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ABSTRACT

Summary: We developed Breakpointer, a fast algorithm to locate

breakpoints of structural variants (SVs) from single-end reads pro-

duced by next-generation sequencing (NGS). By taking advantage

of local non-uniform read distribution and misalignments created by

SVs, Breakpointer scans the alignment of single-end reads to identify

regions containing potential breakpoints. The detection of such break-

points can indicate insertions longer than the read length and SVs

located in repetitve regions which might be missd by other methods.

Thus, Breakpointer complements existing methods to locate SVs from

single-end reads.

Availability: https://github.com/ruping/Breakpointer

Contact: ruping@molgen.mpg.de

1 INTRODUCTION

Identifing SVs from short sequencing reads remains challenging.

Existing NGS-based methods for SV detection are primarily based

on the analysis of paired-end reads (PE) assuming that deviations

from the expected mapping distance are caused by SVs (Medve-

dev et al., 2009; Alkan et al., 2011). Alternatively, to characterize

SVs from single-end reads (SE), split-read methods can be adop-

ted to generate pseudo PE (Ye et al., 2009; Smith, 2011). However,

the short length of the artificial PE limits the mappability and the

size of detectable insertions (up to medium size). Alternative SE-

based methods are needed to facilitate the discovery of breakpoints

of longer insertions and SVs located in repetitive regions.

SVs usually cause specific mapping artifacts in the vicinity of the

SV boundaries. Reads slightly crossing the breakpoint of an SV can

be mapped only if they contain a few bases of the variant (depending

on the allowed edit distance). This case usually leads to consi-

stent misalignments next to the breakpoint. Such misalignments

have already been used to clean SNP calls (Li, 2011) or to deter-

mine the regions for local realignment (DePristo et al., 2011). By

contrast, reads spanning the breakpoint will be unmappable. Con-

sequently, on the left or right side of the SV boundary, fewer read

alignments will start or end, respectively (Fig. 1A and Fig. S1). Our

tool Breakpointer locates SV breakpoints by analyzing both misali-

gnment artifacts and local non-uniform read distribution created by

SVs.
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2 METHODS

Given a small genomic region R of size w, the depth of coverage D is defi-

ned as the number of reads (of length l) overlapping R. In addition, we

introduce “end-depth” De as the number of only those reads starting/ending

(summarized as “ends”) within R. Assuming uniform coverage, under a

given D, De will follow a binomial distribution as: De ∼ B(n = D, p =
2w

w+l
). Regions containing the breakpoint of an SV will have higher De

than expected, because a lack of mappable breakpoint-spanning reads leads

to a depth skew toward ending reads. Some aligned reads slightly overlap-

ping with the SV will generate consistent mismatches around the breakpoint

(Fig. 1A). Such mismatches will only occur in the ends of the mappable

reads but not in the reads spanning R, e.g. reads from a wildtype allele. We

summarize these local mapping features around SV boundaries as “break-

point signature”. To capture this signature, Breakpointer proceeds in three

stages (Fig. 1B):

First, using a sliding window of size w (� l), Breakpointer scans the

read alignment along a reference genome, calculates the pileup-corrected

sequencing depth D and end-depth De for each window. The skewness of

depth in each window is represented by the score SB , which is equal to the

negative logarithm (of base 10) of the p value computed from a binomial test.

Windows with SB > 1 are selected and then merged into non-overlapping

regions. For variable read length, Breakpointer groups reads based on their

length and generates SB based on weighted p values (Supplementary Note).

Second, mismatch screening is performed on each merged region, with the

aim to enrich for those regions likely to encompass SV breakpoints. We only

consider mismatches located less than 10bp from the read ends (referred as

“ME”). A score SM is assigned to a region with c positions showing MEs:

SM =
c

X

t=1

(− log10(Pt)) and Pt =
“n

k

”

k
Y

i=1

εi.

n
Y

j=k+1

(1−εj), where Pt

is the probability of seeing k MEs out of n reads at a position t in a merged

region, assuming that MEs are sequencing errors. εi is the maximum of the

Phred base-error rate at position t in read i or a local error rate computed

from the number of MEs in this region. We use local error rate because in

real data there are regions containing many mismatches despite high quality

scores. Small gaps are treated as mismatches (taking ε of surrounding bases

for deletions). Regions with no MEs are removed since their depth skewness

are likely caused by technological artifacts or mappability.

Given a true SV event, unmappable breakpoint-spanning reads will match

the SV boundary including MEs. Thus, in the last step, each candidate region

is validated by detecting breakpoint-supporting reads in the unmapped pool.

The regions with no supporting unmappable reads are filtered out. Break-

pointer sorts the selected regions according to SB , SM and generates two

rank scores accordingly. A confidence score RC is assigned to each region

by combining the two ranks. Breakpointer requires sorted BAM (Li et al.,

2009) files as an input and outputs validated regions in GFF format.
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Fig. 1. (A) Depth skewness toward ending reads (small bar) and misali-

gnments close to the breakpoints (black vertical line) of SVs (black bar).

(B) Summary of Breakpointer algorithm. (C) Indel recall rate and false posi-

tive rate (FPR) at different coverage levels in the simulation. Recall: the

breakpoint of an indel is encompassed by a prediction; FP: a prediction is

not overlapping with any implanted indels; ins: insertions. (D) The fraction

of predicted breakpoints by Breakpointerin the genome of NA18507 over-

lapping with DIP database. The predictions are grouped according to RC

and SB score, respectively. Also shown is the fraction of random regions

overlapping with DIP.

3 RESULTS AND DISCUSSIONS

3.1 Simulation

We characterize the power of Breakpointer to locate the breakpoints

of known human indels (Mills et al., 2006) implanted into chromo-

some X (Supplementary Note). The results, summarized in Fig. 1C

and Fig. S2, highlight the ability of Breakpointer to uncover the

breakpoints of known indels with various sizes at high sequencing

coverages (recall >0.8 and FPR: false positive rate <0.02 at >30x

coverage). Breakpointer can discover the breakpoints of insertions

longer than the read length, which is beyond the ability of split-read

methods (Fig. S2).

3.2 Real data

Breakpointer is also tested on Illumina whole-genome sequencing

data from an Yoruban genome (NA18507, Bentley et al., 2008). Pre-

dictions by Breakpointer are intersected with external variant sets

detected by alternative approaches from the same individual (Kidd

et al., 2008) and sets from population studies (Mills et al., 2011a,b).

The fraction of Breakpointer predictions overlapping with DIP

(deletion/insertion polymorphisms detected by capillary sequencing

a part of NA18507 genome) increases with combined rank score

RC (Fig. 1D), suggesting that the breakpoint signature represents

true SV breakpoints.

Predictions overlapping known SVs were comparable between

Breakpointer and other methods using PE (Table S2), indicating that

Breakpointer achieves equivalent accuracy to PE-based methods

by just using SE. The comparison between the known SVs over-

lapped by Breakpointer and Pindel (Ye et al., 2009, an anchored

split read mapping method) reveals that Breakpointer locates the

breakpoints of 1) insertions longer than the read length and 2)

many indels in repetitive regions which are missed by Pindel (Table

S3, Fig. S3). Breakpointer analyzes the initial small-gapped ali-

gnment of the entire read, showing complementarity to Pindel which

splits the initial unmapped reads. Besides the breakpoints of indels,

Breakpointer also uncovers the breakpoints of some large SVs,

e.g. mobile insertions and non-homologous recombinations, by

using 36bp SE (Supplementary Note), although the power to detect

repeat-mediated SVs is limited due to mapping difficulties in highly

repetitive regions and sequence homology around breakpoints.

4 CONCLUSIONS

By evaluating mapping features at the boundaries of SVs, our

method locates the breakpoints of a wide range of SVs. Break-

pointer does not investigate the SV content; it is designed as a

supportive breakpoint discovery tool that ideally should be used in

combination with other methods for genotyping SVs. Breakpointer

requires a high coverage (>20x) to reach an optimal performance.

The predictions can be used not only to provide additional support

for alternative methods, but also to find breakpoints of SVs that

otherwise might be missed by other tools. Thus, by requiring only

single-end reads, it complements the current set of SV detection

methods.
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