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ABSTRACT

Motivation: Motif discovery is now routinely used in high-throughput
studies including large-scale sequencing and proteomics. These
datasets present new challenges. The first is speed. Many motif
discovery methods do not scale well to large datasets. Another
issue is identifying discriminative rather than generative motifs. Such
discriminative motifs are important for identifying co-factors and for
explaining changes in behavior between different conditions.
Results: To address these issues we developed a method for
DECOnvolved Discriminative motif discovery (DECOD). DECOD uses
a k-mer count table and so its running time is independent of the
size of the input set. By deconvolving the k-mers DECOD considers
context information without using the sequences directly. DECOD
outperforms previous methods both in speed and in accuracy
when using simulated and real biological benchmark data. We
performed new binding experiments for p53 mutants and used
DECOD to identify p53 co-factors, suggesting new mechanisms for
p53 activation.
Availability: The source code and binaries for DECOD are available
at http://www.sb.cs.cmu.edu/DECOD
Contact: zivbj@cs.cmu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
DNA motif discovery has been a central problem in computational
biology for almost two decades. Many methods based on word
enumeration or probabilistic models including position weight
matrices (PWMs) and Hidden Markov models (HMMs) have been
developed for this task (Das and Dai, 2007). Word enumeration-
based methods are usually only able to find short motifs and tend
to fail when the motif includes weak positions (Das and Dai,
2007). Most probabilistic methods involve iteratively scanning the
input sequences to identify potential motifs and then updating the
motifs to improve the likelihood of the model until convergence
(Bailey and Elkan, 1994; Frith et al., 2004; Roth et al., 1998; Sinha
and Tompa, 2003). In such methods motifs are usually defined as
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subsequences, which are present at a much higher rate than expected
when compared with a background model (D’Haeseleer, 2006).

The use of motif discovery methods has dramatically increased
over the last few years due to the rise in sequencing capacity and the
advancement of other high-throughput methods. These methods are
routinely used to identify and predict transcription factor binding
sites (Hu et al., 2010), protein phosphorylation sites (Schwartz
and Church, 2010), microRNAs targets (Linhart et al., 2008) and
alternative splicing locations (Suyama et al., 2010). However, these
high-throughput methods have also led to new requirements from
motif search algorithms. The first is speed. Many studies now
routinely search for motifs in very large sets of input sequences.
For example, several ChIP-Seq experiments identify thousands of
targets for specific mammalian transcription factors (Robertson
et al., 2007; Yu et al., 2009). The second requirement is for
identifying discriminative motifs (Sinha, 2003). Unlike traditional
motif searches that are performed against a general background
model, in discriminative motif search one looks for motifs that are
present at a high rate in a positive set compared to a negative set.
These sets can be genes that are up- or downregulated at a specific
time point or condition (Ernst et al., 2007), proteins that are initially
co-localized but later diverge, genes that are bound in one condition
by a TF but not in another, etc. These and other studies, including
cross species analysis and methods for modeling gene regulation,
require discriminative motif discovery methods that can scale to
large datasets.

Several discriminative motif-finding methods have been
developed so far. DIPS (Sinha, 2006) uses a probabilistic score to
quantify the difference in the number of occurrences of a PWM
between two sets of sequences and uses heuristic hill climbing
to search the sequences for motifs that maximizes this score.
ALSE (Leung and Chin, 2006) uses a target function based on
the hypergeometric distribution. This function searches for a PWM
using an EM-like heuristic and then evaluates the likelihood that
the PWM it identified represents a real motif. DEME (Redhead and
Bailey, 2007) performs a combination of global and local search
to find a PWM that maximizes the conditional log likelihood of
the sequence labels given the sequences and models parameters.
Seeder (Fauteux et al., 2008) is a word-based enumerative method.
It first generates seeds by finding significantly enriched words in
the positive set based on a word-specific background probability
distribution, and then iteratively extends these seeds to form a
new PWM and updates the seeds until convergence. CMF (Mason
et al., 2010) is also a word-based method that starts by finding
enriched words in the positive set based on a z-score, and then
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iteratively updates the motif model and rescans the sequences to
update the seeds and avoid false positives until convergence. See
Supplementary Material for detailed descriptions.

While the above methods can successfully identify discriminative
motifs, they usually do not scale well for large sequence datasets
since they are based on repeated analysis of the positive and negative
sequences. For example, DIPS (Sinha, 2006) was only suggested to
be run on tens of sequences with length around 1000bp, and even so
its run time is very long (several hours). The running time of DEME
(Redhead and Bailey, 2007) depends quadratically on the size of the
positive sequences, making it prohibitive for most motif discovery
tasks. Other methods are also slow when dealing with large datasets
as we show in Section 3.

DME (Smith et al., 2005) attempts to address the speed issue
by enumerating over a discrete space of pre-defined matrices
representing possible motifs. It then uses a log likelihood ratio as
a target function to score the overrepresentation of a motif matrix
in one set of sequences versus another. However, while DME is
indeed very fast, it is based on a pre-defined set of matrices and
is thus often restricted in terms of the set of motifs it can identify.
In addition, DME ignores the context information encoded as part
of the sequences, which may lead to a shifted PWM that does not
accurately represent the real motif.

In this article, we present a new method that addresses both
the speed and accuracy issues for discriminative motif finding.
Our method, deconvolved discriminative motif finder (DECOD),
only uses k-mer counts and so does not depend on the size of the
input set. To compensate for the errors introduced from ignoring
the dependence between the consecutive and overlapping k-mers
in the sequences that they are from (the context of a k-mer), we
use a deconvolution method that accounts for the higher rates of
k-mers containing subsets of the true motif. We applied the method
to simulated and biological benchmark data and compared it with
previous methods. As we show, our method enables motif discovery
in cases that could not have been studied before due to the size of the
input, and it outperformed other methods in terms of both accuracy
and running time. We used our method to study various post-
translational modification of the human transcription factor p53.
We performed new ChIP-chip experiments and identified different
sets of binding targets for the p53 mutants. Using our new motif
discovery algorithm we were able to identify a number of potential
co-factors of p53 and study the way in which they interact with p53.

2 METHODS

2.1 DECOnvolved Discriminative motif discovery
method

Similar to other methods (Fauteux et al., 2008; Leung and Chin, 2006;
Redhead and Bailey, 2007; Smith et al., 2005; Sinha, 2006), DECOD starts
with a user-specified motif length k. Given k, we extract all k-mers from
the positive and negative sequences (Fig. 1). Following this step the entire
analysis is only performed on the k-mer counts table. Since the size of
this table is independent of the number and length of the input sequences,
DECOD scales very well to large datasets.

We assume a generative mixture model for k-mer distributions: Each
k-mer is either generated by the motif model represented by a PWM, or by
the background model (similar to a zeroth-order HMM). Following (Sinha,
2006), DECOD searches for a PWM that maximizes a discriminative target
function: the difference in the expected number of times that the motif model

Fig. 1. Overview of DECOD. We extract counts of all k-mers in the positive
and negative sequences (top) and store them in a k-mer count table. Next,
we search for a discriminative PWM that matches many k-mers on the
positive set while only matching a few on the negative set. The PWM is
constructed using a site set containing a small number of k-mers (highlighted
in yellow). To determine which k-mers to include in the site set we use a
deconvolution based target function (middle) which overcomes the lack of
context information for the k-mers. Once appropriate k-mers are identified
we revise the PWM (bottom) and the process is repeated until no further
improvement to the target function can be achieved.

is used to generate the positive and negative sequences (Fig. 1, top). The
PWM is constructed from a subset of the k-mers which are selected based on
the k-mer count table (termed ‘the site set’ (Sinha, 2006), highlighted k−mers
in Figure 1). While using only the k-mer counts provides significant speed
benefits with large input datasets, such representation ignores important
context information for each k-mer within a sequence. This may result in
selecting shifted versions of the same k-mers that lead to a convolved (and
inaccurate) PWM (Fig. 1, middle). To correct for this we use a deconvolution
method that accounts for the higher rates of k-mers that contain a subset of
the true motif in the positive set. In an iterative process we continuously
improve our PWM by adding and removing k-mers from the site set using
heuristic hill climbing search methods until convergence. Once the algorithm
converges we remove instances of the identified PWM from the k-mer count
table, and then search for a second PWM and so forth. We next discuss each
of these steps in details.

2.1.1 The mixture model for k-mers DECOD uses the following mixture
model that includes a motif component Z and a background component B
to model the k-mer distribution M:

M=pZ+(1−p)B (1)

Here, Z and B are the probability distributions over the k-mers (i.e. non-
negative vectors of dimension 4k whose entries sum to 1) generated by the
motif and background models respectively and p is the probability of motif
occurrence. The mixture model M can also be considered as a zeroth order
HMM that generates k-mers as follows: (i) choose a hidden state h from
{z,b} with state probabilities p and 1−p respectively; (ii) if h= ‘z’, emit a
k-mer according to the distribution Z; if h= ‘b’, emit a k-mer according to
the distribution B.

2.1.2 The motif component Z and deconvolution The simplest way to
model Z by a PWM θ is to define each element Za to be

Za =Pr(a|θ)=
k∏

i=1

θi,ai ≡θa (2)
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in which a=a1 ...ak is a k-mer, θi,ai is the entry for the letter ai in the i’s
column of θ and we use θa as a shorthand notation for Pr(a|θ). We call such
Z simple motif component.

However, our method for extracting overlapping k-mers, while greatly
speeding up computational time for large input datasets, ignores the context
of the k-mers. Thus, several k-mers that do not fully match the motif
may still overlap parts of it and thus may be overrepresented in the data.
To overcome this, note that each k-mer in its context can be generated by
2k−1 combinations of the motif component and the background component
(Fig. 1). Thus instead of the simple PWM mixture component, we define the
following convolved motif component:

(2k−1)Zconvolved =Z−(k−1) + ...+Z0 + ...+Zk−1 (3)

where Z0 is the k-mer frequencies obtained from the PWM θ, and Zj the
k-mer frequencies from a PWM obtained by taking the first j columns of θ

(or the last j columns if j<0), and adding k−j columns of background as
a prefix (or suffix if j<0). Note that using the convolved motif component,
the mixture model becomes

M=p(2k−1)Zconvolved +[1−(2k−1)p]B (4)

2.1.3 Discriminative PWM search We are given a set of positive
sequences S+ and a set of negative sequences S− as input. Normalized
k-mer counts are extracted and denoted by X for the positive set and Y for
the negative set, and together they form the input for DECOD. Assuming
that X was generated by the mixture model, the expected number of times
that the motif component Z was used in the zeroth-order HMM is

w(X;Z)=
∑

a∈�k

(
pZa

pZa +(1−p)Ba

)
·Xa (5)

in which Za =Pr(a|θ) is the probability of observing a under the motif model,
Ba =Pr(a|B) is the probability of observing a under the background model,
and Xa is the count of a in the positive sequences. A similar expression can
be written for Y .

Following (Sinha, 2006), given X, Y as input, we aim to maximize the
expected difference

F(Z)=w(X;Z)−w(Y;Z)=
∑

a∈�k

(
pZa

pZa +(1−p)B a

)
·(Xa −Ya) (6)

in which Z and B represent the estimated distributions on k-mers as discussed
above. The background B is estimated from the base frequencies of the input
sequences using a simple zeroth-order model. Below we will regard B as a
PWM as well, with all columns equal.

Assuming a simple motif component Z, let θ denote the PWM for Z. Then
the discriminative score can be written as

F(θ) :=F(Z(θ))=
∑

a∈�k

(Xa −Ya)
pθa

pθa +(1−p)Ba
(7)

For a convolved motif component Z, a similar formula can be derived.
For PWMs A, B of length k, let [AiBk−i] denote the PWM obtained by
concatenating the last i columns from A with the first k−i columns from B.
Then the discriminative score for the convolved motif component is:

F(θ) :=F(Z(θ))=
∑

a∈�k

(Xa −Ya)·

p[θa +∑k−1
j=1

(
[θjBk−j]a +[Bjθk−j]a

)
]

p[θa +∑k−1
j=1

(
[θjBk−j]a +[Bjθk−j]a

)
]+[1−(2k−1)p]Ba

(8)

As before, our aim is to find a PWM θ that maximizes the above function, and
we adopt a discretized heuristic hill climbing approach very similar to DIPS
(Sinha, 2006) to search for this PWM (Methods in Supplementary Material).
After a PWM is found, we remove the signals of that PWM from the k-mer
count table and start searching for a second one if desired. See Methods in
Supplementary Material for details.

In practice when the two input datasets are not equal in size and have
different base frequencies, we replace the counts Xa and Ya above with the
frequencies of the k-mer a in the two sets, and we use different Bs estimated
from the two sets respectively, and calculate w(X;Z) and w(Y;Z) separately.
Also for the probability of motif occurrence p, we show that similar to DIPS
(Sinha, 2006), our method is not sensitive to the choice of this parameter
(Results in Supplementary Materials), and we set it to be once per positive
sequence.

2.1.4 Speeding up the calculation and search While the run time of
DECOD is independent of the input dataset size, it does depend on the motif
width k. Calculating the exact target functions in (8) includes summation
over all possible k-mers, and thus the running time increases exponentially
with k. To speed up the calculation of the target function we developed a
speedup version of DECOD. In this version we first calculate the frequencies
of all k-mers in the positive and negative sets, and then the summation in
Equation (8) is calculated only over those k-mers exhibiting large differences
between the positive and negative sets. In addition, we perform two rounds of
search in each iteration. The first round is crude search in which we only use
the partial derivatives of (8) to estimate the change resulting from adding or
removing a k-mer from the motif without doing exact calculation of the target
function. After obtaining a set of m k-mers leading to a motif θ we expand
this set by including all other k-mers that are similar to θ. See Methods in
Supplementary Materials for complete details.

2.2 ChIP-chip experiment of p53 mutant binding
We designed a p53-focused array as previously described in (Shaked
et al., 2008), which contains 540 p53-PET sites, 62 additional previously
described p53 target regions and 846 randomly chosen promoter regions.
For the experiments discussed in this article, H1299 tet-off inducible
cell lines were created as previously described in (Chen et al., 1996).
Levels of p53 for the different mutants were similar to each other as
determined by Western analysis (Supplementary Figure S1). Chromatin
immunoprecipitation (ChIP)-on-chip analysis was performed (Lee et al.,
2006) using 10 µg anti-p53 antibody DO-1 (Santa Cruz). Approximately
5×107 cells were used. The experiment was performed in duplicate, and
the average binding ratio for each spot was calculated. The significance of
the enrichment observed in each spot was determined by calculating the
deviation of each ratio from the mean of the random promoters control spots
(Z score). Only ∼1% of the random promoters obtained Z of >2.5; thus, this
cutoff is equivalent to an FDR of 0.01. We have also performed gene-specific
validations that confirmed the array results (data not shown), using a ChIP
assay subjecting the non-amplified immunoprecipitation and input fractions
to 36 cycles of semiquantitative PCR. See Methods in Supplementary
Materials for complete details. The data from the ChIP-chip experiment has
been deposited in ArrayExpress (accession number E-MEXP-3027).

3 RESULTS

3.1 Discriminative motif finding on simulated data
We first tested the performance of DECOD by comparing it to
several other discriminative motif finding methods including DME
(v2 beta 2008.08.30, Smith et al., 2005), DIPS (v1.1, Sinha, 2006),
ALSE (v1.07, Leung and Chin, 2006), DEME (v1.0, Redhead and
Bailey, 2007), Seeder (v0.01, Fauteux et al., 2008) and CMF (Mason
et al., 2010) using simulated data. For each simulated study, 100
datasets were generated and results were averaged. In each dataset,
two groups of positive and negative sequences of length 400bp
each were first generated with equal probabilities for A, C, G and
T, respectively. Then, in the positive set, palindrome motif(s) of
various strength [as represented by the information content of each
column (column IC), see Methods in Supplementary Materials] were
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Fig. 2. Performance comparison on the simulated data planting one motif
in each of the 100 positive sequences. (A) Average accuracy as measured by
AKLD (B) Actual running time. The error bars represent standard deviation
based on results from 100 datasets.

planted at randomly chosen positions. For all cases, the accuracy
was measured by the average Kullback–Leibler (K-L) divergence
per column (AKLD) between the recovered motif and the known
planted motif (Smith et al., 2005) (Methods in Supplementary
Materials). The lower the AKLD, the closer the recovered motif
is to the planted motif. In addition, for DECOD, both the exact
and speedup calculations were compared (referred to as ‘DECOD-
exact’ and ‘DECOD-speedup’ hereafter, see Section 2). For DIPS,
we considered running for 5 iterations and 20 iterations (referred to
as ‘DIPS-5iters’ and ‘DIPS-20iters’ hereafter).

3.1.1 Single unimodal motif, small input size We first planted
one palindrome motif of width 6 into each positive sequence.
Each position of the motif had one dominating nucleotide (thereby
unimodal), with column IC ranging from 2 bits to 0.64 bits (Methods
in Supplementary Materials). One hundred positive and negative
sequences were generated respectively for each dataset and we
compared the ability of each method to recover the planted motifs.
When the planted motif was strong with a column IC≥1.58, most
methods including DECOD-exact, DECOD-speedup, DME, DEME,
DIPS-5iters, DIPS-20iters and CMF (to a lesser extent with larger
variance) were able to accurately recover the planted motif (average
AKLD ≤1, Figure 2A). However, when the column IC was reduced
to 1.15, using CMF, DIPS-5iters and DIPS-20iters led to an AKLD
higher than 1, while DECOD-exact, DECOD-speedup, DME and
DEME still performed well and were also stable (AKLD < 0.6
with small variance, Figure 2A). When the column IC was further
reduced to 0.64, the planted motif instances became too noisy with
few instances preserving the dominating positions of the motif, and
with the small number of sequences available, virtually all methods
except ALSE failed (AKLD > 2, Figure 2A). However, among all
the tested methods, ALSE and Seeder performed poorly when the
planted motif was strong. For Seeder, its weak performance for the
strong-planted motifs may have been related to the motif length.

Fig. 3. Performance comparison of accuracy as measured by AKLD on the
simulated dataset in which the motif is only planted in some (x-axis) of the
100 positive sequences.

The seed width for Seeder as input should be shorter than the motif
width, but in this case the two were set to be equal since the minimum
possible seed width for Seeder was 6. For ALSE, the apparent
decreasing AKLD with weaker motif was because ALSE reported
matrices in which the distribution at each column is diluted (e.g. [0.5
0.167 0.167 0.167] instead of [1 0 0 0]). In terms of running time,
DEME and DIPS required a long time to run (∼15 min for DEME,
∼25 min for DIPS-5iters and >1.5 h for DIPS-20iters, Figure 2B).
In contrast, DECOD (particularly the speedup version) and DME
were the fastest taking <1 min.

To further mimic real cases in which the motif of interest
does not necessarily exist in all positive sequences, we generated
simulated datasets in which only some of the 100 positive sequences
(percentage denoted as q, varying from 50% to 90%) contained the
planted motif (with an column IC of 1.15). In all the ranges of q
tested, DECOD-exact, DECOD-speedup and DEME outperformed
the other methods, including DME, in terms of the accuracy of the
recovered motif (Fig. 3). Note that the running time for DEME was
more than 15 times longer than DECOD (Fig. 2B). When q was high
(>=0.8), both DECOD-exact and DECOD-speedup had a small
variance suggesting that their performance was relatively stable. In
contrast, DME had a much larger variance, indicating that it failed
on a lot more of the 100 simulated datasets than DECOD (Fig. 3). We
also tested DECOD by planting a longer motif of width 8.As with the
shorter motif, DECOD-speedup was able to accurately recover the
PWM as well as the locations of the planted motifs (Supplementary
Figures S4 and S5 and Results in Supplementary Materials).

3.1.2 Single unimodal motif, large input size To investigate how
well each method scales with the size of the input data, we next
increased the number of sequences for each dataset to 1 000, and
we still planted one motif with varying column IC in each positive
sequence. With this large input dataset size, DIPS failed to run,
the running time for DEME and Seeder became prohibitively long
(>6 h), and the running time for ALSE increased to more than
1.5 h. We thus excluded them from the analysis and only compared
DECOD-exact, DECOD-speedup, DME and CMF. All four methods
were able to precisely recover the planted motif and theAKLDs were
very similar for all the methods, although the AKLDs increased with
lower column IC of the planted motif as expected (Supplementary
Fig. S2A). In terms of running time, DECOD-speedup and DME
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Fig. 4. Performance comparison of accuracy as measured by AKLD on the
simulated dataset in which two motifs were planted in each of the 1000
positive sequences. Each method was set to report 2 motifs. Upward, the
AKLD of the recovered motif closer to the two known motifs. Downward,
the AKLD of the other recovered motif to the corresponding known motif.

were the fastest (<1 min), followed by DECOD-exact (∼2 min) and
CMF (∼6 min, Supplementary Figure S2B).

3.1.3 Single bimodal motif We next tested a more difficult case
where some positions (ranging from one to all six) in the planted
motif are bimodal (column IC 0.53, see Methods in Supplementary
Materials). Such cases, in which a motif contains a few weak
positions, are very common in practice. As the number of bimodal
positions increased, the recovered motifs by all methods tended to
diverge further from the planted motif (Supplementary Fig. S3).
However, theAKLDs of the motifs recovered by both DECOD-exact
and DECOD-speedup were in most cases comparable to DME and
both were better than CMF.

3.1.4 More than one motif per sequence In real data, genes are
often combinatorially regulated by multiple TFs. To test the ability
of our method to recover more than one motif from a dataset and
compare with the other methods, we next planted two different
motifs in each positive sequence in a simulated dataset containing
1000 sequences each. The planted motifs had 0–6 bimodal positions
(column IC 0.53) and the other positions were unimodal (column
IC 1.15) (see Methods in Supplementary Materials). Both DECOD-
exact and DECOD-speedup were able to correctly recover the two
planted motifs (AKLD<1) and outperformed DME, especially when
the number of bimodal positions were >3 (Fig. 4 and Methods in
Supplementary Materials). Interestingly, CMF was able to correctly
recover one of the two motifs in most cases and always failed to
recover the other (Fig. 4, downward bars representing the recovered
motif with larger AKLD, see Methods in Supplementary Materials).

3.2 Performance comparison on recovering motifs
from biological benchmark datasets

We next applied DECOD to identify transcription factor binding sites
(TFBSs) in real biological datasets. For this purpose, we first used
a benchmark dataset in Saccharomyces cerevisiae (Harbison et al.,
2004) and compared DECOD’s results with the other methods. For
each of the 65 TFs reported in (Harbison et al., 2004), the probe
sequences bound by the TF were used as the positive set (Methods
in Supplementary Materials). Note that not all bound sequences
contained the motif for the corresponding TF. Negative datasets

Table 1. Comparison of discriminative motif finding methods on the yeast
dataset

TF DECOD DME DEME CMF Seeder ALSE Width Enrichment

ABF1 + + + + + 13 99
CBF1 + + + + + 7 99
FHL1 + + + + + 10 99
RAP1 + + + + 10 79.92
REB1 + + + + + 7 77.93
UME6 + + + + + 8 72.32
RPN4 9 72.02
GCN4 + + + + + 7 64.62
YAP7 8 62.65
MCM1 + + 11 55.28
NRG1 + 7 45.42
MBP1 + + + + + 7 40
SKN7 + 9 38.79
CIN5 + + + 8 38.36
SUM1 + + + + 10 36.47
SWI6 + + + + + 7 33.62
HSF1 + 13 32.96
SWI4 + + + + + 7 31.96
TYE7 + + + + + + 8 30.56
SFP1 9 26.64
FKH2 + + + + 7 26.62

Total (Top) 15 13 15 14 11 3
Total (All) 28 31 34 24 17 9

+: Correctly recover the known motif.
Total (Top): the total number of the top 21 motifs with enrichment score ≥25 correctly
recovered by each method.
Total (All): the total number of all motifs correctly recovered by each method (see
Results in Supplementary Materials for details).

were constructed for each TF by using the probes most unlikely
to be bound (Methods in Supplementary Materials). We then run
each method to search for one motif of the known width for each
dataset, and we matched the motifs discovered against a database
containing all the motifs for those TFs reported in (Harbison et al.,
2004) using STAMP (Mahony and Benos, 2007). A discovered motif
is considered to be correct if the true TF is within the top 5 matches
returned by STAMP. We did not include DIPS in our comparison
due to its prohibitive running time. For our method, we only used
the speedup version since many motifs are longer than 8.

Out of all the 65 motifs, DECOD was able to recover 28, compared
to 31 for DME and 34 for DEME (none of the other methods
correctly recovered more than 34 motifs, Table 1 and Supplementary
Table S2). However, the motifs for these 65 TFs are not equally
reliable. An enrichment score for each motif was calculated in
(Harbison et al., 2004) to measure the relative enrichment of the
motif in the bound probes compared with all intergenic sequences in
yeast. Motifs with a higher enrichment score occur more densely in
the bound probes and are therefore more reliable. Of the 21 motifs
with an enrichment score ≥25, DECOD was able to recover 15,
similar to the number recovered by DEME (also 15) and higher
than the number recovered by DME (13) (Table 1). It should be
noted that many of the motifs correctly recovered by DECOD are
longer than 10 (Supplementary Table S2), and that the running time
for DECOD is always much faster than DEME. Therefore, DECOD
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performs well in recovering yeast motifs from this dataset especially
for highly reliable motifs.

We also tested the performance of DECOD on another biological
benchmark dataset that contains known TFBS in higher organisms
including fly, mouse and human (Tompa et al., 2005). As we show
in Supplementary Figure S6, for this data DECOD was superior to
DME and DEME in terms of the sensitivity and positive prediction
value at the nucleotide level. See Results in Supplementary Materials
for detailed discussion.

3.3 Motif discovery from p53 mutant binding targets
We next looked at the tumor suppressor p53 in human, a TF
which plays a major role in cancer by binding numerous targets
(Wei et al., 2006). P53 is regulated by many posttranslational
modifications, primarily at the amino and carboxyl terminal regions
(Riley et al., 2008). In particular multiple lysines within the
C-terminal domain (CTD) have been reported to undergo numerous
modifications including acetylation, methylation, ubiquitination,
and SUMOylation (Kruse and Gu, 2009). The functions of the
acetylation of these lysines have remained elusive. To study the
role of the acetylation of these CTD lysines in p53 binding,
we performed ChIP-on-chip experiments comparing three H1299
cell lines expressing p53 variants expressed from a tetracycline-
regulatable promoter (tet-off) in which the levels of p53 protein can
be regulated by varying the amount of tetracycline in the culture
medium (Section 2). The levels of p53 were calibrated so that
equivalent amounts of p53 were expressed in each of the following
three cell lines containing: (i) wild-type p53 (WT p53); (ii) mutant
p53 in which the six lysine residues in the C-terminus were mutated
to arginine (6KR p53), which conserve charge but disallow any
lysine modification; and (iii) mutant p53 in which the same six
lysines were mutated to glutamine (6KQ p53) which is thought
in some cases to mimic acetylation (Karni-Schmidt et al., 2007)
(Methods in Supplementary Materials). To determine their relative
affinity for p53 target sites, we used a p53 custom array containing
promoters for 600 of p53’s targets binding sites.

We found that WT p53 bound to 330 targets, 6KR p53 bound to
255 targets and 6KQ p53 bound to only 150 targets. Interestingly,
the 6KQ targets were included in the 6KR targets, which in turn
were included in the WT targets. Thus, each of the p53 forms bound
a smaller subset of related targets (Fig. 5A). Since all genes on the
array contain a strong p53 binding motif, motif discovery on one
target set would lead to the same motif. Thus we used DECOD to
search for discriminative motifs that are enriched in one set of these
targets versus another. The bound sequences identified in the ChIP-
chip experiment in each pairwise comparison of the wild-type p53
and two mutant p53 (6KR and 6KQ) were repeat masked and then
used for this analysis. Since the experiment is not strand-specific,
both strands were included in the input sequences. We used STAMP
(Mahony and Benos, 2007) to match the motifs we recover with
known transcription factor binding sites in the TRANSFAC 11.3
database (Matys et al., 2006).

DECOD identified several such discriminative motifs in pairwise
comparisons between these sets (Fig. 5B–D and Supplementary
Material). The motifs identified provide new insights regarding
co-factors of p53 and the post-translational modification that it
undergoes. For example, when comparing targets of WT p53 that
are not targets of 6KR p53 to targets of 6KR p53, DECOD

Fig. 5. Results on the p53 dataset. (A) Number of targets and inclusion
patterns for the three p53 forms we tested. (B–D) Discriminative motifs
identified by DECOD for the p53 binding datasets. Left: Motifs found by
DECOD. Right: matched motifs in TRANSFAC using STAMP (Mahony and
Benos, 2007) (E-values provided by STAMP). (B) The SOX4 motif found in
the comparison of the WT p53 targets against the 6KR p53 targets. (C) The
IRF-1 motif found in the comparison of the 6KR p53 targets against 6KQ
p53 targets. (D) The p53 motif found in the comparison of the 6KQ p53
targets against the control sequences.

identified a motif closely matching the PWM for Sox4 (Fig. 5B,
E-value = 6.35e-8). Sox4 participates in a wide range of cellular
processes particularly in cancer (Rhodes et al., 2004), and recently
it was reported to physically interact with p53 and regulate p53
stability at the protein level (Pan et al., 2009). Both the DNA-
binding domain (DBD) and the C-terminal domain (CTD) of p53
were shown to be involved in forming the interaction with Sox4
(Pan et al., 2009). Since the Sox4 motif was only found to be
enriched in comparing the WT p53 targets against 6KR p53 (in
which the CTD was mutated) but not in the other comparisons, our
result confirms this finding and also suggests that the CTD lysines
might be important in maintaining the conformation of the binding
site between the p53 and Sox4 proteins. Another example is the
motif closely matching the PWM for interferon regulatory factor 1
(IRF-1) when comparing the 6KR p53 against the 6KQ p53 targets
(Fig. 5C, E-value = 2.75e-7). IRF-1 acts synergistically with p53 at
the p21 promoter and is coordinately upregulated with p53 during
DNA damage response (Pamment et al., 2002). On the p21 promoter
IRF-1 and p53 interact through the p300 acetyl transferase, and this
interaction is important for the acetylation of p53 (Dornan et al.,
2004). If p300 is indeed necessary for IRF-1 – p53 interaction, we
expect it to be lost after p53 is fully acetylated. Indeed, we found that
IRF-1 binding sites are depleted from promoters of the acetylation
mimicking mutation (6KQ) raising the possibility that p53 needs the
interaction with the IRF-1 protein to control a subset of its targets.
Finally, in comparing the 6KQ targets against a control set, DECOD
was able to recover the motif corresponding to the PWM for p53
(Fig. 5D, E-value = 1.09e-11). Note that the p53 motif was not found
in either of the previous comparisons due to the discriminative nature
of the method, which is what we desired since all the three sets of
targets contains the motif. The other methods could not recover the
Sox4 or the p53 motif when run on this dataset (Supplementary
Table S3 and Results in Supplementary Materials).

4 DISCUSSION
We presented DECOD, a novel method for discriminative motif
finding in DNA sequences. DECOD uses a deconvolution method
which allows it to have a run time independent of the input data size
while still taking into account context information.
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While DECOD’s run time is independent of the input data
size, calculating the exact target function (DECOD-exact) increases
exponentially with the motif length k. We presented a solution for
speeding up the calculation by only using the most informative
k-mers (DECOD-speedup), and showed that it yields motifs that
are almost as accurate as those obtained using DECOD-exact
while the running time is greatly reduced. As we discuss in
Results in Supplementary Materials, DECOD is robust to several
input parameters including the choice of the probability of motif
occurrence.

When tested on simulated data, for which the correct motif is
known, DECOD outperforms all other methods when searching
for complicated motifs with bimodal position and when looking
for combinatorial regulation. It is also much faster than most other
methods making it applicable to large sequencing datasets. On real
biological benchmark datasets (both yeast and higher eukaryotes),
we showed that DECOD was comparable, or better, than other
discriminative motif finding methods with the possible exception
of DEME for the yeast data. However, as mentioned above, DEME
is very slow and so may not be a useful method when studying large
datasets. Using DECOD we were also able to identify motifs that
are differentially enriched in different p53 mutants which allowed us
to identify co-factors of this important TF. Additional experiments
are crucial for deciphering the exact interactions between p53 and
these other factors, and our bioinformatics analysis using DECOD
paves the way for future experiments. We have also tested DECOD
using large-scale ChIP-Seq dataset for 5 TFs. For all five DECOD
was able to identify the correct motif indicating that it works well
on high-throughput datasets as well. See Results in Supplementary
Materials and Supplementary Table S4 for details.

While DECOD was successful in our analysis, it also has
limitations. Since DECOD depends on k-mer counts, it does not
work well on motifs with large gaps in the middle, since the signals
for the k-mers corresponding to the occurrences of such motifs will
be more uniform due to the gaps. In future we hope to further extend
DECOD to deal with such cases. Moreover, we also hope to further
improve DECOD by developing ways to automatically determine
the length of the motif to be searched for, which can be important
when presented with new dataset in which the motif is completely
unknown.
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