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ABSTRACT

Motivation: RNA secondary structure plays an important role in
the function of many RNAs, and structural features are often key
to their interaction with other cellular components. Thus, there
has been considerable interest in the prediction of secondary
structures for RNA families. In this article, we present a new
global structural alignment algorithm, RNAG, to predict consensus
secondary structures for unaligned sequences. It uses a blocked
Gibbs sampling algorithm, which has a theoretical advantage in
convergence time. This algorithm iteratively samples from the
conditional probability distributions P(Structure | Alignment) and
P(Alignment | Structure). Not surprisingly, there is considerable
uncertainly in the high-dimensional space of this difficult problem,
which has so far received limited attention in this field. We show how
the samples drawn from this algorithm can be used to more fully
characterize the posterior space and to assess the uncertainty of
predictions.
Results: Our analysis of three publically available datasets showed
a substantial improvement in RNA structure prediction by RNAG
over extant prediction methods. Additionally, our analysis of 17 RNA
families showed that the RNAG sampled structures were generally
compact around their ensemble centroids, and at least 11 families
had at least two well-separated clusters of predicted structures.
In general, the distance between a reference structure and our
predicted structure was large relative to the variation among
structures within an ensemble.
Availability: The Perl implementation of the RNAG algorithm and the
data necessary to reproduce the results described in Sections 3.1
and 3.2 are available at http://ccmbweb.ccv.brown.edu/rnag.html
Contact: charles_lawrence@brown.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
RNA secondary structure plays a key role in the function of
many types of RNA, including structural RNAs, non-coding RNAs
(ncRNA) and regulatory motifs in mRNAs (e.g. riboswitches).
Accordingly, structural features of RNA molecules are often
characterized by evolutionarily conserved secondary structures
that are critical to their functions. Furthermore, there are often
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multiple occurrences of these structural elements within one species
(e.g. tRNA). Given the recent recognition of many important
additional roles that RNAs play in cellular functions, predicting
the common structural features of a set of RNA sequences is more
important than ever.

1.1 Structure prediction for a single sequence
Three main classes of probabilistic models of P(S|Q) for the
prediction of the secondary structure (S) for a single sequence
(Q), are currently available. The most popular is a thermodynamic
model that supposes that RNA structures may be described
by Boltzmann statistics [e.g. Mfold (Zuker et al., 1981)]. The
second model incorporates phylogenetic information into folding
[e.g. PETfold (Seemann et al., 2008)]. The third method abandons
the biophysical model in favor of machine learning algorithms that
empirically infer structure based on probabilistic graphical models
[e.g. CONTRAfold (Do et al., 2006)] or non-parametric methods
[e.g. KNETfold (Bindewald et al., 2006)].

Algorithms that use a thermodynamic model have gained wide
acceptance, particularly the early algorithms like Mfold (Zuker
et al., 1981) and RNAfold (Hofacker et al., 1994) that use dynamic
programming to find the most probable structure (MPS), i.e. the
‘minimum free energy structure’ (MFE). However, the Boltzmann
weighted ensemble of structures, represented as a large set of
binary matrices, defines a high-dimensional discrete space in which
even the MPS is likely to have low probability. Furthermore,
the MPS is often not representative of the Boltzmann weighted
ensemble of structures. In particular, there is no fundamental reason
for the MPS to even be included in the high-weight region of
the Boltzmann space (Carvalho et al., 2008). Thus, alternative
estimators that gain information from the full ensemble of structures
have emerged, including centroid estimators (Carvalho et al., 2008;
Ding et al., 2005) and the related maximum expected accuracy
(MEA) estimator (Do et al., 2006). A generalization of the centroid
estimator, the γ-centroid (Hamada et al., 2009, 2011), permits
the balancing of false positive and false negative errors based
on the tunable parameter γ . Moreover, the focus on finding the
MPS without uncertainty analysis implicitly assumes that an RNA
molecule exists only in one single stable state, which is not the
case for many RNAs, and almost certainly is not the case for
mRNAs. To address these issues, sampling algorithms like Sfold
(Ding et al., 2005) provide a method to characterize the full
ensemble of structures (Mathews, 2006), and Bayesian confidence
limits, a.k.a. credibility limits, provide a method to delineate the
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uncertainty of an estimate (Newberg et al., 2009; Webb et al.,
2008).

1.2 Structure prediction for multiple unaligned
sequences

With multiple sequences, the problem becomes harder since
the extra unknown alignment (A) of the sequences enters and
the model becomes P(S,A|Q). Algorithms that address the two
major components of this problem, i.e. the prediction of common
structure given an alignment and predicting an alignment given a
common structure, have been developed. The first of these assumes
an alignment of sequences is given, and seeks to predict the
structure common to the aligned sequences, i.e. draw inference
from P(S|A,Q). Several methods have been developed for this
problem. Mutual information (Gutell et al., 1992) and stochastic
context-free grammars (SCFG) (Knudsen et al., 1999; Sakakibara
et al., 1994) have been effectively used to detect and model
complementary covariation that is indicative of conserved base
pairing interactions. Maximum weighted matching (MWM), a
graph-theoretical approach, was introduced to predict common
secondary structures allowing pseudoknots (Cary et al., 1995;
Tabaska et al., 1998). RNAalifold (Bernhart et al., 2008; Hofacker
et al., 2002) incorporates both thermodynamic parameters and
sequence covariation, and permits sampling of consensus structures
from its probabilistic model.

Algorithms for finding a multiple alignment given a common
structure, i.e. P(A|S,Q), have also been developed. There are
well-known generic multiple alignment algorithms, e.g. ClustalW2
(Chenna et al., 2003) and ProbCons (Do et al., 2005), but these
do not incorporate structural information, and thus model only
P(A|Q). Of more direct interest here are algorithms that use a
given consensus structure to predict a multiple alignment, i.e. the
model P(A|S,Q). Such methods can improve the alignment of RNA
sequences (Nawrocki and Eddy, 2007). In one approach, structures
of individual sequences are predicted separately and abstractions
of these structures aligned (Giegerich et al., 2004; Siebert et al.,
2005; Steffen et al., 2006). Another approach (Ji et al., 2004) applies
graph theory to find stems conserved across multiple sequences
first, and then assembles conserved stem blocks to form consensus
structures in which pseudoknots are permitted. The probabilistic
covariance model (Eddy and Durbin, 1994) employs the SCFG
model to multiply align sequences using a given consensus structure.
This algorithm iterates between parameter estimation and alignment
prediction using an expectation maximization (EM) algorithm.
After convergence, it permits sampling of alignments. Eddy and
Durbin (1994) also presented an iterative optimization procedure
that iterates between alignment and structure, taking an optimization
approach instead of the sampling approach we describe here. More
recently, Yao et al. (2006) described CMfinder, an extension of this
approach to find regulatory motifs.

There is a ‘chicken and egg’ problem for these two classes of
algorithms: a good RNA sequence alignment (A) depends on a
specified consensus structure (S), and a good consensus structure
(S) prediction depends on a good alignment (A). One approach to
solving this dilemma is to simultaneously align and fold a pair of
RNA sequences with a dynamic programming algorithm (Sankoff,
1985). However, the computational complexity is O(n6), too high
to be of practical value in all but very short sequences. Heuristics

based on simplifications and restrictions of the Sankoff algorithm
for multiple sequences (more than two) have been developed, such
as FoldalignM (Torarinsson et al., 2007), mLocARNA (Will et al.,
2007), Murlet (Kiryu et al., 2007a) and RNAAlignment and Folding
(RAF) (Do et al., 2008).

Another approach is to iteratively predict structure and alignment
conditioned on each other. Early work focused on finding the optimal
solution with an EM algorithm (Eddy et al., 1994; Yao et al., 2006) or
simulated annealing (Lindgreen et al., 2007). Recently, approaches
that draw samples from probabilistic models using Markov chain
Monte Carlo (MCMC) procedures have been described. Meyer
et al. (2007) employs a Metropolis–Hastings algorithm that makes
proposals for local alignment and structure changes, accepting them
probabilistically. However, the slow convergence of these local-
move algorithms tends to require a large number of sampling
steps. Another variation is RNAsampler (Xing et al., 2007),
which heuristically iterates between the alignment and sampling of
candidate stems in the multiple sequences.

Gibbs sampling, introduced by Geman and Geman (1984), is
another popular MCMC procedure. Inspired by a theorem of
Liu (1994) concerning accelerated convergence of various Gibbs
samplers, here we describe a blocked sampling algorithm that
iterates between alignment (A) and structure prediction (S). In
Liu’s first theorem, three alternative Gibbs sampling approaches are
considered: (i) the standard Gibbs sampler in which each of the
random variables (RVs) are sampled individually; (ii) the grouped
Gibbs sampler in which two or more of the RVs are sampled jointly
in blocks; and (iii) the collapsed Gibbs sampler in which at least
one of the RVs is removed from the problem via integration. He
compares their convergence rates based on their forward operators,
Fs, Fg, Fc. The theorem shows that the norms of these operators are
ordered as follows: ||Fc||≤||Fg||≤||Fs||. Thus, the expected number
of iterations until convergence follows the reverse order. However,
as he points out, if the computation required at each iteration to
sample blocks or to remove RVs via integration is too large, then
any improvements in convergence rate may not be worth the added
computational expense. Thus, the key is to find efficient procedures
for blocking or integrating.

Here we describe a Gibbs sampling algorithm that capitalizes on
Liu’s theorem via block sampling. This algorithm, which we call
RNAG, iteratively block samples from the conditional probability
distributions P(Structure | Alignment) and P(Alignment | Structure),
and in so doing refines the models of both Alignment and Structure.
We use these samples to characterize the shape of the posterior
space using hierarchal clustering and centroid estimators. We use
γ-centroid estimators to delineate the trade-off between the positive
predictive value (PPV) and the sensitivity of the algorithm, and
credibility limits to characterize the uncertainty of our predictions.

2 METHODS

2.1 RNAG sampling algorithm
Consider the probabilistic model P(A,S|�A,�S ,Q) for multiple sequences
Q, where the hidden variables are A (the alignment) and S (the consensus
structure), and �A, �S are the corresponding parameters of the A, S
prediction steps. The goal is to find samples from the joint distribution
P(A,S|�A, �S ,Q). RNAG, the blocked Gibbs sampler described here,
achieves this by iteratively sampling from the conditional probabilities
P(S(t)|A(t−1), �S ,Q) and P(A(t)|S(t−1), �A ,Q), at the t-th iteration. Notice
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that our algorithm provides a generic framework that can employ any
probabilistic sampling algorithms in each of its two sampling steps.
Specifically, RNAG proceeds as follows.

2.1.1 Alignment initialization In theory, it does not matter if the algorithm
starts from an initial alignment or an initial consensus structure. Here, we
begin with an initial alignment A(0) produced by ProbCons (Do et al., 2005)
under the model P(A|Q).

2.1.2 Iteration steps

(1) Sample a consensus structure (S(t)) given an alignment (A(t−1)).
To sample from P(S(t)|A(t−1), �S ,Q), we employ RNAalifold
(Bernhart et al., 2008), which combines thermodynamic parameters
and empirical parameters estimated from the aligned sequences using
a default covariation weight �S .

(2) Sample an alignment (A(t)) given a consensus structure (S(t)).
To sample from P(A(t)|S(t), �A,Q), we employ the Infernal package
(Nawrocki et al., 2009). �A is a set of empirical parameter estimates
(parameters for SCFG model) obtained from P(�A|S(t), A(t−1), Q)
using an EM algorithm. Given �A, a multiple alignment is sampled
from P(A(t)|�A, S(t) ,Q) using the SCFG model.

Supplementary Figure S1 shows a diagram of these steps.

2.2 Sample analysis: characterization of the posterior
space

As described by Mathews (2006), sampling from the Boltzmann weighted
ensemble of secondary structures can provide a full characterization of this
structure space. Here, the RNAG sampler draws samples from the very high-
dimensional space of structures and alignments. In our approach, attention
is focused on the sampled structures, though the multiple alignments also
evolve during the sampling. We employed clustering analysis to characterize
the overall shape of the posterior space of structures, and credibility limits
to delineate uncertainty in predicted structures.

2.2.1 Clustering analysis Boltzmann weighted ensembles of RNA
secondary structures can exhibit complex shapes, which often include
multiple modes (Ding et al., 2006). Here we examine the shape of the
probabilistically weighted posterior space using a hierarchical clustering
procedure like that employed by Ding et al. (2006) for a single sequence.

Direct comparison of the sampled consensus structures is impractical
because of the dependence of the indices of the bases of sampled structures on
the alignment. Thus, we followed the second evaluation procedure described
by Hamada et al. (2011), projecting the consensus structure back onto each
sequence, and then used a hierarchical clustering method on the projected
structures.

2.2.2 Centroid estimator We calculated γ-centroid estimators (Hamada
et al., 2009) for structure prediction and for comparison with alternative
prediction methods. Specifically, we used estimates of marginal probabilities
of base pairs obtained from base pair frequencies from the Gibbs sampler
after a burn-in period to obtain the γ-centroid estimators. For each RNAG
experiment described in Section 3, we sampled a burn-in period of 1000
iterations, and used the next 1000 sampled structures for clustering and
calculation of the centroid. The γ-centroid, as a generalization of the centroid
estimator, provides a means to balance sensitivity and PPV and accordingly
can be used to compare procedures over the range of this trade-off. We
employed the γ-centroid estimator for such comparisons and the original
centroid estimator in calculations of bias and variance.

2.3 Evaluation metric
2.3.1 Prediction accuracy To evaluate prediction accuracy, we compared
the predicted structure for each sequence with its reference structure and

calculated sensitivity (SEN) and PPV. SEN is the fraction of known base
pairs correctly predicted, and PPV is the fraction of predicted base pairs that
are in the known structure (Mathews, 2004). Using γ-centroid estimation,
we can interpolate a curve on the PPV–SEN plane based on different γ

values (Hamada et al., 2011). Following the lead of Do et al. (2008), we
report the average of (PPV, SEN) calculated for each test case, weighing
each sequence equally. For the comparison of the relative performance of
RNAG across RNA families, we used the area under the curve, acquired with
linear interpolation, as a qualitative measure.

2.3.2 Uncertainty analysis

(1) Credibility limits: Any prediction of structure provides only a point
estimate of secondary structure, giving no information about the
uncertainty of that estimate. We employed Bayesian confidence limits,
a.k.a. credibility limits, to characterize this uncertainty (Newberg
et al., 2009; Webb-Robertson et al., 2008). These limits compute the
radius of the smallest hypersphere centered at the estimate containing
95% of the posterior weighted space.

(2) Bias-variance analysis: In any prediction based on finite data
involving comparison with a reference, deviations from the reference
involve two components, bias and variance, where the bias measures
the distance between the mean and the reference, and the variance
gives the variation around the mean. In this discrete setting, where
the secondary structure is treated as a binary matrix with random
elements, the mean is almost certainly not a feasible RNA secondary
structure, because it will almost certainly not be integer valued.
Accordingly, here we measured bias as the distance between the
reference structure and the structure in the ensemble that is nearest
to the mean in the least squares sense (the centroid) (Carvalho and
Lawrence, 2008), and the variance as the variation around the centroid
of the ensemble. As Carvalho and Lawrence (2008) have shown, for
binary variables, square error distances, p-th power error differences
and Hamming distances are equal; thus, we used Hamming distances
to calculate bias.

(3) Separation index: To assess how well separated the clusters of
secondary structures were relative to the variation within clusters,
we used the following separation index:

S = D

C1 +C2
(1)

where D is the Hamming distance between the centroids of the two largest
clusters, i.e. the total number of paired bases contained in one centroid
structure but not the other, and C1,C2 are the 95% credibility limits around
the two largest cluster centroids. When this index is at least 1, no more than
5% of the structures from either cluster are within the 95% credibility limit of
the other cluster, and thus we say the two largest clusters are well separated.

3 RESULTS
Following Hamada et al. (2011), we picked 17 γ-centroid estimators,
where γ ∈{2k :−5≤k ≤10, k ∈Z}∪{6} from which to interpolate
the curve on the PPV–SEN plane.

3.1 Training
Because there are only a few current algorithms for each step of
RNAG, and because we used default parameters and settings for
each algorithm employed in our study, training in this study was very
limited. Furthermore, since there are very few available algorithms
that draw samples, we have explored only RNAalifold and Infernal
for the two iteration steps. Using the dataset of Kiryu et al. (2007a),
we compared ClustalW and ProbCons for the initialization step,

2488



[09:48 19/8/2011 Bioinformatics-btr421.tex] Page: 2489 2486–2493

RNAG

Fig. 1. Average performance of different secondary structure prediction
methods in the PPV–SEN plane for the MASTR dataset (Lindgreen et al.,
2007). PPV = TP/P = TP/(TP + FP), SEN = TP/T = TP/(TP + FN). Note: the
axis ranges are set from 0.3 to 1.0 to improve readability. Points showing the
performance of extant procedures were taken from Do et al. (2008) except for
CMfinder, which was included because of its similarity to RNAG. CMfinder
was run at default values and settings.

and found that ProbCons returned better results; thus, the results
presented here all use ProbCons.

3.2 Comparison of accuracy (testing)
In our first accuracy assessment, we evaluated RNAG on the
benchmark dataset from Lindgreen et al. (2007), herein called the
MASTR dataset. Structure prediction results from current algorithms
for this dataset are given in Do et al. (2008) and plotted together
with the PPV-SEN curve from RNAG in Figure 1.

We also tested and compared different align-fold algorithms on
the BRAliBASE II dataset (Gardner et al., 2005), which contains
collections of ∼100 five-sequence subalignments, sampled from
four specific Rfam families (5S rRNA, group II intron, tRNA
and U5 spliceosomal RNA) for which the BRAliBASE II dataset
included reference alignments. For comparison, the results reported
in Do et al. (2008) were averaged over the four RNA families and
are shown plotted on the PPV–SEN plane along with the RNAG
frontier in Figure 2.

These comparisons demonstrate that the results of extant
procedures lie below the RNAG frontier, indicating that, on average,
RNAG provides a better trade-off between PPV and sensitivity. Not
surprisingly, this is not always the case. Do et al. (2008) presents
the results of prediction methods for each of the four RNA families
in the BRAliBASE II dataset. Supplementary Figure S2 shows that
14 of these 16 predictions are below the RNAG frontier and 2 are
somewhat above this frontier.

3.3 RNAG performance characteristics
We explored RNAG’s properties using the benchmark dataset
described by Kiryu et al. (2007a), which contains 85 reference
alignments of 10 sequences each, representing 17 RNA families
from the Rfam database (Griffiths-Jones et al., 2005). This dataset
spans a range of sequence lengths from 51 to 291 bases, and
a range of sequence identity from 40% to 94%, including nine

Fig. 2. Average performance of different secondary structure prediction
methods in the PPV–SEN plane for four RNA families (5S rRNA, group
II intron, tRNA and U5 spliceosomal RNA) from the BRAliBASE II dataset
(Gardner et al., 2005). Note: the axis ranges are set from 0.3 to 1.0 to improve
readability. Points showing the performance of extant procedures were taken
from Do et al. (2008) except for CMfinder, which was run at defaults.

Fig. 3. Improvement of the RNAG PPV–SEN curves with increasing
numbers of input sequences.

families with identities under 60%. Kiryu et al. (2007a) used this
dataset to compare algorithms that predict a consensus structure
for an aligned set of sequences. Perhaps not surprisingly, as
shown in Supplementary Figure S3, RNAG also outperforms these
procedures, including CentroidAlifold (Hamada et al., 2011), a state-
of-the-art algorithm. However, our purpose in using this dataset was
to characterize the variation in RNAG performance with number of
sequences in the alignment and over various RNA families.

3.3.1 Variation with the number of unaligned sequences To
assess the effect that the number of input sequences has on prediction
accuracy, we took N (2≤N ≤10) random sequences from each of the
85 reference alignments, ran RNAG on these subsets of sequences
and averaged over 10 independent runs (except for N =10). The
results are given in Table 1 and a subset of these results are shown
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Table 1. Effects of the number of sequences on prediction results

No. of
sequences

Area under PPV–SEN curve Bias SD No. of samples 95% credibility limit

Ensemble First Second First Second First + second Ensemble First Second
cluster cluster cluster cluster cluster cluster cluster

2 0.44 0.46 0.37 0.27 0.04 728.13 150.76 878.89 0.21 0.14 0.11
3 0.58 0.59 0.49 0.20 0.03 793.15 124.94 918.09 0.14 0.10 0.07
4 0.58 0.58 0.48 0.20 0.03 791.66 115.00 906.66 0.14 0.09 0.06
5 0.62 0.63 0.51 0.17 0.03 802.20 113.24 915.44 0.12 0.08 0.05
6 0.67 0.67 0.54 0.16 0.03 800.50 111.66 912.16 0.11 0.07 0.05
7 0.70 0.69 0.57 0.15 0.03 795.52 111.92 907.44 0.10 0.07 0.05
8 0.73 0.71 0.60 0.15 0.03 797.56 116.19 913.75 0.10 0.07 0.04
9 0.73 0.73 0.60 0.14 0.02 790.59 122.38 912.97 0.09 0.06 0.04
10 0.75 0.74 0.63 0.13 0.02 792.85 125.11 917.96 0.09 0.06 0.04

For each row, we not only calculate the average area under the PPV–SEN curve for accuracy comparison, but also summarize the bias-variance statistics and the size of the two
biggest clusters to visualize the clustering results. In order to normalize bias, SD and credibility limits with respect to the sequence length, we divide them by the average sequence
length for the family.

Table 2. A detailed look into the RNAG results on 17 RNA families, listed in groups by their functional type

RNA family RNA type Mean
length
(percent
identity)

Bias SD 95% credibility limit PPV–SEN area No. of samples Separation
index

Ensemble First Second Ensemble First Second First + First Second
cluster cluster cluster cluster second cluster cluster

T-box tRNA 244 (45) 0.10 0.01 0.06 0.04 0.02 0.58 0.55 0.47 926 826 100 1.00
t-RNA tRNA 73 (45) 0.02 0.01 0.03 0.01 0.01 1.00 0.99 0.91 949 888 61 2.50
5S-rRNA rRNA 116 (57) 0.17 0.02 0.07 0.05 0.03 0.70 0.70 0.67 922 751 171 0.88
5-8S-rRNA rRNA 154 (61) 0.18 0.03 0.14 0.10 0.08 0.43 0.42 0.26 907 744 163 0.56
Retroviral-psi Rviral 117 (92) 0.07 0.05 0.15 0.11 0.05 0.99 0.99 0.47 981 952 29 1.25
U1 sRNA 157 (59) 0.16 0.02 0.06 0.06 0.02 0.69 0.69 0.63 988 928 60 1.13
U2 sRNA 182 (62) 0.08 0.02 0.05 0.05 0.02 0.90 0.90 0.71 981 941 40 1.14
Sno-14q-I-II sRNA 75 (64) 0.07 0.03 0.12 0.08 0.07 1.00 0.92 0.86 838 636 202 0.47
Lysine riboswitch 181 (49) 0.07 0.02 0.06 0.05 0.03 0.94 0.93 0.84 983 923 60 0.88
RFN riboswitch 140 (66) 0.15 0.03 0.11 0.06 0.06 0.68 0.64 0.60 820 574 246 0.58
THI riboswitch 105 (55) 0.08 0.02 0.07 0.06 0.02 0.89 0.88 0.75 968 869 99 1.13
S-box riboswitch 107 (66) 0.09 0.02 0.07 0.03 0.03 0.88 0.87 0.74 945 806 139 1.17
IRES-HCV Cis 261 (94) 0.25 0.05 0.21 0.16 0.08 0.61 0.58 0.44 936 877 59 1.00
SECIS Cis 64 (41) 0.17 0.02 0.08 0.02 0.02 0.74 0.71 0.72 840 679 161 1.50
UnaL2 Cis 54 (73) 0.18 0.03 0.06 0.02 0.02 0.33 0.62 0.61 867 752 115 1.00
SRP-bact srpRNA 93 (47) 0.16 0.03 0.12 0.04 0.04 0.79 0.78 0.70 834 646 188 2.75
SRP-euk-arch srpRNA 291 (40) 0.23 0.01 0.04 0.03 0.02 0.49 0.48 0.47 921 837 84 0.80

Average 142 0.13 0.02 0.09 0.06 0.04 0.76 0.74 0.63 926 826 100 0.90

We calculated the average area under the PPV–SEN curve for accuracy comparison, as well as statistics like bias, SD, credibility limit, and separation index from cluster analysis,
to better understand the posterior secondary structure space.

as PPV–SEN curves in Figure 3, which shows that with additional
sequences the structure prediction improves, but with decreasing
increments, as indicated by the small improvement between 8 and 10
input sequences. However, Supplementary Figure S4 and Table S1
show that this finding differs between sequence sets, and depends
on the average pairwise identity of the input sequences, suggesting
that larger gains are attainable with additional sequences when the
input sequences have <60% average pairwise identity. Notice in
Table 1 that the bias decreases with the number of sequences in the
alignment, but with decreasing gains, which is in agreement with
improvements in the area under the PPV–SEN curves.

3.3.2 A detailed look into each family The above results describe
the overall performance of RNAG for this dataset, but do not reveal
differences across the families. In Table 2, we list the bias-variance
statistics, area under the PPV–SEN curve and cluster statistics for
each family. As this table indicates, there is considerable variability
in the biases and under-curve areas, which reflects the fact that
the ability to predict the reference structure varies widely between
families. Figure 4 highlights this variability and shows a strong
correlation between bias and the area under the PPV–SEN curve.

Furthermore, we observed that the normalized 95% credibility
limits for the ensemble centroid are <10% for 11 of the families,
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Fig. 4. 2D plot of bias per base pair and the area under the PPV–SEN curve
of the ensemble centroid for the 17 RNA families in Table 2. The results for
each family are represented by a symbol indicating their functional group.

which indicates that the probabilistically weighted ensembles are
quite tightly compact around the centroid of the full ensemble for
the majority of the families. Normalization was obtained by dividing
the Hamming distances by the lengths of the sequences. In spite of
this, 11 families have a separation index of at least 1 (shown in
the last column of Table 2), indicating that the cluster centroids are
well separated for these 11 families. Finally, notice that the biases,
which give the distances between the predicted structures and the
reference structures, are more than twice as large as the SDs of
the distances of ensemble members around the predicted structures,
which shows that the predictions are substantially more precise than
they are accurate.

4 DISCUSSION
Our results comparing RNAG predictions to those from several
additional recently published methods show that the existing
procedures yield a combination of sensitivity and PPV that is
considerably below the RNAG frontier. Some features of RNAG
suggest an explanation for this behavior. RNAG not only inherits
the advantages of the sampling method, but also enjoys a
theoretical convergence advantage over the Metropolis–Hastings
algorithm, which employs local moves. Since RNAG samples full,
valid secondary structures, it enjoys an advantage over iterative
algorithms that sample only stems. Also, since the two recursive
steps sample from the full space of alignments and structures
directly, we avoid the need to use a reduced model; a concession that
is common to several extant procedures. However, since RNAG is an
MCMC procedure, there are no means to assure that it has converged
to its target distribution.

4.1 Limitations of comparison datasets and training
We specifically selected three published datasets and compared
RNAG’s performance to the published performance of other
methods in order to avoid self-serving selection biases and biases
that can arise with less than ideal application of extant methods.
We added CMfinder to these comparisons by first reproducing the
results in Yao et al. (2006) with default settings and then applying the

published algorithm to the three datasets in this study with default
settings. CMfinder was included because it is similar to RNAG, and
as shown by Yao et al. (2006), it can be used to predict global RNA
secondary structure, but in fairness, note that CMfinder was not
designed primarily for this purpose. Of the three datasets, the most
extensive is that of Kiryu et al. (2007a), which includes 17 Rfam
families. We accept that in this field it is almost always difficult
or impossible to obtain a truly representative dataset. Nevertheless,
it is important to recognize that available datasets have limitations.
Specifically, generalizations from these 17 families, plus the datasets
from the other two comparison groups to the population of RNAs,
should be drawn with some caution as the combined sample size
is not large and these sets are not random samples. As pointed out
above, we did very little to train RNAG in this implementation.

4.2 Potential improvement of RNAG
There are several potential means for improving RNAG. Since
we have done no training to select options or parameters for the
algorithmic components in this implementation, the performance
of RNAG could potentially be improved by exploiting the full
strength of these packages and by tuning the model on a training
set. Moreover, RNAG is only a framework for computation and the
auxiliary packages above can be replaced by any other algorithms
that are designed for P(A|Q), P(S|A,Q) and P(A|S,Q). Furthermore,
RNAG now takes the theoretical advantage of a blocked Gibbs
sampler by grouping parameters to sample into S and A. A further
increase in the convergence rate may be available by integrating out
A from the model to take advantage of the collapsed Gibbs sampler.
There are several other options for improving the algorithm’s speed,
including the use of better stopping rules, parallel implementation,
and the use of more advanced sampling methods such as parallel
tempering.

4.3 An alternative goal of these algorithms
Our finding of substantial biases in the Kiryu et al. (2007a) dataset
indicates that there are systematic departures of predictions from
the reference structures. Such systematic departures suggest one
of the following: current alignment and structural models are
deficient; 1000 iterations is not sufficient for reaching convergence;
or several of the reference structures in the 17 Rfam families are
not reflective of the structural and sequence features common to
the RNA families. As shown in Supplementary Table S2, only
two of the reference structures in this dataset were obtained by
covariation analysis, and 13 were obtained by X-ray or NMR.
Thus, nearly 76% of the reference structures in this dataset were
determined by in vitro methods. Structures from such biophysical
experiments may not reflect structural features common among
family members, as important cellular components were likely
missing in these experiments. This suggests an alternative goal for
align-fold algorithms aimed at RNA family identification: correct
classification of sequences into families, similar to that reported
by Webb et al. (2002) for protein sequences. As the database of
Rfam families has been obtained based on alignments to specific
‘reference structures,’ it will be a particularly difficult challenge to
demonstrate that there is an alternative structure that is superior
in the identification of family members. Thus, comparison of
performances in family membership may require the use of reference
sets obtained through independent experiments, such as those using
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immunoprecipitation (IP) methods. Finally, the existence of small
variances indicates that an alternative estimator that trades larger
variances for reduced bias may yield lower overall deviations.

4.4 Confusion of MEA
In recent publications (Do et al., 2006; Kiryu et al., 2007),
MEA estimators are widely used as a better representative than
the previous MFE estimator. However, we find the name MEA
misleading. If the MEA is calculated on the basis of base pairs
instead of individual bases, then this estimator corresponds to the
centroid or γ-centroid. But our findings of large biases of these
estimators indicate that expected ‘accuracy’ is misleading, in that
there is no assurance that these estimators are close to an outside
reference structure. However, these estimators do return estimates
that have minimum variance, and thus in the least squared sense they
are the most reproducible of all estimators in the posterior weighted
space. Accordingly, they would be better described as maximum
expected precision (MEP) estimators, or perhaps preferably by
the non-buoyant name that defines them as centroid or γ-centroid
estimates.

5 CONCLUSION
In this study, we introduce a blocked Gibbs sampler (RNAG) to
predict secondary structure for unaligned RNA sequences. RNAG
confronts the high time complexity of the align-fold problem by
capitalizing on Liu’s findings on blocked Gibbs sampling. Figures 1
and 2 show that the new algorithm delivers substantial improvement,
as measured by PPV–SEN curves. However, as with any MCMC
procedure, evidence of convergence during the burn-in cannot be
guaranteed. Also, in the current implementation of this algorithm,
little has been done ensure fast code or an efficient stopping rule.
We found that the running times of RNAG are in the range of
3 times faster than the RNAsampler and 10 times slower than RAF.
Thus, improvements in implementation speed will be important.
While the results with the two available datasets and those shown
in Supplementary Figure S3 are encouraging, these do not assure
that this procedure will perform this well for all RNA sequence
sets. Furthermore, this procedure and others like it may not be
ideal for structure prediction since if it works perfectly, it will
only capture structural and sequence features common to a set
of input sequences, much as motif finding algorithms capture
sequence characteristics common to transcription factor binding
sites in multiple sequences. Nevertheless, here we show that RNAG
does a better job at predicting reference structures than extant
procedures, while providing a fuller characterization of the shape of
the posterior space including characterization of multimodal features
and ascertainment of uncertainty in structural predictions. Even if
RNAG does continue to perform well at this task, several more steps
will be necessary to develop a fully Bayesian RNA motif finder.
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