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ABSTRACT

Motivation: Due to the high complexity of metabolome, the compre-

hensive 2D gas chromatography time-of-flight mass spectrometry

(GC�GC-TOF MS) is considered as a powerful analytical platform

for metabolomics study. However, the applications of GC�GC-TOF

MS in metabolomics are not popular owing to the lack of bioinfor-

matics system for data analysis.

Results: We developed a computational platform entitled metabolo-

mics profiling pipeline (MetPP) for analysis of metabolomics data

acquired on a GC�GC-TOF MS system. MetPP can process peak

filtering and merging, retention index matching, peak list alignment,

normalization, statistical significance tests and pattern recognition,

using the peak lists deconvoluted from the instrument data as its

input. The performance of MetPP software was tested with two sets

of experimental data acquired in a spike-in experiment and a bio-

marker discovery experiment, respectively. MetPP not only correctly

aligned the spiked-in metabolite standards from the experimental

data, but also correctly recognized their concentration difference

between sample groups. For analysis of the biomarker discovery

data, 15 metabolites were recognized with significant concentration

difference between the sample groups and these results agree

with the literature results of histological analysis, demonstrating the

effectiveness of applying MetPP software for disease biomarker

discovery.

Availability: The source code of MetPP is available at http://

metaopen.sourceforge.net

Contact: xiang.zhang@louisville.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Comprehensive 2D gas chromatography time-of-flight mass
spectrometry (GC�GC-TOF MS) uses two GC columns con-

nected via a thermal modulator. Compared with the first
column, the second column is usually a short column with a
different stationary phase and is operated at a higher

temperature. The metabolites co-eluted from the first column are
further separated in the second column and are directed to

a time-of-flight mass spectrometer for detection. Consequently,
the GC�GC-TOF MS system brings more accurate and
rich information about compound retention times and mass

spectrum than a 1D GC-MS system, representing a powerful
technique for analysis of metabolites in complex biological
systems.
The GC�GC-TOF MS system generates a huge amount of

high-dimensional data in metabolomics study that require
efficient and accurate data analysis algorithms to uncover the
biological information. Many data analysis algorithms have

been developed to process the GC�GC-TOF MS data for
peak picking (Hoggard et al., 2009; Reichenbach et al., 2005;
Sinha et al., 2004; Vivo-Truyols 2012), chromatogram alignment

(Fraga et al., 2001; Pierce et al., 2005; van Mispelaar et al., 2003;
Zhang et al., 2008) and peak list alignment (Almstetter et al.,
2009; Kim et al., 2011; Wang et al., 2010). Guineu (Castillo et al.,

2011) is the only reported tool that uses the peak lists as its
input and performs retention time correction, peak list align-
ment, normalization and statistical significance tests. A compre-
hensive review of the developed methods is given by Reichenbach

et al. (2012). Compared with liquid chromatography mass
spectrometry (LC-MS), the applications of GC�GC-TOF MS
to metabolomics were not fully explored during the past decade.

One significant bottleneck limiting the usage of GC�GC-TOF
MS in metabolomics is the lack of accurate and comprehensive
data analysis tools.

We herein report a computational platform for analysis
of metabolomics data generated from the GC�GC-TOF MS
instrument in a form of metabolomics profiling pipeline

(MetPP). MetPP uses the peak lists deconvoluted from the
instrument data as its input and then renders peak filtering
and merging, retention index matching, peak list alignment, nor-
malization, statistical significance tests and pattern recognition.

To test its performance, MetPP was used to analyze the
GC�GC-TOF MS data of 30 metabolite extracts of mouse
livers with spiked-in metabolite standards at different concentra-

tions, and two groups of liver metabolite samples from mice fed
different diets. MetPP was developed using MATLAB (The
Mathworks, Natick, MA, USA), and its source code is available

at http://metaopen.sourceforge.net.*To whom correspondence should be addressed.
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2 METHODS

2.1 Materials

2.1.1 Spike-in samples A total of 30 spike-in samples were analyzed

on a LECO Pegasus 4D GC�GC-TOF MS instrument (LECO Corp.,

St. Joseph, MI, USA). The sample set was composed of five sample

groups, i.e. G10, G20, G40, G50 and G80, with six samples per group.

All samples in the five sample groups had the same amount of metabolite

extract from mouse livers. All six samples in the same sample group had

the same amount of the 28 spiked-in metabolite standards (Supplementary

Table S1), but amounts were different among the sample groups with

concentration ratio of CG10:CG20:CG40:CG50:CG80¼ 1:2:4:5:8.

2.1.2 Mouse liver samples Four-week-old male C57Bl/6J mice were

fed AIN-76A purified diet for 1 week before initiating feeding with either

low-fat diet (LFD; 13% fat in calories) or high-fat diet (HFD; 42% fat in

calories) for 10 weeks, as described in our previous study (Tan et al.,

2011). This study evaluated six mice fed the LFD and five mice fed the

HFD. For termination, mice were anesthetized with ketamine/xylazine

(100/15mg/kg, i.m.). Portions of liver tissue were frozen immediately

in liquid nitrogen. Metabolites were extracted from mouse liver using

solvent methonal:water (v:v¼ 4:1).

Details of chemicals, sample preparation (spike-in samples and liver

samples), GC�GC-TOF MS analysis and instrument data analysis using

ChromaTOF are provided in the Supplementary Information.

2.2 Algorithm

Figure 1 shows the workflow of MetPP software that consists of seven

functional modules: retention index matching, peak filtering and merging,

peak list alignment, quant mass conversion, normalization, statistical sig-

nificance tests and pattern recognition. MetPP uses the peak list decon-

voluted from the instrument as its input. In case of the LECO Pegasus

instrument, the instrument control software ChromaTOF reduces the

instrument data into peak lists, where each peak is characterized by

more than 60 values. Nine of these reported values are used by MetPP

for data analysis, including first dimension time (s), second dimension

time (s), chemical abstract system (CAS) number, quant masses, area,

profile purity, purity, concerns and mass spectra.

2.2.1 Retention index matching Retention index is a concept in gas

chromatography to convert the retention times into system-independent

constants (Kovats, 1958). The linear retention index is defined as follows:

IT ¼ 100zþ 100
tRðSÞ � tRðZÞ

tRðZþ1Þ � tRðZÞ

� �
ð1Þ

where tR is retention time, s refers to the target compound that elutes off

the GC column between two adjacent n-alkane reference compounds with

carbon numbers z and zþ 1, respectively, z refers to the n-alkane with z

carbon atoms and zþ 1 represents the n-alkane with zþ 1 carbon atoms.

Using retention index information can increase the confidence of com-

pound identification. Currently, MetPP can perform retention index

matching only for the first dimensional GC. We improved the algorithms

of iMatch approach (Zhang et al., 2011) by enabling retention index

matching of multiple top-ranked identification results, to ensure that

the true metabolite can still be preserved even though it may not have

the best score for mass spectral matching (Koo et al., 2011). We further

updated the retention index database used in iMatch to NIST11 retention

index database and calculated all retention index distributions. Briefly,

all retention index data recorded in the NIST11 retention index database

are categorized into nine subgroups based on experimental conditions

(stationary phase and temperature gradient). An empirical distribution

function (DF) of the absolute retention index deviation to its mean

value is generated from each of the grouped retention index data. The

DF information is then used for retention index matching based on a

user-defined confidence interval (P value), from which a retention index

variation window is deduced.

2.2.2 Peak merging and filtration It is possible that multiple peak

entries can be falsely generated for one metabolite in the peak list during

spectrum deconvolution. To minimize data variations introduced into the

downstream statistical analysis, all peak entries of the same metabolite

need to be recognized and merged as one entry in each peak list. MetPP

uses a two-step approach to recognize and merge the multiple peak

entries originated from the same metabolite. Following criteria are used

to check the same metabolite appears more than once:

same CAS number
1ti, j �

1 ti, jþ1
�� �� � k � PM

2ti, j �
2 ti, jþ1

�� �� � 2"R

8><
>: ð2Þ

where 1ti, j and
1ti, jþ1 are the first dimensional retention times of two

adjacent j-th and (jþ 1)-th peak entries in the i-th sample Si, respectively,

k is a user-defined coefficient, PM is modulation period, 2ti, j and
2ti, jþ1

are the second dimensional retention times of the two adjacent peak

entries, respectively, and 2"R is user-defined maximum variation of 2tR.

The default values of k and 2"R are 1 and 0.15, respectively.

MetPP merges all the multiple peak entries into a representative peak.

To select a representative peak from the multiple peak entries that fulfills

all the three criteria in Equation (2), the CAS number of these peak

candidates is used to search the NIST11 mass spectral library to get its

reference spectrum sr. Linear regression is used to fit each of the mass

spectra si to sr. The peak entry with maximum fitting coefficient can be

determined as follows:

s ¼ argmaxi¼1, ... , m Corðsi, srÞ
� �

ð3Þ

where Cor(x,y) is the Pearson’s correlation coefficient between x and y.

The peak with the maximum value of Cor(x,y) is selected as the repre-

sentative peak with its peak area equals to the sum of the peak areas of

the multiple peak entries, and its values of the first-dimension retention

time and the second-dimension retention time are determined by the

peak-area-weighted average values.

2.2.3 Peak list alignment MetPP uses the 2D retention times and

mass spectrum of each peak for alignment. The metabolite peaks in

different samples are aligned based on their similarity of these three

pieces of information measured by a mixture score. The retention time

value of each peak in a peak list Pi is first transformed into a modified

z-score as follows (Wang et al., 2010):

zi, j ¼
ti, j � �

�
ð4Þ

where ti, j denotes the retention time of the j-th peak in the i-th sample Si,

� and � are the median values of means and standard deviations of the

retention time values among peaks of all sample set S, respectively.

The mass spectral similarity between two peaks is calculated as follows

(Kim et al., 2012):

R ¼
�w � �w
j�wj jj � jj�wjj

ð5Þ
Fig. 1. Workflow of MetPP software
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where w¼ (x,y) is a vector of weight factors of intensity and m/z value,

respectively, �w ¼ ð�
w
i Þ

n
i¼1 and �w ¼ ð�

w
i Þ

n
i¼1 are weighted intensities and

�wi ¼ ð�iÞ
x
� ðziÞ

y and �wi ¼ ð�iÞ
x
� ðziÞ

y
ð6Þ

where � ¼ ð�iÞi¼1, ..., n and � ¼ ð�iÞi¼1, ..., n are the intensities of the two

matchingmass spectra, respectively, zi is them/z value of the i-th intensity,

i ¼ 1, 2, . . . , n, and x and y are weight factors with (x, y)¼ (0.53, 1.3).

To measure the matching quality between two peaks, a mixture

similarity score Cm is defined as follows:

Cmðdi,Ri wj Þ ¼ w 1�
di

dmax

� �
þ 1� wð ÞRi ð7Þ

where di is the Euclidean distance of z-score transformed retention times

in the 2D chromatogram between the i-th two matched peaks, dmax is the

maximum value of the Euclidean distance between two matched peaks in

all samples, Ri is the spectral similarity between the matched peak pair

and w is a coefficient (0�w� 1).

To perform alignment, MetPP uses a two-step peak alignment

approach, full alignment and partial alignment. The full alignment rec-

ognizes all potential landmark peaks, i.e. peaks generated by the same

metabolite and presented in all samples. During the full alignment, a

reference peak list (Pr) is first randomly selected from the sample set S.

Each of the remaining peak lists is aligned to Pr, respectively. Considering

two peak lists Pr,Sif g, the mass spectrum of each peak in Pr is used to

first find all corresponding peaks in Si with a mass spectral similarity

R� 0.6. It should be noted that 0.6 was empirically chosen based on

our experience and that this threshold can be decided by a user in

MetPP. The peak in Si with the minimal Euclidian distance to the peak

in Pr in the 2D chromatogram is then considered as a possible match

to the peak in Pr. All of these matched peak pairs are considered as

candidates of landmark peaks between Pr,Sif g, and further used to op-

timize the value of weight factor w for calculation of Cm by maximizing

argmax
w

XL

i¼1
Cm di, si wjð Þ

	 

ð8Þ

where L is the number of peak pairs and w is set as 0.05, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9 and 0.95, respectively. This process is operated on

all peak list pairs Pr,Si i ¼ 1, . . . , n� 1jf g, and the optimal weight

factor set w1, . . . ,wn�1f g is obtained for Si i ¼ 1, . . . , n� 1jf g. The outlier

values in fCi
m i ¼ 1, . . . , n� 1j g are further detected at a confidence

level of 95%. All landmark peak candidates are removed if their Cm

values are detected as outliers. The minimum mixture score Cmin
m of the

test peak lists is then used as the threshold value of Cm in the partial

alignment.

After full alignment, the retention time values of remaining peaks in Si
are corrected based on the retention time difference of the landmark

peaks between Si and Pr. Local linear fitting is used to correct retention

time values of metabolites eluted between two adjacent landmark peaks

in the 2D retention time domain, respectively. To correct the first dimen-

sional retention time of peaks that do not elute off the GC column

between two landmark peaks, i.e. peaks eluted before the first landmark

peak and the peaks eluted later than the last landmark peak, an iterative

optimization method is applied to each of these two sections of peaks,

respectively. In each optimization process, 30% of landmark peaks are

randomly selected and a polynomial model fitting is used to correct the

retention times of peaks in the section of interest. The polynomial fitting

error is computed as follows:

" ¼
Xk

j¼1

1toi, j �
1t fi, j

��� ��� ð9Þ

where 1toi, j is the original z-score transformed first dimensional retention

time of the j-th peak in the i-th sample Si,
1t;fi, j is the fitted retention time

of the j-th peak and k is the number of peaks in Si at the section of

interest. This process is repeated 1000 times and the model with minimum

fitting error is selected and used for retention time correction. The same

process is performed to correct the second dimensional retention time.

After the retention time correction in Si, the partial alignment is

performed to align all the non-landmark peaks in Si to the peaks in Pr.

For each peak pair in Pr,Sif g, a mixture score Cm is calculated using

Equation (6). A peak pair is considered as a match if its mixture score

Cm � Cmin
m . If one peak in the test sample is matched to multiple peaks

in Pr, or vice versa, the peak pair with the maximum mixture score is kept

and the remaining matches are discarded. If a peak in Si cannot be

matched to any peaks in Pr, this peak is considered as a new peak to

Pr and is added to Pr. The updated Pr is then used to align peaks in the

next test peak list, and this process is repeated until all test peak lists are

aligned.

2.2.4 Quant mass conversion After peak alignment, an alignment

table is obtained, A ¼ P1,P2, . . . ,Pm½ �
T, where Pi ¼ fpi, 1, pi, 2, . . . , pi, ng

represents all aligned peaks of the i-th compound in S, m is the number

of aligned metabolite peaks, pi, j denotes the peak of the i-th compound

in the j-th sample and n is the number of samples. If the peak list is

generated by ChromaTOF, the peak area of each peak refers to the

peak area of a specific fragment ion entitled quant mass. The same com-

pound may have different quant mass in each sample. Therefore, it is

critical to ensure that the peak area of each aligned peak is consistent

across samples.

A reference spectrum-based peak area conversion method is developed

in MetPP to convert the values of peak area to be quant mass independ-

ent. For a group of aligned peaks Pi, the quant mass with the highest

frequency across all samples is selected as the representative quant mass

qi. The CAS number of the peak Pi with the largest spectral similarity in

the peaks with the same qi is then used to extract reference mass spectrum

sr from the NIST11 mass spectral database. A linear regression process

is applied between sr and each spectrum of the aligned peaks in Pi, re-

spectively, to obtain a set of regression coefficients fai, 1, ai, 2, . . . , ai, ng.

Each peak area in Pi is then converted into a new value by

I0i, j ¼
ai, j
ai, 1

Ii, j ð10Þ

where ai, 1 is the fitting coefficient of the i-th peak in sample S1, ai, j is the

fitting coefficient of the peak in Sj and Ii, j is the original peak area of the

i-th compound in Sj.

2.2.5 Normalization Six normalization methods are implemented in

MetPP, including quantile normalization, cyclic loess normalization

(Dudoit et al., 2002), contrast-based normalization (Astrand, 2001),

trimmed constant mean normalization, trimmed constant median nor-

malization and group-based quantile normalization (Wei et al., 2011).

Quantile normalization makes the peak area distribution in each

sample the same across all samples. Cyclic loess and contrast-based nor-

malizations are two extensions of the difference in log expression values

versus the average of the log expression values method. Trimmed con-

stant mean and trimmed constant median are two scaling-based normal-

ization methods. Group-based quantile normalization first performs

quantile normalization for the samples that belong to the same sample

group, and then uses a trimmed constant mean method to normalize all

samples across the sample groups.

2.2.6 Statistical significance tests Multiple conventional statistical

significance test methods are provided in MetPP, including two-tailed

t-test, two-sample Kolmogorov–Smirnov test, Kruskal–Wallis test and

Wilcoxon rank sum test. To increase the confidence of the statistical

testing, sample permutation is also provided as an option for each

conventional statistical significance test. Permutation test, also called

re-randomization test, is a nonparametric test. It first randomly ex-

changes sample labels and then performs one of the above mentioned

conventional statistical test methods.
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The Bonferroni correction (Curran-Everett, 2000), the Benjamini–

Hochberg method (Benjamini and Hochberg, 1995) and the q-value

method (Storey, 2002) are available to correct multiple comparison issues.

2.2.7 Pattern recognition MetPP first filters data based on a user-

defined frequency threshold, defined as the number of samples, in which

a metabolite was detected, divided by the number of all samples. The

k-nearest neighbor imputation algorithm is then used to estimate the

missing data (Troyanskaya et al., 2001). Two feature selection methods,

principal component analysis (PCA) (Jolliffe, 2002) and partial least

squares (Rosipal, 2006), are provided as options for the user, if the

user decides to reduce irrelevant variables for improving clustering effi-

ciency. Three clustering methods were implemented, including k-means

clustering, agglomerative hierarchical clustering and fuzzy c-means clus-

tering (Bezdek, 1981). Two options for clustering objects are provided,

users can choose all data to do clustering analysis or select only the

significant molecules obtained from statistical analysis, for clustering.

The clustering accuracy is calculated as the number of correctly clustered

samples divided by the number of all samples.

3 RESULTS

MetPP has a modular design including project management and
multiple data analysis components. Supplementary Figure S1 is a

screenshot of the project management module, which contains
all sample meta-information and information of experimental
conditions, while Supplementary Figures S2–S6 are the screen-

shots of data analysis components.

3.1 Analysis of spike-in samples

A total of 30 samples were analyzed on GC�GC-TOF MS.
Manual review of the peak lists generated by ChromaTOF

shows that the 28 spiked-in metabolites were correctly identified
in every sample. Of the 28 spiked-in metabolites, 23 metabolites
were originally present in mouse liver extract. Therefore, the

concentrations of these 23 metabolites are different from the
other 5 spiked-in metabolites in each sample group.
About 300 peak entries in each sample were assigned to a

metabolite name via mass spectral matching. For retention
index matching, the confidence interval of the empirical DF of
the absolute retention index deviation to its mean value was set

as P� 0.001. In all, 20.7% of the identified metabolites were
confirmed by the first-dimension retention index matching and
53.5% were also preserved due to the lack of retention index
information in the NIST11 retention index database. However,

25.8% of the mass spectral matched metabolites were removed
owing to the large first-dimension retention index deviation from
the database values. The mean absolute deviation between the

database value and experimental retention index of the removed
metabolites is 308 index units (i.u.), with a standard deviation of
257 i.u. The corresponding values of the preserved metabolites

are 28	 12 i.u. All 28 spiked-in metabolites are preserved in each
of the 30 samples after the retention index matching. Metabolites
butyric acid and L-tryptophan were preserved owing to the lack
of retention index values in the NIST11 database, while the

others were preserved by correct retention index match.
About 200–400 peaks were left in each sample for alignment.

Peak picking is likely the primary cause for such variation. By

manual validation, all 28 spiked-in metabolites were present in
all 30 samples with a relative standard deviation (RSD) of the

first and second dimensional retention times of 0.07% and
0.55%, respectively, demonstrating a good stability of the instru-

ment during the 2D GC separation and a high accuracy of
ChromaTOF in determining peak location in the 2D gas

chromatograms.
Figure 2 depicts the peak area distribution of the 28 spiked-in

metabolites in G10 before and after peak area conversion.
A large variation in each box represents the peak area variation

of the same compound between the six samples. By design, each
compound should have the identical peak area among the

six samples. However, ChromaTOF reports only the peak area
of a quant mass (a fragment ion that has the highest quality

for quantification), and it often chooses different quant mass

for the same metabolite, depending on the data. Of the 28
metabolites, 10 metabolites in at least one of the six samples

have quant mass different from the other samples. For instance,
compound 4 (oxalic acid) in Figure 2a has 2 quant mass values

and the value of peak area has a large deviation, ranging from
1041 108 to 3 206 235. After reference spectrum-based peak

area conversion, the span of peak area is greatly reduced to
1 329 043–1 935698 (Fig. 2b), demonstrating the effectiveness of

the reference spectrum-based peak area conversion. The con-

verted peak area values not only reduced the variation in peak
area, but also guarantee the consistency of the values of peak

area across samples for the downstream statistical analysis.
To demonstrate whether the concentration differences of

the spiked-in metabolite standards can be recognized from the

alignment table, a two-tailed t-test was used to check the mean

difference of the peak area of each compound between sample
groups through different p-value settings. The true-positive rate

(TPR) and the false-positive rate (FPR) are used as measures for
metabolite relative quantification (Supplementary Information).

Figure 3 depicts the receiver–operating characteristic curve
(ROC) of recognizing the concentration difference of the

spiked-in metabolite standards between sample groups using

(a)

(b)

Fig. 2. Boxplot of peak area of the 28 spiked-in metabolites in G10

before reference spectrum-based peak area conversion (a) and after the

reference spectrum-based peak area conversion (b). þ refers to the values

of peak area considered as outliers
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the alignment results. As expected, the FPR increases with the
increase of TPR. The TPR levels off at 1.0 when the FPR reaches

0.9 between all the comparing sample groups. The AUC of the
ROC curve of G10 vs G20 is 0.87, while the AUC of the ROC
curve of G20 vs G40 and G10 vs G40 is 0.71 and 0.81, respect-

ively. A high value of AUC indicates a high accuracy of recog-
nizing the concentration difference of the spiked-in compounds
between sample groups, which is achieved on the basis of correct

alignment of the spiked-in compounds. Moreover, it is worth
mentioning that the spiked-in metabolites that were not recog-

nized as metabolites with significant concentration difference
between the two testing sample groups are all present in the
mouse liver extract before the addition of the mixture of authen-

tic standards. This means that the concentration differences of
these metabolites between sample groups may be much smaller
than 2:1 or 4:1, depending on the amount of the metabolites in

each sample of mouse liver extract.

3.2 Analysis of biological samples

About 600 metabolites were identified in each mouse liver sample
via mass spectral matching. By setting P� 0.001 for retention

index matching, 18.6% of the identified metabolites were con-
firmed by the first dimension retention index matching and
51.8% were preserved owing to the lack of retention index infor-

mation in the NIST11 database. However, 29.5% of the mass
spectral matched metabolites were removed owing to the large

first-dimension retention index deviation from the database
values. The mean absolute deviation between the database
value and experimental retention index of the removed metabol-

ites is 318 i.u., with a standard deviation of 267 i.u. The corres-
ponding values of the preserved metabolites are 21	 16 i.u.
After the retention time filtering, about 300–500 peaks were

left in each sample for alignment. Among the aligned peaks, the
maximum values of the RSD for the first dimensional retention

time and the second dimensional retention time were only 3.15
and 3.30%, respectively.
Table 1 lists all the metabolites detected with significant

abundance changes between sample groups LFD and HFD.
Compared with the LFD group, the abundances of 10 metabol-
ites were increased and 5 metabolites were decreased in the HFD

group. Figure 4 depicts the abundance distribution of metabolite
L-threonine in the samples of LFD group and HFD group.
Three free fatty acids (entries 1–3 in Table 1) were detected with

significant abundance changes between the two testing sample

Table 1. Metabolites with significant abundance difference between

sample groups HFD and LFD

Name p-value 1tR(s)
2tR(s) CAS Fold

changea

Dodecanoic acid 7.2� 10�2 2089.3 1.204 143-07-7 1.3

Tetradecanoic acid 1.4� 10�2 2323.8 1.228 544-63-8 1.5

Pentadecanoic acid 1.4� 10�4 2432.6 1.243 1002-84-2 2.3

L-valine 1.2� 10�1 1782.5 1.148 72-18-4 �1.2

L-cysteine 3.0� 10�5 2440.0 1.262 7048-04-6 1.7

L-threonine 2.4� 10�2 1900.5 1.208 72-19-5 2.1

2,3-

Dihydroxypropanoic

acidb

1.3� 10�1 2153.2 1.153 473-81-4 �1.6

Citric acidb 8.4� 10�2 2911.1 1.593 77-92-9 1.9

2-Hydroxybutyric acid 6.9� 10�2 1642.4 1.135 600-15-7 �1.4

Glycine 1.1� 10�1 1655.0 1.159 56-40-6 �1.2

L-lysine 5.2� 10�4 2625.7 1.272 56-87-1 �2.5

Pentanoic acid,

3-methyl-4-oxo-b
3.6� 10�2 2205.1 1.363 6628-79-1 1.2

L-methionine 1.3� 10�2 2177.5 1.280 63-68-3 1.4

L-glutamic acid 2.4� 10�2 2510.0 1.244 56-86-0 1.5

Taurine 3.8� 10�6 2117.5 1.351 107-35-7 4.5

aThe sample group LFD is the reference group. ‘þ’ sign refers to abundance

increase in sample group HFD, while ‘�’ sign refers to abundance decrease in

HFD group.
bTentative identification without technical verification using authentic standards.

(a) (b) (c)

Fig. 3. The ROC curves of recognizing the concentration difference of the 28 spiked-in metabolites between sample groups (a) G10 and G20, (b) G20

and G40 and (c) G10 and G40 using the alignment results of MetPP software

Fig. 4. Abundance distribution of metabolite L-threonine in the samples

of LFD group and HFD group. The abundance test (pairwise two-tailed

t-test) shows that the regulation of this metabolite in the HFD group is

increased with a fold change of 2.10 and a p-value of 2.4� 10�2 compar-

ing with LFD group
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groups. The levels of these free fatty acids are all increased in mice

fed a HFD. This observation agrees with the results of literature-

reported hepatic lipid level test (Tan et al., 2011).

4 DISCUSSION

MetPP uses the peak lists generated by peak deconvolution

software, such as commercial software ChromaTOF, as its

input. It is well known that the ChromaTOF software has

some shortcomings, including multiple peak table entries for

the same compound, limited accuracy in calculation of peak

areas, etc. To minimize these shortcomings of ChromaTOF soft-

ware, MetPP provides options for users to filter data from the

peak lists generated by ChromaTOF using the peak quality in-

formation (profile purity, purity, concerns) provided by

ChromaTOF. The multiple peak entries of the same compound

are recognized based on user defined 2D retention time variation

windows. These peak entries are then merged and represented by

one representative peak entry. To handle peaks detected in blank

sample(s), MetPP has three options for the user to select from:

no action, deducting the peak area of blank sample(s) from the

biological samples and removing the metabolites. The user can

also remove metabolites using a user-provided exclusion list.

In this study, the default values for peak quality-based filtering

and merging multiple peak entries were used. The analysis of

spike-in data demonstrates that the data preprocessing methods

implemented in MetPP is able to remove some of the shortcom-

ings of ChromaTOF software without affecting identification

and quantification of the spiked-in standards.
To reduce the rate of false-positive identification, the current

version of MetPP provides an option for users to match the first-

dimension retention index of each compound with the database

values. A large value of the mean absolute deviation between

the database value and experimental retention index of the

removed metabolites (308	 257 i.u. for the spike-in data,

318	 267 i.u. for the biomarker discovery data) and a small

value of the corresponding values of the preserved metabolites

(28	 12 i.u. for the spike-in data, 21	 16 i.u. for the biomarker

discovery data) demonstrates the mass spectral matching-based

metabolite identification can introduced a high rate of false

identification, and the retention index filtering methods in

MetPP can detect and remove some of these false-identified

metabolites.

MetPP performs peak list alignment using a mixture score

function to simultaneously evaluate the deviation of the 2D

retention time and mass spectral similarity. Compared with the

progressive retention time map searching method implemented in

the distance and spectrum correlation optimization (DISCO)

algorithm (Wang et al., 2010), the mixture score approach is

able to align chromatographic peaks that may have a large vari-

ation in either retention time or mass spectral similarity, as long

as the overall quality of two peak are similar. Supplementary

Figure S7 depicts the alignment results of the spike-in experimen-

tal data by DISCO andMetPP. All 28 spiked-in metabolites were

fully aligned in all 30 samples by MetPP.However, 23 metabolite

standards were fully aligned by DISCO, while the rest of the

spiked-in metabolites were aligned in a portion of the 30 samples.

In terms of metabolite quantification, the data analysis

algorithms implemented in MetPP are able to correctly identify
and quantify all spiked-in metabolite standards.
Analysis of biological samples using MetPP revealed that

15 metabolites have significant abundance changes between
two sample groups. The accuracy of clustering samples using

all metabolite data in each sample is 0.82, while the clustering
accuracy is improved to 0.91 when the abundance of the 15 me-

tabolites in each sample are used for clustering. The improve-
ment in sample clustering accuracy demonstrates that MetPP

correctly recognized the metabolites with significant abundance
difference between sample groups LFD and HFD. The abun-

dance changes of the free fatty acids agree with the literature
results of hepatic lipid level test, a different analytical method.
These analysis results further demonstrate that the MetPP soft-

ware can be used to recognize the metabolites with significant
abundance changes between sample groups.

The performance of MetPP in analysis the spike-in data
was also compared with the existing Guineu software (Castillo

et al., 2011) in terms of accuracy of alignment and relative quan-
tification. Supplementary Figure S8 shows that only 9 of the

28 spiked-in metabolites were fully aligned by Guineu, while all
the 28 spiked-in metabolites were fully aligned by MetPP. For
relative quantification, MetPP also significantly outperforms

Guineu in all three statistical measures of TPR, PPV and their
harmonic mean F1 for analysis of all pairwise comparison

between the five sample groups (Supplementary Fig. S9).
Analysis of both the spike-in data and biomarker discovery

data demonstrates that the methods implemented in MetPP for
peak filtering and merging are effective in minimizing the short-

comings of ChromaTOF. However, compound 24 (nonanoic
acid) in Figure 2a still has a large variation in peak area after
the peak filtering and merging. For the future development,

accurate peak deconvolution algorithms are needed to improve
the quality of peak lists. A large variation in peak area intro-

duced during peak deconvolution can significantly affect the
downstream statistical analysis. It is also important to develop

algorithms for analysis of time course data and construction of
metabolite correlation networks.

5 CONCLUSIONS

A computational platform for analysis of metabolomics data gen-

erated on GC�GC-TOF MS instrumentation was developed in
the form of MetPP using MATLAB. MetPP uses the peak lists

generated by a spectral deconvolution software such as commer-
cial software ChromaTOF as its input and then performs peak

merging and filtering, retention index matching, peak list align-
ment, normalization, statistical significance tests and pattern rec-

ognition. Two sets of experimental data acquired on GC�GC-
TOF MS were used to validate the performance of MetPP. The

analysis results demonstrate that MetPP is able to recognize the
concentration difference of the spiked-in metabolite standards be-
tween sample groups. The analysis results of biological samples

agree with the hepatic lipid level test, further demonstrating that
MetPP is able to correctly process the data of complex samples.
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