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ABSTRACT

Motivation: Ontologies are an everyday tool in biomedicine to
capture and represent knowledge. However, many ontologies lack
a high degree of coverage in their domain and need to improve their
overall quality and maturity. Automatically extending sets of existing
terms will enable ontology engineers to systematically improve
text-based ontologies level by level.
Results: We developed an approach to extend ontologies by
discovering new terms which are in a sibling relationship to existing
terms of an ontology. For this purpose, we combined two approaches
which retrieve new terms from the web. The first approach
extracts siblings by exploiting the structure of HTML documents,
whereas the second approach uses text mining techniques to
extract siblings from unstructured text. Our evaluation against MeSH
(Medical Subject Headings) shows that our method for sibling
discovery is able to suggest first-class ontology terms and can
be used as an initial step towards assessing the completeness of
ontologies. The evaluation yields a recall of 80% at a precision of
61% where the two independent approaches are complementing
each other. For MeSH in particular, we show that it can be considered
complete in its medical focus area. We integrated the work into
DOG4DAG, an ontology generation plugin for the editors OBO-Edit
and Protégé, making it the first plugin that supports sibling discovery
on-the-fly.
Availability: Sibling discovery for ontology is available as part
of DOG4DAG (www.biotec.tu-dresden.de/research/schroeder/
dog4dag) for both Protégé 4.1 and OBO-Edit 2.1.
Contact: ms@biotec.tu-dresden.de;
goetz.fabian@biotec.tu-dresden.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
During the last decade, the field of biomedicine has seen a data
explosion, made evident by the overwhelming number of published
articles, databases, nucleotide sequences and protein structures
(Howe et al., 2008). Today, ontologies are used extensively in
the biomedical and healthcare sector for information and data
integration, such as gene product annotation (Ashburner et al., 2000),
analysis of high-throughput data (Whetzel et al., 2006) and searching
(Doms and Schroeder, 2005). If an ontology cannot maintain a high
degree of coverage in its domain, its correctness and integrity will
suffer, leading to missing results when trying to find documents
or genes semantically associated with terms (Liu et al., 2011).
However, to keep up with new information, ontologies must be
revised and newly added terms need to be enriched with definitions,
cross-references and additional properties. Since ontologies are
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manually curated, developing and maintaining them is often a slow,
tedious and error-prone process. To mitigate this bottleneck, text
mining and related techniques can be employed to enrich ontologies
in a semi-automated fashion.Among the variety of ontology learning
methods proposed in the past, mainly term recognition and pattern-
based relationship extraction methods are used in the biomedical
field (Liu et al., 2011).

In this article, we present an alternative approach to enhancing
ontologies by automatically finding suitable co-hyponyms of terms,
i.e. finding terms which are in a sibling relationship to each other.
This approach can be used to extend ontologies in a horizontal way
and therefore to complete a set of terms. For instance, an ontology
that already includes the terms somatotrophs and trophoblasts
(which are both endocrine cells) could be extended by automatically
proposing more terms with the same parent term (Fig. 1). With
this approach, ontology engineers can semi-automatically extend
ontologies using two to three terms, which are the ‘seed terms’ for
the algorithm. Many existing ontologies can be expanded in this way
with minimal effort.

Our method extracts siblings of existing terms on-the-fly using
web sites returned by queries to search engines, thus implicitly
incorporating full-text journal articles, patents, text books, wiki
pages, etc. as indexed by the engines. In our methodology, we
are integrating two approaches, which, when combined efficiently,
improve the quality of the proposed siblings in terms of precision
and recall.

Structure-based approach: The first approach extracts siblings from
the structure of web sites. It is based on the observation that
terms, which are in a sibling relationship to each other, are often
located together in tables, lists or headings. If seed terms are
found in such elements, the remaining content of those elements
has a high probability of being semantically related to the seed
terms. For instance, Figure 2 shows an excerpt of the Wikipedia
page on the endocrine system. When given Somatotrophs and
Gonadotrophs (both endocrine cells) as seed terms, a third (possible)
endocrine cell, Corticotrophs, can be extracted. We do this by
exploiting the structure of HTML documents, which are prevalent
on the web.

Endocrine Cells

Seed Terms Generated Siblings

Somato-
trophs

Tropho-
blasts

Thyro-
trophs

Gonado-
trophs

Lacto-
trophs

...

Fig. 1. Sibling discovery example: Somatotrophs, Trophoblasts, and
Thyrotrophs are known child terms of Endocrine Cells in MeSH, other
children such as Gonadotrophs, Lactotrophs can be automatically found
using our approach

© The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Copyedited by: TRJ MANUSCRIPT CATEGORY:

[12:07 29/5/2012 Bioinformatics-bts215.tex] Page: i293 i292–i300

Extending ontologies by finding siblings

<tr>...
<td><a ...>Somatotrophs</a></td>
<td><a ...>Corticotrophs</a></td>
<td><a ...>Gonadotrophs</a></td>...

</tr>

Fig. 2. Excerpt of HTML code from the Wikipedia page on the endocrine
system [http://en.wikipedia.org/wiki/Endocrine_system]

Text-based approach: The second approach finds candidate
siblings from text by extracting them from enumerations in
sentences. For instance, the following sentence contains an
enumeration of endocrine cells: ‘…several adenohypophysial
endocrine cells such as somatotrophs, thyrotrophs, and gonado-
trophs’ [http://www.ncbi.nlm.nih.gov/pubmed/11478270]. In this
sentence, the enumerated terms are somatotrophs, thyrotrophs
and gonadotrophs, which are all adenohypophysial endocrine
cells. These enumerations occur in many forms, but often have
reoccurring patterns, which we can exploit. We can extract terms
with great accuracy using morpho-syntactic pattern matching,
meaning we analyze the pattern of the sentence and its enumerated
terms and extract them subsequently. Further examples of extracted
enumerations from sentences can be found in Table 1 and
Supplementary Table S1.

Finally, the results of both approaches are combined to obtain a
single ranked list of terms.

Generating siblings from seed terms is done in an interactive
manner and only takes a few seconds. We optimized our method
for biomedical ontologies by adapting both approaches to the
peculiarities of biomedical terminology. Nonetheless, the method is
suitable for ontologies of other domains. Since this work has been
integrated as part of the DOG4DAG plugin (Wächter and Schroeder,
2010) into OBO-Edit and now also into Protégé, ontologies for both
the OBO and the OWL format can be enriched seamlessly using
sibling discovery.

The rest of this article is organized as follows. First, we
compare our method to previous work in sibling generation. Next,
we describe the approach and evaluate it using MeSH (Medical
Subject Headings), a widely used ontology, as well as the Text
REtrieval Conference Entity List Completion (TREC ELC) task.
Furthermore, we show how the DOG4DAG plugin can be leveraged
to extend ontologies using sibling generation. Finally, we discuss
our approach and the results and propose future work.

2 RELATED WORK
The domain of ontology learning, including many approaches
employing the web as a corpus, is a field of intensive research.
Sibling generation using set expansion has been discussed in a
number of studies which include approaches exploiting textual
patterns, the HTML structure of web pages and distributional
similarity (DS) of terms.

A number of text-based approaches incorporate Hearst patterns
(1992) to find parent–child relationships in free text using lexico-
syntactic pattern matching. Sibling generation is included in
KnowItAll (Etzioni et al., 2005), a generic information extraction
engine for unsupervised named-entity extraction. Using search
results from the web, facts, terms and relations are extracted using

bootstrapped patterns. Shi et al. (2008) and Zhang et al. (2009)
also find siblings with sentence patterns and predefined HTML
tag patterns. However, our system works on arbitrary tags and
is not restricted to specific tags for lists or tables. Paşca (2004)
retrieves siblings from the web in an unsupervised manner using
pattern learning and part-of-speech (POS) and noun phrase (NP)
tagging. Candidate siblings are ranked based on co-occurrence
frequency. Also, Kozareva et al. (2008) built a pattern-based system
for learning specific semantic classes (e.g. countries or singers).
Contrary to our approach, they only used one highly specific surface
pattern and did not incorporate NP chunking to correctly separate
NPs from each other.

Several systems have also been developed for a structure-
based approach. The systems SEAL (Wang and Cohen, 2007) and
XTREEM (Brunzel and Spiliopoulou, 2006) both exploit semi-
structured HTML documents to expand sets using a number of
given seed terms. Wang and Cohen presented SEAL, a system
which expands seeds by querying search engines and automatically
inducing wrappers for each web page. In XTREEM, semantic
sibling associations are extracted from web pages by grouping paths
in DOM trees which include seed terms. However, their system
does not return a ranked list of candidate siblings, but rather sets
of sibling clusters. KnowItAll was also extended to include a ‘List
Extractor’ component which extracts facts by exploiting the HTML
structure of web pages. Shinzato et al. (2004) also extract siblings
from HTML documents and rank the candidate siblings using cosine
similarity.

Other approaches exploit DS to find siblings in text by looking
at the context of each term. For instance, Lin et al. (2001) generate
sibling sets with an unsupervised algorithm on a newspaper corpus
and on MEDLINE abstracts. Similarly, Pantel et al. (2009) expand
sets of terms by DS in a semi-supervised approach using seed
items for each set. In general, DS approaches generally yield lower
performance than pattern-based approaches when extracting proper
nouns (Shi et al., 2010).

None of the set expansion methods have effectively combined
both approaches for on-the-fly sibling discovery. Furthermore, the
presented systems usually do not have any background knowledge
in form of an ontology and only take a number of seed terms as
an input. In contrast, our method also takes the parent term and
lexical variants such as synonyms and abbreviations into account.
Additionally, we optimized our method for the peculiarities of
biomedical terminology and ontologies.

In terms of integrating ontology learning tools into editors such
as OBO-Edit (Day-Richter et al., 2007) or Protégé [http://protege.
stanford.edu], two plugins currently exist: DOG4DAG (Wächter
and Schroeder, 2010) and TerMine (Frantzi et al., 2000). We
extended our plugin DOG4DAG to become the first integrated tool
that supports sibling generation so far.

3 METHODS
In this section, we present our 2-fold approach to sibling generation from
a given set of seed terms using the web as a corpus. The whole pipeline is
summarized in Figure 3.

To complete an existing set of terms with an identical parent, a subset
of these terms is selected as seed terms. The parent term and the already
existing siblings are also added to the input as well. In addition to the label
of the term, its lexical variants (synonyms, abbreviations, etc.) are included
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Table 1. Examples of parsed website results (selected from the top 10 websites)

Topic Seed terms (from MeSH) Extracted snippet Discovered terms Website

Particles Heavy Ions, Neutrons, A particle, such as an electron, proton, or neutron, Electron answers.com
Protons having…

GnRH Goserelin, Nafarelink, GnRH agonist analogues such as buserelin, goserelin, Lupron, decapeptyl ncbi.nlm.nih.gov
Buserelin lupron, and decapeptyl inhibit the action…

Berberideae Mahonia, Caulophyllum, …only included four genera (Berberis, Epimedium, Berberis, Vancouveria righthealth.com
species Epimedium Mahonia,Vancouveria), with the other…

Bacillus Bacillus cereus, Bacillus Microorganisms of the Bacillus species include Bacillus mycoides, freepatentsonline.com
species megaterium, Bacillus Bacillus cereus, Bacillus mycoides, Bacillus subtilis, Bacillus anthracis,

subtilis Bacillus anthracis, and Bacillus thuringiensis. Bacillus thuringiensis

European Netherlands, Finland, …Shakira’s most successful song in Europe, where it Denmark, Norway, en.wikipedia.org
countries Austria topped many of the medium sized charts, including Sweden

Austria, Denmark, Finland, Norway and Sweden.

Seed terms and discovered terms are printed bold in the extracted snippet.

Web QueriesWeb Queries

Seed Terms

Ranking Ranking

Rank Aggregation

Tokenization

Sentence Extraction

POS, NP Tagging

Abbreviation Tagging

Enumeration Extraction

Syntactic Filtering

Scoring

XHTML Conversion

Parse Tree Extraction

Term Grouping

Syntactic Filtering

Scoring

E
xt

ra
ct

io
n

A
na

ly
si

s

Structure-based Approach Text-based Approach

Linguistic Revision

Ranked List

Fig. 3. Overview of the sibling generation pipeline. Using seed terms,
candidate siblings are generated, which are then aggregated into a final
candidate sibling list

in the query and used for ranking if available. Using these seed terms, we
query search engines and use the results to retrieve candidate siblings.

3.1 Structure-based approach
In the first approach, search engines are queried for web sites containing the
seed terms. After downloading the web pages, their parse trees are generated,
and candidate siblings are extracted by finding paths identical to those of the
seed terms.

Query engines: Query search engines (currently Yahoo! and Bing/MSN
Live) with the selected seed terms and retrieve the search results. The queries

are constructed by concatenating seed terms (in quotation marks) by the AND
operator, thus ensuring that both terms occur in the web page. If more than
two seed terms are used, query all pairwise combinations. At present, both
search engines return 50 search results for every query.

Download pages: Download the web pages of the search results, parse
and convert them to valid XHTML documents using HTMLCleaner
[http://htmlcleaner.sourceforge.net/]. This step is required because many
web pages contain invalid syntax, e.g. missing closing tags. The result of
this cleaning process is a parse tree. We can represent the structure of a web
page in such a parse tree, whose nodes contain the tags (such as <td>)
and their textual contents.

Traverse parse tree: Traverse the parse tree in a depth-first search and find
nodes whose text contains a seed term. Build the paths from the root node to
the nodes containing the term (e.g. <html> … <table><tr><td>)
if the seed term was found inside a table data cell). Extract the terms from
nodes which have the same parent node inside the parse tree and the identical
HTML tag as the seed term node.

Group candidates: Group all extracted candidate siblings into a candidate
sibling set. If the seed term is preceded or followed by a string (such as
‘function of seed term’) in the text, all candidate siblings are also required
to include this string.

3.2 Text-based approach
The second approach uses textual patterns to extract candidate siblings from
enumerations in text. By querying search engines, we retrieve text snippets
on-the-fly, from which siblings are extracted, filtered and ranked.

Pattern extraction and expansion: We built a small, manually annotated
corpus containing sentences with typical enumerations. Whenever a
sentence is added to the corpus, the annotated sentences are preprocessed
automatically. From each sentence, head terms, enumeration items and
words in between are extracted. To form the basis for patterns, head terms
and enumerations are replaced with placeholders and the surrounding text
is removed. These sentences are expanded and altered to allow for more
variation. For instance, commas are added after introductory phrases and
conjunctions are changed (e.g. ‘and’ is replaced with ‘or’). From these
patterns, regular expressions are created automatically, which are used to
match sentences and extract enumeration items and the head term. To add
a new type of enumeration, one can simply add the new sentence to the
corpus, which in turn leads to new generalized patterns. The generated
regular expressions are stored on disk and are loaded for sibling generation.
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Web search: Like the structure-based approach, web search is used to retrieve
snippets. In the queries, the introductory phrase is included to find relevant
results. Additionally, the NEAR operator of the search engine is used to force
the seed terms to appear close to each other, which in most cases means in the
same sentence. We do not retrieve the whole website, but instead use snippets
(usually 300 characters long) provided by the search engines containing the
search terms, and thus the enumeration. Again, pairwise combinations are
used for the web queries.

Text processing and enumeration extraction: The retrieved snippets
are first tokenized and then processed using sentence, POS, and NP
tagging. For POS tagging, the LingPipe Tagger [http://alias-i.com/lingpipe/]
trained on the MEDLINE corpus is used. Phrases of the pattern
[adj|verb]*[fill]{2}[noun]+ are regarded as NPs (fill are
words like ‘of’, ‘the’, ‘for’, etc.). Furthermore, abbreviations are extracted
by checking if a candidate term contains a short form after the long form
in brackets. If both forms match, the short form (i.e. the abbreviation)
is grouped with the long form. The sentences are now matched against
the regular expressions of the pipeline (‘morphosyntactic matching’). If
a sentence contains multiple enumerations, all enumerations are extracted
separately. To find as many enumerations as possible, three sets of regular
expressions are used for matching and finding enumerations.

The first set consists of regular expressions including the head term, the
introductory phrase, the enumeration items and a conjunction to separate
the last two items (this conjunction does not exist if the phrase located is
at the end). The search results are matched against the regular expressions.
If a match occurs, the enumerated items are extracted and subsequently
analyzed. If a seed term occurs among the extracted items, the remaining
items become a candidate sibling set. If a snippet does not match a regular
expression of this set, the next set is used. It matches all sentences which
include the head term, introductory phrase and enumeration items. The last
set matches all enumerations which include a conjunction at the end, but do
not have an introductory phrase. Note that each set is more generic than the
previous one.

Finally, all extracted terms are matched by checking if they are NPs
(‘linguistic revision’). This is especially important for the last phrase (after
the conjunction) where it is not possible to determine the end of the phrase
reliably without the NP tagger.

In addition, enumerations in sentences without any introductory phrases,
conjunctions or head terms are also retrieved. For this, the search engines
are queried using only the seed terms concatenated by the NEAR operator.
The separators between the phrases are automatically recognized and all
enumerated items are subsequently extracted.

3.3 Syntactic filtering
To improve the accuracy of the extracted candidate siblings, a number
of syntactic filter steps are used. We set a minimum length of 3 and a
maximum length of 50 characters for each generated candidate sibling. By
using a minimum length of 3 characters, gene and protein family names
like ‘p53’ or ‘WNT’ are still regarded as valid items. By limiting the length
to 50 characters, we can exclude any spurious NPs. In addition, we use
a stop-word list to remove unnecessary words like ‘other’, ‘many more’
or ‘etc’ from the extracted siblings. Additionally, all candidate sibling sets
containing less than three terms (including the seed terms) are dropped.

Duplicated candidate sibling sets (with the same siblings) are
automatically discarded, since they are most likely retrieved from identical
web pages.

3.4 Ranking
After retrieving all relevant web pages and extracting the candidate siblings,
the siblings from the structure-based and text-based approaches need to
be ranked and then aggregated into a single ranked list. For ranking the
individual candidate sibling sets, we use a straightforward co-occurrence
scheme: candidate siblings are ranked higher if they co-occur with more
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Fig. 4. Distribution of the recall of discovered siblings in all results using
both approaches. For 601 of the 1000 sets, all siblings were found resulting
in an average recall of 79.3% overall

seed terms. Each candidate sibling s in a candidate sibling set containing k
seed terms (k >0) is given a score as follows:

score(s)=
{

0.1 if k =1

2k if k >1

Thus, our system rewards siblings sets which contain a larger amount of
seed terms and gives a low score (0.1) to sibling sets with only one seed
term, since this co-occurrence may be coincidental. If a candidate sibling
occurs in multiple candidate sibling sets, the scores are added up to yield
a score for each candidate sibling. If a lexical variant such as a synonym
or abbreviation of a seed term occurs in the candidate sibling set, it is also
counted as a seed term.

In addition, the retrieved candidate siblings are re-ranked by the following
measures:

• Hypernym matching: For the text-based approach, we identify the
head term of the enumeration. If this term matches the hypernym of
the seed terms (i.e. their parent term), it is preferred. Since the head
term in the text almost always occurs in plural, we stem the extracted
head terms first.

• Compound term matching [as proposed by Ogren et al. (2004)]:
Biomedical terminology often consists of multiple compound terms,
e.g. subterms of the MeSH term Stem Cells include Adult Stem Cells
Hematopoietic Stem Cells and Mesenchymal Stem Cells. We prefer
the candidate siblings whose parent term is a suffix of this sibling.

Combining of ranked lists of methods: We examined several methods for
rank aggregation of both methods. In our evaluation, summing up the
normalized scores of the candidate siblings with identical labels and merging
both lists by sorting them by their normalized scores yielded the best results.
Previously, other ranking methods have been evaluated (Wang and Cohen,
2007, Brunzel and Spiliopoulou, 2006) and shown to have no significant
impact on the overall results.

3.5 Evaluation
To evaluate our method, we used the 2011 MeSH [http://www.nlm.nih.gov/
mesh]. For this purpose, we randomly took a sample of 1000 terms in
MeSH and chose three random child terms as seed terms for each set. For
the selection of the parent term, we required them to have at least five
child terms so the system is able to find potentially at least two siblings
if three of the child terms are used as seed terms. Additionally, all child
terms which consist of more than two words were not used as seed terms
since they rarely occur in free text. Terms with artificial descriptor names
(e.g. ‘Surgical Procedures, Operative’) were cleaned up. The 16 top-level
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Fig. 5. Distribution of the precision of the siblings found from the 1000
randomly selected MeSH terms in the Top 10. Half of the tested sets
were automatically extended with a precison of >75%. The structure-based
approach has shown a higher precision than the text-based approach

categories were also ignored, since the terms are not semantically related, but
are rather categorical. We batch-processed all 1000 term sets automatically
using the implemented system.

We selected MeSH because it is a thesaurus with a broad coverage (it
comprises 26 142 terms and 203 554 lexical variants). Although most of
its terms are from the biomedical domain, it also contains terms from
other domains, for example in the top-level categories Geographicals or
Humanities.

4 RESULTS

4.1 MeSH evaluation
Recall: First, we evaluated how many of the remaining siblings
were found. Of the 7922 siblings which were contained in the
sets (not counting the seed terms), 6284 (79.3%) were discovered
when using both approaches. For 601 of the 1000 selected sets,
all siblings were discovered (Fig. 4). Hence, our approach can find
most of the existing siblings of the selected sibling sets. The results
from both approaches have an overlap of 72.5%. Of the correct
results, 35.0% were contributed exclusively by the structure-based
approach, and 22.6% were contributed exclusively by the text-based
approach. This shows that our idea of combining both approaches
is reasonable and improves the overall results.

Precision: Furthermore, we investigated the precision of the
generated siblings to determine the fraction of siblings that are
relevant with regard to the existing siblings. Precision is defined as

precision= |{correct siblings retrieved}|
|{retrieved siblings}|

We used a cut-off rank of 10 when evaluating precision (if the
sibling set contains <10 siblings, we used the number of siblings in
the set). Over the 1000 selected seed terms, the average precision
using the structure-based approach is 53.0%, whereas the average
precision for the text-based approach is 48.0%. When combining
the two approaches using rank aggregation, the precision is 60.8%.
The results show that rank aggregation improves precision when
compared with the single approaches (Fig. 5).

Since recall and precision do not take the ranking of the generated
siblings into account, we also examined the percentage of correct
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Fig. 6. Percentage of correctly generated siblings in the top 10. In general,
ontologies can be extended using the top generated terms with high
confidence. For the top 1 terms, 76.6% are generated correctly

siblings for each position within the top 10 (Fig. 6). Overall,
the structure-based approach yields better results than the text-
based approach. Combining the results improves the performance
compared with the single approaches. In the highest ranked result,
76.6% are correct using rank aggregation, whereas 64.7% and
66.4% are correct for the structure-based and text-based approach,
respectively. Thus, generated siblings which are true siblings
in MeSH are ranked higher than siblings not belonging to the
sibling sets of our MeSH evaluation. If the descendants of the
siblings are also taken into account, the percentage of correctly
generated siblings increases to 81.3% for the top ranked result
(70.8% and 69.5% for the structure-based and text-based approach,
respectively).

Table 2 shows three examples of generated siblings with varying
recall and precision. Lipids has an overall recall of 100% and a
precision of 90%. Europe contains 22 siblings, of which 15 were
found (68% recall). However, it only has a precision of 70% within
the top 10. When looking closer at the results, all of the top 10 terms
are correct, although some are actually a child term of a sibling. An
example of a term where only 4 of 24 siblings were found (16.66%
recall) is Environment, which contains many generic terms (e.g.
Confined Spaces or Ecosystem).

Number of seed terms: The presented algorithm can use any number
of seed terms as an input. However, to attain satisfactory results, a
reasonable number of seed terms should be between two and four.
If only one seed term is used, the algorithm may find candidate
siblings which fit another meaning of the input than the intended
one. If five or more seed terms are used, the execution time is
too long, since the number of queries grows quadratically due
to querying all pairwise combinations of the seed terms. We also
evaluated the same 1000 randomly selected sets with one and two
seed terms. When using two seed terms, recall decreases from
79.3% to 68.2% and precision from 60.8% to 51.5% (compared
with three seed terms). When only one seed term is used, recall and
precision drop to 25.2% and 15.3%, respectively. This shows that
using only two seed terms produces satisfactory results, which can
still support ontology engineers in ontology extension.

Overfitting: One issue we had to deal with are websites listing
MeSH terms, yielding a very high precision and recall. However,
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Table 2. Top 10 results of selected examples

Parent term Lipids Europe Environment
Seed terms Sphingolipids, Lipoproteins, Lipopeptides Netherlands, Finland, Austria Fires, Greenhouse Effect, Water Movements

Rank Generated term Relation Generated term Relation Generated term Relation

1 Waxes Sibling Belgium Sibling Pollution Not in MeSH
2 Sterols Sibling Denmark Child Environmental Monitoring Unrelated
3 Lipopolysaccharides Sibling France Sibling Water Vapour Sibling
4 Phospholipids Sibling Sweden Child Mars Unrelated
5 Glycolipids Sibling Norway Child Deposition Not in MeSH
6 Fatty acids Sibling Italy Sibling Air Child
7 Oils Sibling Switzerland Sibling Oxygen Unrelated
8 Peptidoglycans Sibling Spain Sibling GDP Not in MeSH
9 Lipofuscin Sibling Ireland Sibling Ozone Unrelated

10 Membrane Lipids Sibling Hungary Child Clouds Not in MeSH

True siblings in MeSH are printed in bold. The relation of the generated siblings is given relative to the location of the seed terms in MeSH. The relation ‘Unrelated’ means that the
generated term is neither a sibling nor a child of a sibling, but occurs elsewhere in MeSH.

we decided to retain these websites in the results, since they rarely
occur and are difficult to filter out correctly.

Siblings in abstracts and full-text articles: We evaluated the number
of siblings extracted from snippets found in MEDLINE abstracts
and PubMed Central full-text articles, if one of them was part of the
web search results. While only 59 abstracts contained siblings in
our evaluation, 117 full-text articles contained enumerations
which were used to generate siblings. This is especially
noteworthy since MEDLINE contains 19 million abstracts
[http://www.nlm.nih.gov/pubs/factsheets/medline.html], whereas
PubMed Central only contains 2.3 million full-text articles. This
shows that for text mining in biomedical literature, full-text
articles, patent information and website contents should always
be taken into consideration, and can sometimes even be a more
informative resource than just MEDLINE abstracts.

4.2 TREC ELC task
Since 2010, the TREC has included a task with a similar goal as
part of the Entity track: Entity List Completion (ELC) (Balog et al.,
2011). The task contains eight topics, each including a description
of the task and a list of examples. This list should be expanded by
finding entities from a given set which are in a sibling relationship
to the examples. Finally, results have to be mapped to a given set of
URIs. We skipped the last step since this was not in the scope of our
work and should in general not decrease recall and precision. As a
corpus, the English portion of the ClueWeb09 dataset, comprising
∼500 million webpages, was used in the ELC task.

To test whether our system is capable of finding siblings
from the topics, we performed a simple experiment. From the
provided examples of each topic, we picked three, generated
siblings from them using our approach, and checked whether the
results correspond to the results in the provided sets (Table 3 and
Supplementary Table S2). All topics except one are not taken from
the biomedical domain. The evaluation shows that our method can
find the majority of the correct siblings (R-precision: 55.3%) and is
capable of finding almost all siblings (Recall: 86.7%). This shows
that our system can generate siblings in any domain and is thus
universal. Compared with the other contestants of the ELC task,

Table 3. Results from the 2010 TREC ELC task

Domain Siblings Recall (%) R-precision (%)

Professional sports teams 8 75.0 62.5
Pharmaceutical products 1 100.0 100.0
Airlines 45 84.4 24.4
Companies 10 60.0 20.0
Airlines II 27 96.2 40.7
Universities 10 100.0 70.0
Television Chefs 40 77.5 45.0
Whisky distilleries 5 100.0 80.0

Average 18.25 86.7 55.3

Only a subset of the available topics from the entity track was suitable for this task (a
full description of the tasks is given in Supplementary Table S2). The column ‘Siblings’
shows the number of siblings that can be found. Recall is the percentage of found
siblings. R-precision is the precision at the R-th position where R is the number of
expected siblings.

R-precision was 24.1% better than the best result (recall was not
measured), although our evaluation method differs in some points
from the ELC task.

4.3 Runtime
Our approach works on-the-fly, meaning every time siblings are
generated, the pipeline (Fig. 3) is re-run with the given seed terms.
By generating siblings on-the-fly, the results are always up-to-date
and seed terms do not have to be biomedical terminology, but can be
from any domain. Even though the retrieval and extraction process
is highly parallelized, generating siblings can take up to 9 s. The
overwhelming amount of time is spent with querying the web search
engines (on average 2.38 s) and retrieving websites (on average
5.92 s). However, by caching recent sibling generations, existing
results are returned almost immediately.

4.4 Ontology generation plugin
We integrated this work into DOG4DAG (Wächter and Schroeder,
2010), our ontology generation plugin for Protégé and OBO-Edit
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Fig. 7. Screenshot of sibling generation results in the DOG4DAG plugin
for Protégé

Table 4. Generated siblings for genetic skin diseases (DOID:1698)
using the child terms cutis laxa (DOID:3144), Hailey–Hailey disease
(DOID:0050429), and Rothmund–Thomson disease (DOID:2732) as seed
terms

Rank Generated sibling Parent term

1 Cockayne syndrome Monogenic diseases
2 Xeroderma pigmentosum Monogenic diseases
3 Hypohidrotic ectodermal dysplasia Monogenic diseases
4 Incontinentia pigmenti Genetic skin disease
5 Dyskeratosis congenita Genetic skin disease
6 Erythrokeratodermia veriabilis Genetic skin disease
7 Clouston syndrome Monogenic disease
8 Proteus syndrome Physical disorder
9 Erythropoietic Protoporphyria Acute porphyria

10 Naegeli syndrome Not yet part of DO

Most of the terms are already part of the loaded human disease ontology (printed in
bold). However, Naegeli syndrome is a term that can be added to genetic skin diseases.

(see Fig. 7 for a screenshot of the plugin in Protégé). Siblings
can be generated by either selecting a term with at least two
child terms or by manually typing the seed terms. For each
sibling, the plugin automatically checks for cross-references to other
biomedical ontologies using the EBI Ontology Lookup Service
(Côté et al., 2008) or the BioPortal web service (Whetzel et al.,
2011). This way, biocurators can identify other ontologies of interest
and link their terms to them. Furthermore, generated terms are
automatically mapped to terms in the currently loaded ontology
to help biocurators link terms to other ontologies. Finally, already
existing terms are printed in bold face, allowing the user to quickly
spot them in the loaded ontology.

For experimentation, we loaded the Human Disease Ontology
(DO) [http://diseaseontology.sourceforge.net] (as of 15/12/2011)
into OBO-Edit and selected three genetic skin diseases terms (cutis
laxa, Hailey–Hailey disease and Rothmund–Thomson syndrome) as
seed terms for sibling generation. The candidate siblings can be
found in Table 4. Almost all of the generated terms are also genetic
skin diseases. Most of them are already part of the ontology (the
terms in bold face). However, many of them are simply categorized
as monogenic diseases and could be added to genetic skin diseases
right away. However, a number of candidate siblings, such as
Naegeli syndrome are not yet part of the ontology yet and can also
be added to the parent term.

5 DISCUSSION

5.1 Text-based versus structure-based approach
First, we will look at the results of the two approaches and discuss
individual advantages and disadvantages.

When examining the quantity of sibling candidates alone, the
structure-based approach yields more results, because in contrast to
the text-based approach it requires only that seed terms occur on the
same web page, but not necessarily close to each other. Even very
distant terms can be semantically related, like headings separated by
multiple paragraphs. As long as the headings are on the same path
in the parse tree, they will be discovered. On the other hand, this
also leads to false positives, since not all headings on the same path
are necessarily semantically related. In contrast, the search queries
in the text-based approach include the introductory phrase (except
for the most generic search pattern) and thus potentially find less
results.

The structure-based approach has a number of other advantages.
First, it works on arbitrary HTML documents, meaning almost all
of the web search results can be utilized. Additionally, being able
to exploit the structure of a document also means that this approach
works independently of the language.

The second, text-based approach is based on an entirely different
idea. Here, siblings are generated from text by finding enumerations
in sentences and extracting the individual terms and the head
term (if available) from text. Regular expressions can match
these patterns in sentences with great variability. By automatically
generating regular expressions, we do not need to be concerned
about errors and omissions when creating the regular expressions.
The expressions have been optimized for biomedical and chemical
terms. For instance, they allow non-ASCII characters, punctuation
inside terms (e.g. ‘1,3-Butadiene’), and multi word terms.

The fact that the text-based approach finds less results lies in the
very nature of the pattern-based approach, which usually yields low
recall (Hearst, 1992) and also fits the observations of Etzioni et al.
(2005): their structure-based ‘List Extractor’ component finds about
five times more results than the text-based approach. Contrary to our
initial assumption, the precision is equal or lower than the structure-
based approach in the MeSH evaluation (Fig. 5). This is mainly due
to the format of the retrieved snippets which often contain truncated
phrases and parts of sentences, making POS tagging and subsequent
extraction of the enumerated terms harder.

Both approaches have a significant overlap in terms of generated
siblings. This shows that each of them generates correct results
independently. Nonetheless, each approach generates siblings which
the other method does not discover.

5.2 Assessment of the completeness of ontologies
While there exist guidelines and tools that help to assess or even
ensure the technical quality or consistency of a domain ontology
(e.g. Yao et al., 2011), it is much harder to determine whether or
not an ontology covers all aspects of the domain, hence it is hard to
judge on completeness. With the help of our set expansion method
for sibling discovery, we are able to provide some judgement by
comparing the generated siblings with those already existing in the
ontology.

Overall completeness of MeSH: Considering the evaluation for
MeSH in Section 4.1, the generated siblings for the 1000 random
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Table 5. Distribution of the generated terms in MeSH and the UMLS
Metathesaurus

Category Percentage (%)

Sibling of seed term in MeSH 40.7
Descendant of seed term in MeSH 6.5
Occurs elsewhere in MeSH 30.1
Occurs in UMLS, but not in MeSH 13.4
Not found in UMLS 9.3

In all, 47.2% of the terms are highly relevant and 90.3% are correct biomedical
terminology. (Please note that the top 10 results are taken into account, no matter
how many siblings the seed terms have in MeSH.)

Table 6. Manual evaluation of the terms from the categories ‘Occurs
elsewhere in MeSH’ and ‘Occurs in UMLS, but not in MeSH’

Category
True

siblings
(%)

Related
siblings

(%)

False
siblings

(%)

Occurs elsewhere in MeSH 16 47 37
Occurs in UMLS, but not in MeSH 52 16 32

True siblings are generated terms that can be added to existing seed terms. Related
siblings are terms with a similar subject, but are not true siblings of the seed terms.
False siblings are terms which are not related to the seed terms.

sibling sets can be divided into five categories which are listed
in Table 5. Almost 50% of the terms are generated correctly as
a sibling or descendant of a seed term and as such are siblings
where the automatic method agrees with our gold standard MeSH.
Another 30.1% of the generated siblings occur in MeSH but not as
sibling and further 13.4% are not present in MeSH but exist as term
label within the UMLS Metathesaurus [The UMLS Metathesaurus
(Bodenreider, 2004) is a collection of controlled vocabularies in
the biomedical domain (including MeSH) and currently contains
over 1 000 000 terms in total]. In summary, Table 5 shows that over
75% of the generated terms are part of MeSH, which indicates that
MeSH is for the most part complete with regard to its term base. We
also manually evaluated a sample of 100 generated sibling terms,
which were not part of MeSH but can be found in the UMLS
Metathesaurus. From these terms, as much as 52% were found
to be true siblings of the seed terms (Table 6 and Supplementary
Table S3) and are as such good candidates to be added to MeSH in
the future.

Consistency of MeSH: Finally, we also evaluated a sample of 100
generated siblings which were not siblings of the seed terms but
occurred at a different position within MeSH (see ‘Occurs elsewhere
in MeSH’ in Table 6 and Supplementary Table S4). Only as few as
16% were found to be true siblings (Table 6). This indicates that
MeSH is for the most part modelled correctly with regard to the
location of its siblings.

Both results demonstrate that sibling generation is a powerful
tool to assess the completeness of ontologies.

5.3 Adherence to ontology design criteria and naming
conventions

Additionally, we examined the generated siblings regarding criteria
for ontology design and naming conventions. In Schober et al.
(2009), conventions for OBO Foundry ontologies were presented.
The conventions support unified ontology development and help
developers avoid mistakes when working on ontologies. Overall,
the generated siblings adhere to the proposed design guidelines and
naming conventions. For instance, new terms should incorporate the
genus-differentia style for names. Since we prefer candidate siblings
containing this style, these are ranked higher in the results. Another
convention is that acronyms should be expanded. Because we
included an abbreviation tagger in the processing pipeline (Fig. 3),
they are automatically expanded, if possible. Finally, since the text-
based approach only allows NPs as candidate siblings, we avoid the
use of conjunctions.

5.4 Limitations and future work
Generally, our work is based on the assumption that terms can in
principle be found in text and that the web is representative for a
domain to be modelled by the ontology. Although we developed our
approach as generic as possible, some limitations are nonetheless
inherent.

First, we can only generate siblings for natural language terms
which are semantically related and discussed in the literature or
on websites in general. Furthermore, we do not take the specific
relationship type and synonymous terms into account.

Overall, the system works best for completing a set of terms with
the same semantic type. However, it cannot explicitly recognize the
context of the given seed terms. We will consider on incorporating
contextual information in the query to increase the precision of the
generated siblings. Additionally, we will work on the improvement
of recall of the text-based approach by two means. First, if the
retrieved snippet is not a full sentence, fetch the whole webpage
and extend the existing snippet to complete the sentence. Second,
extend the number of patterns for text-based sibling discovery
using a bootstrapped pattern learning approach, similar to the
ones presented in Etzioni et al. (2005) and Kozareva et al.
(2008). We also plan to further improve the scalability of sibling
generation when more than four seed terms are used. Finally, we
will investigate whether using a higher number of seed terms
can effectively improve the precision of the retrieved candidate
siblings.

6 CONCLUSION
In this work, we presented an approach to extend ontologies
systematically by finding new terms similar to two or three provided
terms. We combined two very different methods and used a simple
rank aggregation strategy to combine the results. By taking the
peculiarities of biomedical terminology into consideration, we used
hypernym matching and compound term matching to improve the
ranking of terms which fulfill these criteria.

The evaluation using MeSH shows that our approach can
successfully support ontology engineers by semi-automatically
completing existing sets of siblings. Additionally, our approach can
also serve as a first step towards evaluating the completeness of
ontologies. We showed that MeSH covers the biomedical domain
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as the vast majority of siblings suggested by the method are
already contained. Nonetheless, a significant number of good
candidates for incorporation could be suggested with high precision.
Furthermore, our evaluation suggests that text mining in the
biomedical domain gains significantly from full-text resources such
as PubMed Central.

In particular, when evaluating set expansion for sibling discovery
using 1000 randomly selected term sets from MeSH, our approach
finds 79.3% of the existing siblings in the sets using three seed
terms. Both methods contribute to the results. However, the
structure-based approach finds slightly more true positives than
the text-based approach. When only two seed terms are used, the
method still produces satisfactory results, but recall and precision
drop to 68.2% and 51.5%, respectively. The generated terms fulfill
ontology naming conventions and need no post-editing.

Our method is universal, meaning the system allows sibling
generation for any domain, as shown by the evaluation using the
TREC ELC task, where 86.7% of the siblings were discovered with
a precision of 55.3%. Additionally, the method can in principle
generate siblings for any language, since the structure-based
approach works independently of the language.

Since this work is integrated into the DOG4DAG plugin,
ontologies of all common formats can be extended seamlessly in
Protégé and OBO-Edit and generated terms are cross-referenced to
other biomedical ontologies.
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