty
in establishing performance advantages for proposed classification
rules (Boulesteix, 2010; Jelizarow et al., 2010; Rocke et al.,
2009). Two statistically grounded sources of overoptimism have
been highlighted. One considers applying a classification rule to
numerous datasets and then reporting only the results on the dataset
for which the designed classifier possesses the lowest estimated
error. The optimistic bias from this kind of dataset picking is
quantitatively analyzed in Yousefi et al. (2010), where it is termed
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‘reporting bias’ and where this bias is characterized as a function of
the number of considered datasets. A second kind of overoptimism
concerns the comparison of a collection of classification rules by
applying the classification rules to a dataset and comparing them
according to the estimated errors of the designed classifiers. This
kind of bias, which we will call ‘multiple-rule bias’, has been
considered in Boulesteix and Strobl (2009) by applying a battery of
classification rules to colon cancer and prostate cancer datasets and
then examining the effects of choosing classification rules having
minimum cross-validation error estimates.

Whereas the thrust of Boulesteix and Strobl (2009) is to compare
the sources of multiple-rule bias in classification rules, namely, gene
selection, parameter selection and classifier function construction,
our interest is in studying multiple-rule bias as a function of the
number of rules being considered. In particular, we are interested
in the joint distribution, as a function of the number of compared
rules, between the minimum estimated error among a collection
of classification rules and the true error for the classification rule
having minimum estimated error, as well as certain moments
associated with this joint distribution. Although different with regard
to distributional specifics, this approach is analogous to the approach
taken in Yousefi et al. (2010), where the joint distribution involved
the minimum estimated error of the designed classifier over a
collection of datasets and the true error of the designed classifier on
the population corresponding to the dataset resulting in minimum
estimated error. This is a natural way to proceed because any bias
ultimately results from inaccuracy in error estimation, so that the
behavior of the joint distribution of interest and its moments are
consequent to the joint distribution of the error estimator and the true
error. Owing to the methodology in Boulesteix and Strobl (2009), it
would have been impossible for them to study this joint distribution
because they never concern themselves with true errors, only cross-
validation estimates. Hence, when they compare a minimal error to
a baseline error to arrive at a measure of optimistic bias, they are
comparing cross-validation estimates.

In characterizing multiple-rule bias, we begin with a more
general framework than the one just described; rather than simply
considering multiple classification rules, we consider multiple
classifier rule models, so that there are not only multiple
classification rules, but also multiple error estimation rules being
employed. We define a classifier rule model as a pair (�,�), where�
is a classification rule, including feature selection if feature selection
is employed, and� is an error estimation rule (Dougherty and Braga-
Neto, 2006). The scenario in the preceding paragraph results where
there is only a single error estimation rule.
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2 SYSTEMS AND METHODS
We consider r classification rules, �1,�2,...,�r , and s error
estimation rules, �1,�2,...,�s, on a feature-label distribution
F. These are combined to form m=rs classifier rule models:
(�1,�1),(�1,�2), ..., (�1,�s),(�2,�1),(�2,�2), ..., (�r ,�s). Given
a random sample Sn of size n drawn from F, the classification rules
yield r designed classifiers: ψi =�i(Sn),i=1,2,...,r. The true error
of ψi is given by εi

true =P(ψi(X) �=Y ), where (X,Y ) is a feature-label

pair. For j=1,2,...,s, �j provides an error estimate, εi,j
est , for ψi. Since

the classification rules are not identical, neither are the distributions of
ε1

true,ε
2
true,...,ε

r
true nor are the distributions of εi,1

est,ε
i,2
est,...,ε

i,s
est . All true-error

and estimated-error distributions are functions of the random sample Sn.
Since all classification rules operate on the same sample, the true errors
can be highly correlated, as will be the estimated errors. Without loss
of generality, we assume the classifier models are enumerated so that
ESn [ε1

true]≤ESn [ε2
true]≤ ...≤ESn [εr

true].
The minimum estimated error is

εmin
est =min{ε1,1

est ,ε
1,2
est ,...,ε

1,s
est ,ε

2,1
est ,...,ε

r,s
est}. (1)

Letting imin and jmin denote the classifier number and error estimator
number, respectively, for which the error estimate is minimum, we have
εmin

est =εimin ,jmin
est .

Suppose a researcher wishes to select the best performing of r
classification rules on a feature-label distribution F and proceeds by taking
a random sample from F, designing a classifier for each classification rule,
and estimating the errors of the designed classifiers. If F is known, then the
true error of each designed classifier can be evaluated, the classifier with
minimum true error can be chosen, and the classification rule leading to
that classifier be declared ‘ best’. The truly best classification rule has the
minimum expected error across all samples from F, so that what is happening
is that a single observation of εi

true is being used as an estimate for ESn [εi
true].

On the other hand, if F is unknown as is used in practice, then the errors of the
designed classifiers are estimated from sample data and the classification rule
leading to the classifier, ψimin , with minimum estimated error is chosen as
‘best’. We are assuming that the researcher tries s error estimators and selects
the one with lowest error estimate. In this case, a single observation of εmin

est is

being used to estimate ESn [εimin
true ], the basic performance measure for �imin .

At issue is the goodness of this estimation. This involves the distribution of
the deviation�=εmin

est −ESn [εimin
true ], which is marginal to the joint distribution

of (εmin
est ,ε

imin
true ).

A key performance measure derived from the deviation distribution is the
bias of εmin

est as an estimator of ESn [εimin
true ], namely,

Bias(m,n)=ESn [�]=ESn

[
εmin

est

]
−ESn

[
ε

imin
true

]
. (2)

Estimation is optimistic if Bias(m,n)<0. This can happen even if none of the
error estimation rules are optimistically biased, that is, even if ESn [εi,j

est]≥
ESn

[
εi

true

]
for i=1,2,...,r and j=1,2,...,s. Indeed, even if this is so, owing

to estimation-rule variance, on any given sample it may be that εmin
est <ε

1
true.

For instance, if among �1,�2,...,�s there is an error estimation rule, such
as leave-one-out cross-validation, that is slightly (pessimistically) biased and
possesses large variance, then we should expect that ESn

[
εmin

est

]
<ESn

[
ε1

true

]
.

In this case, ESn

[
εmin

est

]
<ESn

[
ε1

true

]≤ESn [εimin
true ] and Bias(m,n)<0. In the

way we have set up the general problem, not only can optimistic bias result
from considering multiple estimated errors among classifiers but also from
applying multiple error estimates for each classifier.

From the generic arguments made thus far, we can state two properties
concerning the bias. First, as the number m of classifier models grows,
the minimum of Equation (1) is taken over more estimated errors, thereby
increasing ε1

true −εmin
est and |Bias(m,n)|=ESn [εimin

true ]−ESn [εmin
est ]. Second, as

the sample size n is increased, under the typical condition that the variance
of the error estimator decreases with increasing sample size, ESn [εmin

est ]
increases and |Bias(m,n)| decreases.

Bias is only one factor in estimating ESn [εimin
true ] by εmin

est . Another is the
variance of εmin

est . In fact, one should consider the root-mean-square (RMS)

Fig. 1. Multiple-rule testing procedure on a single sample.

error for εmin
est as an estimator of ESn [εimin

true ], which is given by

RMS(m,n)=
√

ESn [�2]=
√

Bias(m,n)2 +VarSn [�]. (3)

Even should the bias be small, the estimation will not be accurate if the
deviation variance is large.

As discussed thus far, the classification rules are fixed; however, since our
interest is in the number of classification rules (and error estimators), not
any particular rule or estimator, we assume there is a total of R classification
rules from which we randomly choose r. This corresponds to a situation
where a researcher selects r from among a large collection (R) of potential
classification rules and applies s error estimators to each selected rule. Given
r, there are

(R
r

)
possible collections of classification rules to be combined with

s error estimators to form
(R

r

)
possible collections of classifier rule models of

size m. Hence, the number m of classifier rule models increments according
to s,2s,...,Rs. We denote the collection of classifier models of size m by�m.
To get the distribution of errors, one needs to generate independent samples
from the same feature-label distribution and apply the procedure shown in
Figure 1.

The previously discussed performance measures must be adjusted to take
model randomization into account. Given a sample Sn, for a realization of
�m we find an expected deviation according to Equation (2), but now we
have a random process generating the realizations so we have to take the
expectation over that process to obtain the expected bias,

BiasAv(m,n)=E�m

[
ESn [�|�m]

]
, (4)

where the subscript indicates the average over�m. A similar averaging arises
with the deviation variance to yield VarAv(m,n)=E�m [VarSn [�|�m]]. The
RMS now takes the form

RMSAv(m,n)=E�m

[√
ESn [�2|�m]

]
. (5)

Having discussed the performance measures relating to estimating ESn [εimin
true ]

by εmin
est , we now consider the comparative advantage of the classification rule

�imin . Its true comparative advantage with respect to the other considered
classification rules is

Atrue =ESn

[
ε

imin
true

]
− 1

r−1

∑
i �=imin

ESn

[
εi

true

]
. (6)

Its estimated comparative advantage is given by

Aest =εmin
est − 1

r−1

∑
i �=imin

ε
i,jmin
est , (7)

where we use the error estimator associated with the pair (imin,jmin) for
which the minimum estimated error is obtained (assuming that this would
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be the error estimator chosen by a researcher for the sake of consistency).
The expectation, ESn [Aest], of this distribution gives the mean estimated
comparative advantage of �imin with respect to the collection. A key
bias to be considered is Cbias =ESn [Aest]−Atrue because it measures over
optimism in comparative performance. In the case of randomization, the
true comparative advantage becomes E�m [Atrue|�m] and the mean estimated
comparative advantage becomes E�m [ESn [Aest |�m]].

2.1 Simulation design
We use a general model based on multivariate Gaussian distributions with a
blocked covariance structure that conforms to various observations made
in microarray expression-based studies (Hua et al., 2009). A battery of
distribution models can be constructed by changing model parameters to
generate different synthetic data samples. We also consider four real datasets.

2.1.1 Synthetic data In microarray studies, assuming a blocked
covariance matrix is a way of modeling groups of interacting genes where
there is negligible interaction between the groups. It has been used in genomic
classification to model genes collected into distinct pathways, each pathway
being represented by a block (Dougherty et al., 2007; Shmulevich and
Dougherty, 2007). As explained in Hua et al. (2009), although the model does
not embrace all details of the experimental procedures, it is general enough to
include major aspects and various complexity levels suitable for simulation
of real-world scenarios. Sample points are taken from two equally likely
classes, C0 and C1, having D features. Furthermore, by putting c equally
likely subclasses in C1, each having its own distribution, one can model
cases like different stages or subtypes of a cancer. Each sample point in C1

belongs to one and only one of these subclasses.
Features are categorized into two major groups, markers and non-markers.

Markers resemble genes causing disease or susceptibility to disease. The
groups have different class-conditional distributions for the two classes.
They can be further categorized into two different types: global and
heterogeneous markers. Global markers are homogeneously distributed
among the two classes with Dgm-dimensional Gaussian distributions and
parameters (µgm

0 ,�
gm
0 ) for class 0 and (µgm

1 ,�
gm
1 ) for class 1, where

Dgm is the total number of global markers. Heterogeneous markers are
divided into c subclasses within class 1. Each subclass is associated with
Dhm mutually exclusive heterogeneous markers having Dhm-dimensional
Gaussian distributions with parameters (µhm

1 ,�hm
1 ). The sample points not

belonging to this particular subclass are considered to have Dhm-dimensional
Gaussian class-conditional distributions with parameters (µhm

0 ,�hm
0 ).

Assuming that global and heterogeneous markers possess identical
covariance structures, we use {�0,�1} instead of {�gm

0 ,�
gm
1 } and

{�hm
0 ,�hm

1 }. We assume that �0 =σ2
0� and �1 =σ2

1�, where σ2
0 and σ2

1
can be different, and that � has the following block structure:

�=

⎡
⎢⎢⎢⎣
�ρ 0 0 ... 0
0 �ρ 0 ... 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 ... 0 �ρ

⎤
⎥⎥⎥⎦,

where �ρ is a l× l matrix, with 1 on the diagonal and ρ off the diagonal.
In the block-based covariance structure, the markers are divided into equal-
size blocks of size l. Markers of different blocks are uncorrelated, while all
the markers in the same block are correlated to each other with correlation
coefficient ρ.

A consequence of having unequal variances and subclasses in the class-
conditional distributions is to introduce non-linearities in the decision
boundaries for the model, where less global markers and larger difference
in the variances lead to a more non-linear decision boundary. Because the
global markers and the heterogeneous markers possess the same structure,
we can assume the same mean vectors {µ0,µ1} for both groups, {µgm

0 ,µ
gm
1 }

and {µhm
0 ,µhm

1 }, as we did for the covariance matrices. Furthermore, we
use the same structure for µ0 and µ1 in the form of m0 ×(1,1,...,1) and

Table 1. Distribution model parameters

Parameters Values/description

Mean m0 =0.23,m1 =0.8 (equal variance)
m0 =0.11,m1 =0.9 (unequal variance)

Variances σ2
0 =0.62,σ2

1 =0.62 (equal variance)
σ2

0 =0.62,σ2
1 =1.22 (unequal variance)

Block size l=5
Features D=20000
Feature block correlation ρ=0.8
Subclasses c=2
Global markers Dgm =20
Heterogeneous markers Dhm =50
High-variance non-markers Dhv =2000
Low-variance non-markers Dlv =17880

Table 2. A summary of the real datasets used in this study

Dataset Dataset type Feature|sample size

Yeoh et al. (2002) Pediatric ALL 5077|149/99
Zhan et al. (2006) Multiple myeloma 54613|156/78
Chen et al. (2004) HCC 10237|75/82
Natsoulis et al. (2005) Drugs response on rats 8491|120/61

m1 ×(1,1,...,1), respectively, where m0 and m1 are scalars (Hua et al., 2009;
Yousefi et al., 2010).

Similar to the global markers, there are two types of non-markers: high-
variance and low-variance non-markers. The Dhv features belonging to
the former group are uncorrelated and their distributions are described by
pN(m0,σ

2
0 )+(1−p)N(m1,σ

2
1 ), where m0, m1, σ2

0 and σ2
1 take values equal

to the means and variances of the markers, respectively, and p is a random
value uniformly distributed over [0,1]. The Dlv remaining features are
uncorrelated low-variance non-markers, each having a Gaussian distribution
with parameters (m0,σ

2
0 ).

A typical microarray experiment usually contains tens of thousands of
probes (genes) but a small number of sample points, typically less than 200.
We choose the total number of features to be D=20000 and the number
of sample points to be 60 and 120. Two variance settings are considered:
equal variances {σ2

0 =0.62,σ2
1 =0.62} and unequal variances {σ2

0 =0.62,σ2
1 =

1.22}. For the blocked covariance matrix, we choose block size l=5 and
correlation coefficient ρ=0.8, giving relatively tight correlation within a
block, which would be expected for a pathway. We do not choose model
parameters in accordance with the Bayes errors or the estimated errors;
rather, we choose them in accordance with achievable true errors seen in
real problems. Table 1 shows the parameters of the distribution models used
in this study. See Yousefi et al. (2010) for more details about the choice of
parameters.

2.1.2 Real data This study uses four real datasets from microarray
experiments consisting of more than 150 arrays: pediatric acute
lymphoblastic leukemia (ALL) (Yeoh et al., 2002), multiple myeloma (Zhan
et al., 2006), hepatocellular carcinoma (HCC) (Chen et al., 2004) and drugs
and toxicants response on rats dataset (Natsoulis et al., 2005). We use n=60
sample points for training. The remaining sample points are held-out for
computing the true error. To the extent possible, we try to maintain the
original labeling and follow the data preparation directions used in the papers
reporting these datasets. Table 2 shows a summary of the four real datasets.
Full descriptions are presented in the Supplementary Materials.
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Table 3. Classifier rule models considered in this study

Classification rule Feature selection Error estimation

3NN t-test 5-fold cross-validation
LDA t-test + SFS 10-fold cross-validation
DLDA LOO
NMC
L-SVM
RBF-SVM

2.2 Classification schemes
Six classification rules are considered: 3-nearest neighbors (3NN), linear
discriminant analysis (LDA), diagonal LDA(DLDA), nearest-mean classifier
(NMC), linear support vector machine (L-SVM) and radial basis function
SVM (RBF-SVM). Two different feature selection methods are considered:
t-test and t-test followed by sequential forward search (t-test + SFS). One-
stage feature selection uses the t-test and five features are selected. For
two-stage feature selection, the number of features is reduced to 500 in
the first stage (t-test) and then to 5 by SFS. Three cross-validation error
estimation methods are considered: 5-fold, 10-fold and leave-one-out (LOO).
Combining six classification rules with two feature selection methods results
in R=12 classification rules from which we randomly choose r =1,2,...,R
and design the classifiers on one sample. Note that with three error estimators,
there is a maximum of 36 different classifier rule models. Table 3 lists
the classification rules, feature selection methods and error estimation
procedures utilized.

To illustrate the definitions, let us suppose we are only considering two
classification rules, LDA and 3NN, without feature selection and two error
estimators, LOO and CV5 (5-fold cross-validation). LDA is based on the
discriminant for the optimal classifier in a Gaussian model (Gaussian class-
conditional densities) with common covariance matrix by plugging the
sample means and pooled sample covariance matrix obtained from the data
into the discriminant. Assuming equally likely classes, LDA assigns x to
class 1 if and only if

(x− x̄1)T �̂
−1

(x− x̄1)≤ (x− x̄0)T �̂−1(x− x̄0), (8)

where x̄u is the sample mean for class u, u=0,1, and �̂ is the pooled
sample covariance matrix. While derived under the Gaussian assumption
with common covariance matrix, LDA can provide good results when these
assumptions are mildly violated. For the 3NN rule, the designed classifier is
defined to be 0 or 1 at x according to which is the majority among the labels
of the 3 points closest to x.

In k-fold cross-validation, the given sample Sn is randomly partitioned
into k folds (subsets) S(i), for i=1,2,...,k. Each fold is left out of the design
process, a (surrogate) classifier, ψn,i, is designed on Sn −S(i), the error of
ψn,i is estimated as the counting error ψn,i makes on S(i), and the cross-
validation estimate is the average error committed on all folds. If there is
feature selection, then it must be redone for every fold because it is part of the
classification rule. In leave-one-out cross-validation, each fold consists of a
single point. Owing to computational requirements, k-fold cross-validation,
k<n, usually involves a random selection of partitions. In general, the bias
of cross-validation is typically slightly pessimistic, provided that the number
of folds is not too small. The problem with cross-validation is that it tends
to be inaccurate for small samples because, for these, it has large variance
(Braga-Neto and Dougherty, 2004) and is poorly correlated with the true
error (Hanczar et al., 2007). For all error estimators, there is variation
resulting from the sampling process. For randomized cross-validation, a
second variance contribution, referred to as ‘internal variance’, arises from
the random selection of the partitions (see Hanczar and Dougherty, 2010).
The latter does not apply to LOO because only a single set of folds is possible.

Relative to the definitions in the Section 2, if we let �1 be LDA, �2 be
3NN, �1 be LOO and �2 be CV5, then there are four classifier rule models:

(LDA, LOO), (LDA, CV5), (3NN, LOO), (3NN, CV5). There are two true
errors, εLDA

true and ε3NN
true , four estimated errors, εLDA,LOO

est , εLDA,CV5
est , ε3NN,LOO

est

and ε3NN,CV5
est , and εmin

est is the minimum of the four estimated errors.

2.3 Implementation
The raw output of the synthetic data simulation consists of the true
and estimated error pairs resulting from applying the 36 different
classification schemes on 10000 independent random samples drawn from
the aforementioned four different distribution models. We approximate
the expected true error by taking the average of true errors of each
classification rule over the samples. We generate all

(R
r

)
possible collections

of classification rules of size r, each associated with s error estimation
rules, resulting in

(R
r

)
collections of classifier rule models of size m.

For each collection, we find the true and estimated error pairs from the
raw output data. Then, for each sample, we find the classifier model
(including the classification and error estimation rules) in the collection
that gives the minimum estimated error. We record the estimated error, its
corresponding true error and the classification and error estimation rules.
Given the collection, �m, we compute � and Aest for each sample. Then,
we approximate ESn [Aest|�m], VarSn [�|�m], √ESn [�2|�m], ESn [�|�m]
and Atrue|�m, by taking the average over all the samples. Finally, we
approximate E�m [ESn [�|�m]], E�m [VarSn [�|�m]], E�m [√ESn [�2|�m]],
E�m [ESn [Aest |�m]] and E�m [Atrue|�m] by taking the average over the
generated collections.

Real data simulations differ somewhat from the synthetic data in the way
that the true and estimated errors are computed. For the synthetic data, we
generate 10000 pairs of samples (training set of size 60 or 120 and test set
of size 5000) from the assumed distribution model. But for a real dataset,
we randomly pick 60 sample points for training (classifier design and error
estimation). The remaining held-out sample points are used to calculate the
true error. We repeat this process 10000 times.

3 RESULTS AND DISCUSSION
The full set of results appears in the Supplementary Material. In
the article, we provide representative examples for each issue.
We consider two cases regarding the error estimators: multiple
error estimators and a single error estimator. For multiple error
estimators, s=3, we consider all three error estimators at once, and
m=3,6,...,36. For a single error estimator, s=1, we have three
difference cases, depending on which error estimator is used, and
m=1,2,...,12 for each error estimator. For s=3, keep in mind that
the simulations are incremented in steps of three, 3,6,...,36, because
each classification rule is evaluated with all three error estimators,
as would be the case in practice if an investigator were to consider
three error estimators. For a single error estimator, we show LOO
in the article and leave the others to the Supplementary Material.

3.1 Joint distributions
For the synthetic data, the joint distributions are estimated with a
bivariate Gaussian-kernel density estimation method. The first set
of results (Supplementary Figures s1–s16) show joint distributions
between the minimum estimated errors and their corresponding true
errors, εmin

est and ε
imin
true, for multiple and single error estimators,

different sample sizes and variances. Each plot includes the
regression line and a small circle showing the pair of sample
means. As m increases, the distributions tend to be more circular
(indicating less correlation) and also more compact (indicating
smaller variance). Furthermore, as m increases, the distributions
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Fig. 2. The joint distributions between εmin
est and εimin

true with respect to the
collection size m, for all classifier rule models for m=6,21,36 (left column)
and for single LOO error estimation for m=2,7,12 (right column). The real
dataset is multiple myeloma by Zhan et al. (2006). The white line shows
the regression line and the circle indicates the sample mean of the joint
distribution.

move to the left, thereby demonstrating greater bias. Note the smaller
variation for sample size 120.

For the real data, the joint distributions are again estimated
with a bivariate Gaussian-kernel density estimation method.
Supplementary Figures s25–s40 show the joint distribution of
(εmin

est ,ε
imin
true) for multiple and single error estimators, and for different

real datasets. Figure 2 shows the distributions and regression lines
for the myeloma data: the left column is for multiple error estimators
and shows m=6,21,36; the right column is for the single error
estimator LOO and shows m=2,7,12. Similar to the synthetic data,
as m increases, the distributions tend to be more circular, have
smaller variances and move to the left. What is most striking is the
absence of regression between εmin

est and εimin
true. This lack of regression

is consistent with what has been observed in other settings when
cross-validation is used to estimate the true error (Hanczar et al.,
2007, 2010).

3.2 Moments and comparative performance
For the synthetic data and the multiple error estimator case, Figure 3
shows: (a) the expected bias, BiasAv; (b) the expected variance,

(a) (b)

(c) (d)

Fig. 3. (a) The expected bias, BiasAv; (b) the expected variance, VarAv; (c)
the expected RMS, RMSAv; and (d) the expected comparative performance
bias, E�m [Cbias|�m]: resulted from the distributions of εmin

est and εimin
true on the

synthetic data for all 36 classification models, with respect to the collection
size m.

VarAv; (c) the expected RMS, RMSAv; and (d) the expected
comparative performance bias, Cbias. Note that Figure 3d does not
graph m=s because the comparative advantages are not defined
when r =1. The same applies for analogous subfigures in the rest
of the article. For increasing m, the bias and RMS get worse, but
even with m=3, the RMS is about 0.1 for sample size 60. For
this sample size and m=36, the comparative-performance bias has
reached −0.1. Figure 4 shows corresponding results for a single
error estimator, LOO. These too are especially alarming for n=60.
Note that the RMS, actually, has a temporary small dip at m=2,
which is a result of steep decline in variance between m=1 and
m=2.

For the real data, Figures 5 and 6 show corresponding results to
Figures 3 and 4, respectively (ignore for the moment the ‘average’
curves, which will soon be discussed). Note the widely different
behaviors between the different datasets. Since we are using the full
dataset as an empirical distribution to serve as an approximation
of the underlying feature-label distribution and are sampling from
the empirical distribution, the different biases result from different
behaviors of the error estimators on the different distributions. In
practice, given a single sample dataset, one would have no idea of
what kind of biases and RMS deviations to expect. This uncertainty
exemplifies the standard conundrum faced when one lacks prior
information regarding the feature-label distribution. In our case, the
problem is that error estimator performance is heavily dependent on
the underlying feature-label distribution.
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(a) (b)

(c) (d)

Fig. 4. (a) The expected bias, BiasAv; (b) the expected variance, VarAv; (c)
the expected RMS, RMSAv; and (d) the expected comparative performance
bias, E�m [Cbias|�m]: resulted from the distributions of εmin

est and εimin
true on the

synthetic data for single LOO error estimation, with respect to the collection
size m.

3.3 Averaging over different populations
The problem of multiple-rule bias is exacerbated if one combines
it with applying the multiple rules across multiple datasets (Yousefi
et al., 2010) and then minimizes over both the classifier models and
datasets; however, using multiple datasets can mitigate multiple-rule
bias if performances are averaged over the datasets. In this case,
each dataset is a sample from a feature-label distribution Fk , k =
1,2,...,K , and our concern is with average performance over the K
feature-label distributions.Assuming multiple error estimators, there
are m classification rules being considered over the K feature-label
distributions. Our interest is now with

εmin
est (K)=min

⎧⎨
⎩ 1

K

K∑
k=1

ε
1,1,k
est ,

1

K

K∑
k=1

ε
1,2,k
est ,...,

1

K

K∑
k=1

ε
1,s,k
est ,

1

K

K∑
k=1

ε
2,1,k
est ,...,

1

K

K∑
k=1

ε
r,s,k
est

⎫⎬
⎭ (9)

where εi,j,k
est is the estimated error of classifier ψi and the error

estimation rule �j on the dataset from feature-label distribution Fk .
The bias takes the form

B(m,n,K)=E
[
εmin

est (K)
]
− 1

K

K∑
k=1

E
[
ε

imin,k
true

]
(10)

where εimin,k
true is the true error of classifier ψimin

on the dataset from
feature-label distribution Fk .

(a) (b)

(c) (d)

Fig. 5. (a) The expected bias, BiasAv; (b) the expected variance, VarAv; (c)
the expected RMS, RMSAv; and (d) the expected comparative performance
bias, E�m [Cbias|�m]: resulted from the distributions of εmin

est and εimin
true on the

real data for all 36 classification models, with respect to the collection size m.

The ‘average’ curves in Figures 5 and 6 illustrate the effects of
averaging. They show less estimation bias, less variance, smaller
RMS and less comparative-performance bias when averaging is
employed, as opposed to using the datasets individually. The
situation is similar, albeit a bit more complicated, than the argument
in Yousefi et al. (2010) for averaging results over a large number of
datasets. Here, the averaging is done to mitigate multiple-rule bias.

It is possible to obtain theoretical results regarding the effect
of averaging on the bias of Equation (10). In particular, if all
error estimators are unbiased, then we prove in the Appendix A
that limK→∞B(m,n,K)=0. If one looks closely at the proof, it
is clear that the unbiasedness assumption can be relaxed in each
of the lemmas. In the first lemma, which shows that B(m,n,K)≤
0, we need only assume that none of the error estimators is
pessimistically biased. In the second lemma, which shows that
limK→∞B(m,n,K)≥0, unbiasedness can be relaxed to weaker
conditions regarding the expectations of the terms making up the
minimum in Equation (9); however, these conditions are rather
arcane and do not add much practical insight. Moreover, we are
interested in close-to-unbiased error estimators, specifically, the
cross-validation estimators, so that we can expect |B(m,n,K)| to
diminish with averaging, even if the limit of B(m,n,K) does not
actually converge to 0.

3.4 Concluding remarks
From a practical standpoint, the results obtained in the present paper
quantitatively demonstrate the large degree of overoptimism that
results from comparing classifier rule models via their performances
on a small dataset owing to the inaccuracy of error estimation on
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(a) (b)

(c) (d)

Fig. 6. (a) The expected bias, BiasAv; (b) the expected variance, VarAv; (c)
the expected RMS, RMSAv; and (d) the expected comparative performance
bias, E�m [Cbias|�m]: resulted from the distributions of εmin

est and εimin
true on

the real data for single LOO error estimation, with respect to the collection
size m.

small samples. As the array of simulations show, optimistic bias
accrues rapidly with even a small number of models being compared.
We have observed from both simulations and theoretical analysis that
the problem can be mitigated by averaging performances across a
family of datasets; indeed, this is the recommendation that we put
forth. The downside is that averaging eliminates the possibility of
comparing classification rule performances on a single population.
In fact, the latter possibility has been precluded at the outset by the
experimental design: too small of a sample to obtain accurate error
estimates. If there is only a single small sample, then the multiple-
rule bias precludes any conclusions whatsoever, whereas at least if a
collection of datasets are employed, then one may be able to make a
conclusion relative to the collection of populations (depending on the
accuracy of the error estimator). Even with averaging, we must offer
a word of caution. While the proposition we have proven regarding
the convergence of B(m,n,K) is promising, like most distribution-
free results it leaves open the rate of convergence, which in practice
determines the number of datasets one must utilize to reduce the bias
to some predetermined level. This leads us to some final comments.

The concerns expressed regarding the difficulty of establishing
performance advantages for proposed classification rules
(Boulesteix, 2010; Jelizarow et al., 2010; Rocke et al., 2009) reflect
fundamental epistemological issues confronting bioinformatics
as it addresses the high-throughput environment with limited
sample sizes and limited statistical knowledge of how to deal with
this new world (Dougherty and Braga-Neto, 2006; Dougherty,
2008; Mehta et al., 2004). The problem addressed in this article
arises from the bias and variance, and therefore the RMS, of

error estimators. Very little is known about the performance of
common error estimators, in particular, cross-validation. To take
a salient example: LOO. Prior to 2009, all that was known about
LOO for LDA and Gaussian class-conditional distributions were
asymptotic expressions for the expectation and variance of the
estimator in one dimension (Davison and Hall, 1992). In 2009, the
distribution of the LOO estimator was discovered in this model for
an arbitrary dimension m without assuming a common variance
for m=1 and assuming a common covariance matrix with m>1
(Zollanvari et al., 2009). Still, none of these results treated the
joint distribution of the estimated and true errors, nor, in particular,
the RMS. In 2010, the joint distribution was found exactly for
m=1 without assuming a common variance and an approximation
was found for m>1 assuming a common covariance matrix
(Zollanvari et al., 2010). Besides the joint distribution via complete
enumeration (Xu et al., 2006) and the correlation (Braga-Neto
and Dougherty, 2010) for multinomial discrimination, there are
no other analytic results regarding the joint behavior of LOO
with the true error. This dearth of results is striking considering
that LOO was first proposed in 1968 (Lachenbruch and Mickey,
1968), it has been used extensively, and the variance problems of
LOO have been known from at least 1978 (Glick, 1978). As for
more complicated cross-validation estimators that require random
resampling, essentially nothing is known. If lamentations regarding
the lack of performance characterization in bioinformatics are to
be abated, then much greater knowledge regarding error estimation
must be discovered.
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APPENDIX A
We prove that if all error estimators are unbiased, then
limK→∞B(m,n,K)=0.

Lemma A.1. If all error estimators are unbiased, then B(m,n,K)≤0.

Proof. Define the set Sn ={S1
n ,S2

n ,...,SK
n }, where Sk

n , k =
1,2,...,K is a random sample taken from the distribution Fk for
k =1,2,...,K . Also, we can rewrite Equation (9) as

εmin
est (K)=min

i,j

⎧⎨
⎩ 1

K

K∑
k=1

ε
i,j,k
est

⎫⎬
⎭, (A.1)

where i=1,2,...,r and j=1,2,...,s. Owing to the unbiasedness of

the error estimators, ESk
n
[εi,j,k

est ]=ESk
n
[εi,k

true]. Referring to Equations
(10) and (A.1), we have
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≤0. (A.2)

where the relations in the third and sixth lines result from Jensen’s
inequality and unbiasedness of the error estimators, respectively.

Lemma A.2. If all error estimators are unbiased, then
limK→∞B(m,n,K)≥0.

Proof. Let

Ai,j = 1

K

K∑
k=1

ε
i,j,k
est , Ti = 1

K

K∑
k=1

ESk
n

[
ε

i,k
true

]
. (A.3)

Owing to the unbiasedness of the error estimators,
ESn

[Ai,j]=Ti ≤1. Without loss of generality, we assume

T1 ≤T2 ≤ ...≤Tr . To avoid cumbersome notation, we will
further assume that T1<T2 (with some adaptation, the proof goes
through without this assumption). Let 2δ=T2 −T1 and

Bδ=
⎛
⎝ s⋂

j=1

(
T1 −δ≤A1,j ≤T1 +δ

)⎞⎠
⋂(

min
i �=1,j

{
Ai,j

}
>T1 +δ

)
. (A.4)

Because |εi,j,k
est |≤1, VarSn

[Ai,j]≤1/K . hence, for τ>0, there exists
Kδ,τ such that K ≥Kδ,τ implies P(Bδ(K))>1−τ. Hence, referring
to Equation (10), for K ≥Kδ,τ ,
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]
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1,j
]

P(Bδ)

≥ (T1 −δ)(1−τ). (A.5)

1682



[10:46 24/5/2011 Bioinformatics-btr262.tex] Page: 1683 1675–1683

Multiple-rule bias

Again referring to Equation (10) and recognizing that imin =1 in Bδ,
for K ≥Kδ,τ ,
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1,k
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+P(Bc
δ)
)

≤T1 +τ. (A.6)

Putting Equations (A.5) and (A.6) together and referring to Equation
(10) yields, for K ≥Kδ,τ ,

B(m,n,K)≥ (T1 −δ)(1−τ)−T1 −τ≥−(2τ+δ) (A.7)

Since δ and τ are arbitrary positive numbers, this implies
that for any η>0, there exists Kη such that K ≥Kη implies
limK→∞B(m,n,K)≥0, which is precisely what we want to
prove.

Combining Lemmas A.1 and A.2, we have proven that
limK→∞B(m,n,K)=0 under the assumption that all the error
estimators are unbiased.
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