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ABSTRACT

Motivation: Residue–residue contacts across the transmembrane heli-

ces dictate the three-dimensional topology of alpha-helical membrane

proteins. However, contact determination through experiments is diffi-

cult because most transmembrane proteins are hard to crystallize.

Results: We present a novel method (MemBrain) to derive transmem-

brane inter-helix contacts from amino acid sequences by combining

correlated mutations and multiple machine learning classifiers. Tested

on 60 non-redundant polytopic proteins using a strict leave-one-out

cross-validation protocol, MemBrain achieves an average accuracy

of 62%, which is 12.5% higher than the current best method from the

literature. When applied to 13 recently solved G protein-coupled recep-

tors, the MemBrain contact predictions helped increase the TM-score

of the I-TASSER models by 37% in the transmembrane region. The

number of foldable cases (TM-score40.5) increased by 100%, where

all G protein-coupled receptor templates and homologous templates

with sequence identity 430% were excluded. These results demon-

strate significant progress in contact prediction and a potential for con-

tact-driven structure modeling of transmembrane proteins.
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1 INTRODUCTION

Membrane proteins constitute�30% of the proteins in both pro-
karyotic and eukaryotic genomes (Adamian and Liang, 2006),

and they participate in various crucial cellular processes, from
basic small-molecule transport to complicated signaling pathways

(Elofsson and vonHeijne, 2007). It has been shown that450% of
current drug targets are membrane proteins (Hopkins and

Groom, 2002), where the top four gene families of Food and

Drug Administration-approved drugs are all membrane proteins;
i.e. G protein-coupled receptor (GPCR), nuclear receptors,

ligand-gated ion channels and voltage-gated ion channels
(Overington et al., 2006). Membrane-embedded alpha-helical

polytopic proteins constitute the majority of ion channels, trans-
porters and receptors in living organisms. This class of proteins,

which accounts for �40% of all membrane proteins, is infam-

ously difficult for high-resolution structural studies. Due to the

intrinsic structural plasticity associated with many of these

proteins, the chance of obtaining crystals suitable for X-ray or

electron diffraction studies is small (Yarov-Yarovoy et al., 2006).

Although helical membrane proteins have many experimental

difficulties, their structural conformation has been demonstrated

to be predictable in a number of ways, e.g. transmembrane helix

(TMH) domain topology (Krogh et al., 2001; Shen and Chou,

2008).
Structure prediction of the TMHbundle for alpha-helical mem-

brane proteins can be fulfilled by first predicting TMHs and then

applying helix-packing constraints (White, 2003). The first step of

the TMH prediction has a long history, and the current methods

can achieve an accuracy of�90% (Nugent and Jones, 2009; Shen

and Chou, 2008). In the second step, it has been widely acknowl-

edged that residue–residue contact maps contain crucial con-

straints for ab initio assembly of protein structures. In the past 5

years, several methods have been proposed to predict inter-TMH

residue contacts and TMH–TMH interactions from the primary

sequence. These approaches generally can be classified into two

categories: (i) correlated mutation analysis (CMA)-based

approaches [e.g. HelixCorr (Fuchs et al., 2007)], and (ii) machine

learning (ML)-based methods [e.g. TMHcon (Fuchs et al., 2009),

TMhit (Lo et al., 2009), MEMPACK (Nugent and Jones, 2010)

and TMhhcp (Wang et al., 2011)]. CMA-based approaches iden-

tify co-evolving residue pairs that tend to be in contact from mul-

tiple sequence alignments (MSAs). ML-based methods predict

inter-TMH residue contacts by training statistical models using

various sequence-derived features. The predicted contacts are

used to predict TMH–TMH interactions. Despite the progress,

there is much space for improvement.
First, in the case of CMA-based approaches, the performance

depends highly on the number of aligned sequences in MSAs.

For example, the recent CMA-based residue contact prediction

algorithm PSICOV (Jones et al., 2012) performs poorly on the

CASP hard targets, which tend to have few homologous

sequences (Di Lena et al., 2012). This indicates that contact

prediction based on CMA alone is insufficient. Second, from

ML point of view, inter-TMH residue contact prediction is an

imbalanced learning problem, where the number of samples in

different classes (contact versus non-contact) differs significantly.

Existing ML-based methods use random under-sampling*To whom correspondence should be addressed.
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(He and Garcia, 2009) to select the negative samples. Except for
random forest in TMhhcp (Wang et al., 2011), which used 100

decision trees, all the existing predictors were trained with a

single model using a 1:1 or 1:4 ratio of contact and non-contact

samples. There is no single best ML algorithm because each has a
different mathematical hypothesis. Therefore, an ensemble clas-

sifier constructed by applying multiple algorithms on multiple

training sets can combine the diversities among different pre-

dictors and yield better results (Shen and Chou, 2006). Third,
in all the existing ML-based models, feature vectors of two resi-

dues are serially concatenated together. Although this serial com-

bination is widely used, the doubled feature vector dimensions

may decrease performance due to over-fitting effects of high-di-
mensional data. The parallel strategy is another feature fusion

approach (Yang et al., 2003), which represents the two vectors as

real and imaginary parts in a complex space. The benefit is that

the dimension of the obtained complex vector is the same as the

vector of each residue, which we show improves performance.
In this study, we present a novel method called MemBrain to

predict inter-TMH residue contacts by merging an ML-based
engine with the CMA-based approach. Here, we use the

PSICOV (Jones et al., 2012) algorithm to calculate correlated

mutation scores (CMs). The ML-based engine in the proposed

protocol is implemented with an ensemble classifier. It is the
fusion of five OET-KNN (Zouhal and Denoeux, 1998) classifiers

and five SVM classifiers, where each independent classifier is

trained with a different training set obtained from five independ-

ent under-samplings. By doing so, we can get the diversities from

different algorithms and, at the same time, reduce the informa-
tion loss via multiple samplings.

2 MATERIALS AND METHODS

2.1 Data sets

For fair comparison, we used the same two benchmark data sets from

previous studies. The training data set was taken from TMHcon (Fuchs

et al., 2009) consisting of 62 alpha-helical transmembrane (TMH) pro-

teins. Here, we only used 60 of these proteins and discarded 1l7vA and

1vf5B because of either non-standard atomic coordinate records or too

few positive contacts, as defined in the next section. All the 60 proteins

have at least three TMHs with the pairwise sequence identity 540%

among the training data set. TMH locations and their topologies were

extracted from the databases of TOPDB (Tusnady et al., 2008), PDBTM

(Tusnady et al., 2005) and OPM (Lomize et al., 2006). For extra valid-

ation, an independent data set was taken from TMhhcp (Wang et al.,

2011), which contains 21 TMH proteins with the pairwise sequence iden-

tity540% in itself and to the training data set.

2.2 Contact definition and evaluation criteria

We adopted the contact definition from TMHcon (Fuchs et al., 2009),

MEMPACK (Nugent and Jones, 2010) and TMhhcp (Wang et al., 2011)

for the convenience of direct comparisons with these methods. Briefly,

two residues from different TMHs are considered to be in contact if the

minimal distance of their side chain or backbone heavy atoms is55.5 Å.

In this work, we evaluated our method using a leave-one-out jackknife

cross-validation, which is the same as previous studies. It takes one protein

sequence out for testing, while keeping the remaining protein sequences for

training. This procedure will be terminated when all the proteins have been

tested individually. The overall prediction performance was evaluated by

averaging the performances on individual proteins. We also assessed our

method using a 4-fold cross-validation, where the four equal-size subsets

have roughly the same number distribution of TMHs. Additionally, we

used an independent data set for further validation. In this case, the final

model was trained based on the whole training data set.

For inter-TMH residue contact prediction, the top L/5-predicted con-

tacts were selected for assessing the prediction performance and then used

to determine TMH–TMH interactions, which is the same as previous

reports (Fuchs et al., 2009). Here, L is the length of the concatenate

TMHs. Concretely, three measures are used to evaluate the performance,

i.e. Accuracy, Coverage and Accuracy (�¼ 4). Accuracy is defined as the

fraction of correctly predicted contacts with respect to all the predicted

contacts. Coverage is defined as the percentage of correctly predicted

contacts from the total observed contacts. Accuracy (�¼ 4) is derived

from �-analysis (Ortiz et al., 1999), which calculates the fraction of pre-

dicted contacts lying within one helix turn (four residues each side)

around the observed contacts.

For TMH–TMH interaction prediction, interacting helix pairs were

derived from the top L/5-predicted contacts. As defined in previous stu-

dies, a helix pair is considered to be interacting if it contains at least one

contact. Applying this definition to the training/independent data set, we

obtained 681/334 interacting helix pairs and 757/347 non-interacting helix

pairs, respectively, where the ratios between interacting and non-interact-

ing samples are similar to previous reports (Nugent and Jones, 2010).

Based on the observed interactions, the performance of predicting

TMH–TMH interactions can then be assessed. Four measures are used

to evaluate the performance, i.e. Accuracy, Sensitivity, Specificity and

MCC. Here, Accuracy is defined as the fraction of correctly predicted

interactions with respect to all the predicted interactions.

2.3 Feature extraction

We extracted four types of sequence-based features, including position-

specific scoring matrix (PSSM), residue position, relative position within

TMH and sequence separation between two residues, for model training.

TMH locations and their topologies were extracted from annotated

databases. Details for each type of input features are described in the

following text:

2.3.1 Position-specific scoring matrix The PSSM of each protein

was generated by using PSI-BLAST (Altschul et al., 1997) program

to search against the UniRef90 database with three iterations and an

E-value threshold of 0.001. PSSM can be represented by an L by

20 matrix, where L is the protein length. To consider neighboring resi-

dues, a sliding window centered on a target residue, with four residues

on each side of that residue, was used to extract a 180-dimensional feature

vector. The original score in each position was normalized by the follow-

ing logistic function of Equation (1) (Fuchs et al., 2009):

fðxÞ ¼
1

1 þ e�x
ð1Þ

where x is the original score.

2.3.2 Residue position A 10-dimensional binary vector is used to

encode the residue position along the TMH to reflect the contact site.

The first seven vector elements correspond to seven equally split parts

along the TMH. These elements were set to 0, other than the element at

index calculated by Equation (2) defined as follows:

index ¼ f

�
7 �

p� 1

N

�
þ 1 ð2Þ

where N denotes the length of the TMH containing the target residue,

and p denotes the position of the target residue between 1 and N on the

TMH. Here, the function f returns the floor value. The vector element at

index was set to 1 if the target residue is in the index-th part of the helix.

The last three vector elements indicate which side of the TMH the residue

lies on. We divided each TMH into three parts to encode whether the
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residue lies closest to the cytoplasmic side ([1 0 0]), helix core ([0 1 0]) or

extracellular side ([0 0 1]). One-quarter of the TMH consists of the cyto-

plasmic side, another quarter the extracellular side and the remaining the

helix core.

2.3.3 Residue relative position Residue relative position was calcu-

lated by Equation (3) defined as follows:

f ðpÞ ¼
p
N , i ¼ odd

1� p
N , i ¼ even

� �
ð3Þ

where N and p are as previously described, and i stands for the i-th

TMH along the protein sequence from N- to C-terminal. Residues with

similar position and relative position may have similar membrane bilayer

depth.

2.3.4 Sequence separation Sequence separation was encoded by a

nine-dimensional binary vector corresponding to the number of residues

between two residues. The bins consist of less than 25, 50, 75, 100, 125,

150, 175, 200 and more than 200 residues. If the separation satisfied the

threshold corresponding to the vector element j, then all vector elements

no more than j were set to 1.

2.4 Feature fusion

2.4.1 Serial combination The most straightforward way to combine

the two feature vectors from candidate residue pair is to serially concat-

enate one after the other, as implemented in all the previous studies

(Fuchs et al., 2009; Lo et al., 2009; Nugent and Jones, 2010; Wang

et al., 2011). Suppose that the feature vectors x and y represent residues

i and j, respectively, the serially combined feature vector z is a real vector

defined as follows:

z ¼
x
y

� �
ð4Þ

2.4.2 Parallel combination The symmetry of feature vectors of the

two residues motivates us to investigate a parallel combination approach

(Yang et al., 2003). Given the two feature vectors x and y described

earlier, the parallelly combined feature vector z is a complex vector in-

stead of the real vector in Equation (4), which is defined as follows:

z ¼ xþ i � y ð5Þ

where i represents an imaginary unit.

2.4.3 Feature reduction Many different kinds of feature reduction

algorithms are available, and among them the principle component ana-

lysis (PCA) algorithm is widely used (Fukunaga, 1990). However, for the

parallel combination in complex space [Equation (5)], PCA cannot be

directly used. An extension of PCA called GPCA (generalized principle

component analysis) has been proposed (Yang et al., 2003) for dealing

with the complex vector feature reduction problem. Suppose that the

complex feature vector z lies in a unitary space, let Q be the number of

pattern classes, P(!i) be the prior probability of pattern class i,

�zi ¼ Efz j!ig be the mean feature vector of pattern class i and

�z ¼ Efzg ¼ �
Q
i¼1Pð!iÞ � �zi be the mean vector of all the feature vectors.

The between-class scatter matrix, within-class scatter matrix and total-

scatter matrix are, respectively, defined as follows:

Sb ¼
XQ

i¼1
Pð!iÞð �zi � �zÞð �zi � �zÞH ð6Þ

Sw ¼
XQ

i¼1
Pð!iÞE ðz� �ziÞðz� �ziÞ

H !ij
� �

ð7Þ

St ¼ Sb þ Sw ¼ E ðz� �zÞðz� �zÞH
� �

ð8Þ

From Equations (6–8), it is obvious that Sb, Sw and St are all semi-

positive definite Hermite matrices, so together with the proved theorem

that each eigenvalue of Hermite matrix is a real number (Ding and Cai,

1995), we then can have the following corollary: the eigenvalues of Sb, Sw
and St in unitary space are all non-negative real numbers. Based on the

aforementioned corollary, the GPCA thus can be described as follows: Let

v1, v2, . . . , vn be the orthogonal eigenvectors of St, and �1, �2, . . . , �n be the

associated eigenvalues, which satisfy �1��2� . . .��n. By choosing the first

m-maximal eigenvectors as projection axes, a given feature vector z can be

projected to an m-dimensional vector g by Equation (9) as follows:

g ¼ �Hz ð9Þ

where �¼ (v1, v2, . . . , vm). The dimensionality-reduced vector g, rather

than the original combined feature vector z, is then used for classification.

Note that the dimensionality-reduced vector g also lies in a unitary space.

When the complex feature space degenerates to a real space, the GPCA is

in fact the classic PCA.

2.5 Prediction model

The developed MemBrain predictor is composed of two engines: CMA-

based and ML-based prediction modules. The flowchart of MemBrain is

shown in Figure 1. The merit of CMA-based engine is that it has a clear

biophysical interpretation, but its performance is highly dependent on the

number of homologous sequences. The ML-based engine is not easily

interpretable, but it handles the small-sample problem better. These

two engines complement each other in inter-TMH residue contact pre-

diction to drive MemBrain as an accurate prediction model.

2.5.1 CMA-based prediction engine Approaches that use CMs to

detect co-evolving residue pairs work commonly through calculating the

Pearson correlation coefficient (Gobel et al., 1994; Pollock and Taylor,

1997) or mutual information (Burger and van Nimwegen, 2010; Dunn

et al., 2008) between columns in MSAs. PSICOV (Jones et al., 2012), a

recent approach that is based on mutual information, improved signifi-

cantly the accuracy of contact prediction by using a sparse inverse covari-

ance estimation technique (Meinshausen and Buhlmann, 2006) to deal

with indirect coupling effects.

We used PSICOV to calculate CMs, where the residue pairs that lie on

the same TMH were removed. The initial MSAs were collected by using

PSI-BLAST to search against the UniRef90 database with three iter-

ations and an E-value threshold of 0.001. In the final alignments, all

columns not belonging to any TMH regions were deleted and duplicate

Fig. 1. Flow chart of residue contact prediction protocol in MemBrain
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sequences were also discarded. The output raw scores were scaled to the

range [0, 1] using the standardized function:

sðxÞ ¼
x �min

max �min
ð10Þ

where x is the raw score and min and max are minimal and maximal

scores for a given protein.

2.5.2 ML-based prediction engine Applying the contact definition

described earlier, we obtained 11 526 contact residue pairs (positive sam-

ples) and 532531 non-contact residue pairs (negative samples). The ratio

between the total contact pairs and all the non-contact pairs is �1:46,

resulting in the problem of imbalanced learning. In principle, we can

randomly sample a subset from the negative class and incorporate it

with all positive samples to form a relative balanced training set.

However, the information loss induced by random under-sampling will

weaken the prediction performance. In light of this problem, we applied

ensemble learning to reduce the impact of under-sampling.

We randomly sampled five subsets from the negative class independ-

ently and incorporated each subset with all positive samples to generate

five different training sets. These five training sets were used to train five

separate OET-KNN and SVM classifiers. The ratio between the positives

and the sampled negatives is important because it will serve as a base

for the statistical algorithm to learn the distributions of different classes.

According to our experiments, the ratio 1:4 between positive and negative

samples for each protein gives better performance and hence is used

in MemBrain. OET-KNN and SVM classifiers were trained with parallel

fused feature sets and serial combined feature sets, respectively, because

our experimental results show that this is a better choice, and meanwhile,

strong diversities can be generated among the component classifiers,

which are critical for ensemble learning performance (Zhou and Yu,

2005).

We have trained multiple classifiers consisting of five OET-KNN clas-

sifiers and five SVM classifiers, which were fused together with a linear

combination scheme based on posteriori probabilities. To give a general

definition, suppose that there exist M1 OET-KNN classifiers, M2 SVM

classifiers and Q pattern classes, we then define the linear combination

scheme as follows:

Pk ¼ � �
XM1

i¼1
wi � PðkjOiÞ

þð1� �Þ �
XM2

j¼1
wj � PðkjSj Þ, ðk ¼ 1, 2, � � � , QÞ

ð11Þ

where P(kjOi) and P(kjSj) denote the probability of class k by the i-th

OET-KNN classifier and the j-th SVM classifier, respectively; Pk denotes

the fused probability; wi and wj denote the weights of the i-th OET-KNN

classifier and the j-th SVM classifier, respectively, which are set to the

average value for all members of the same classifier type, i.e. wi¼ 1/M1

and wj¼ 1/M2. The weight � is selected by searching the value from 0 to 1

with a step of 0.01 via a jackknife cross-validation. Obviously here,

M1¼M2¼ 5 and Q¼ 2. Note that the raw scores generated by each

classifier for a given protein were scaled to the range [0, 1] with

Equation (10) before combination. This ensemble ML predictor is

denoted as OSC (OET-KNN and SVM Classifier).

2.5.3 Final prediction model The combination of CMA-based

engine PSICOV and ML-based ensemble engine OSC forms the final

prediction model, which is implemented in MemBrain. The outputs of

OSC and PSICOV are merged by using a linear combination defined as

follows:

P ¼ � � POSC þ ð1� �Þ � PPSICOV ð12Þ

where POSC and PPSICOV are the predicted contact probabilities gener-

ated by OSC and PSICOV, respectively, and P denotes the final contact

propensity. The weight � is selected using the same search strategy as the

weight �.

3 RESULTS

3.1 Benchmark test of CMA-based approach

We applied the CMA-based algorithm PSICOV (Jones et al.,

2012) for inter-TMH residue contact prediction. It was per-

formed on the concatenated sequence, which consists of the

TMH regions. Residue pairs that lie on the same TMH were

removed from the predictions. All the possible residue pairs

were ranked according to the generated CMs. The top ranked

L/5 residue pairs were selected as the predicted contacts, where

L is the total number of residues in the TMHs.

PSICOV calculates CMs from MSAs by PSI-BLAST search

through the UniRef90 database. The quality of MSAs is critic-

ally important for the final prediction accuracy. Supplementary

Figure S1 illustrates the average performance of PSICOV on 60

TMH proteins in the training data set. As can be seen, the pre-

diction performance is highly dependent on sufficient homology.

When the number of homologous sequences increases from 250

to 5000, the prediction accuracy improves as well from 21.6 to

42.1%. Although the performance can be improved by including

more homologous sequences, there is a limit. We have tried to

increase this parameter to greater than 5000, but found that the

prediction performance did not change much. For a balance, we

set the parameter of -b to 5000 for PSI-BLAST in the following

experiments. With this parameter, the prediction accuracy is

42.1% on the training data set.
To examine the effects of MSAs’ size on accuracy, we divided

the training data set into five subsets based on the number of

sequences in MSAs. The performance of residue contact predic-

tion on these five subsets is shown in Supplementary Table S1.

As expected, better performance was achieved for proteins with a

larger set of MSAs (52.8% in Group 5 with more than 5000

aligned sequences), whereas poorer performance for those with

smaller MSAs (12.8% in Group 1 with less than 250 aligned

sequences). In the case of difficult targets that have few homolo-

gous sequences, the prediction of residue contacts is still a chal-

lenge to PSICOV due to the incorrect co-evolution values that

are calculated from small MSAs. For instance, the average ac-

curacy on the five proteins in Group 1 with no more than 250

homologous sequences found is only 12.8%, with a coverage rate

as low as 3.4%. These results demonstrate the weakness of the

CMA-based approach.

3.2 Benchmark test of ML-based engine

We have trained five OET-KNN classifiers (denoted as OET1,

OET2, OET3, OET4 and OET5) (see Supplementary Fig. S2)

and five SVM classifiers (denoted as SVM1, SVM2, SVM3,

SVM4 and SVM5), where each of them was trained with differ-

ent training sets. As shown in Supplementary Table S2, the pre-

diction accuracy of exact contacts by individual OET-KNN

classifiers varies from 45.5 to 47.8% and that with a residue

variation within one helix turn (�¼ 4) ranges from 78.0 to

78.5%. For individual SVM classifiers, the prediction accuracy

varies from 46.9 to 49.0% and that with �¼ 4 ranges from 83.1

to 85.2%. These results indicate that the prediction performance

is unstable with respect to classification algorithm and the sam-

pling. When we combined individual OET-KNN classifiers with

equal weights, denoted as OETs, the prediction accuracy
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increased to 48.2%. Similarly, we combined individual SVM

classifiers, denoted as SVMs, the prediction accuracy improved

to 50.7%. As shown in Supplementary Figure S3, the areas

under the curve of the combined classifiers OETs and SVMs

are 0.805 and 0.841, which are superior to those of the individual

OET-KNN and SVM classifiers, respectively.
Both of the improvements by OETs and SVMs demonstrate

that fusing multiple classifiers is an effective way to reduce the

information loss in the under-sampling process. Thus, we con-

structed an ensemble predictor called OSC by combining OETs

and SVMs to make full use of diversities from multiple training

subsets and classification algorithms according to Equation (11).

Supplementary Figure S4A illustrates the results.
The combination of OETs and SVMs indeed performs better

on small weights as expected because SVMs performs better than

OETs. At first as the weight � increases, the prediction perform-

ance improves, and then it degrades to the performance of OETs.

When � increases to the value 0.24, the highest prediction accur-

acy of 52.8% is obtained, which is then adopted in the ensemble

classifier. As shown in Supplementary Table S2, OSC performs

better than both OETs and SVMs on all the three measures. The

prediction accuracy of OSC is 4.6% higher than OETs and 2.1%

higher than SVMs. The area under the curve of OSC is 0.846,

which is higher than 0.805 of OETs and 0.841 of SVMs

(Supplementary Fig. S3). The good performance of OSC is due

to the complementation of individual classifiers.

3.3 Merging CMA-based approach with ML-based engine

As the predicted CMs indicate the potential of residue pairs to

form contacts, this information can be used not only as features

but also as decisions. In Supplementary Table S3, we show that

decision-level fusion (regarding CMs as independent prediction)

discussed in this article outperforms feature-level fusion (regard-

ing CMs as an additional feature fed into the ML model) applied

in existing methods in both cases of OET-KNN and SVM. For

instance, in the case of OET-KNN, feature-level fusion does not

help to improve the performance, whereas decision level fusion

improves the accuracy from 47.8 to 57.0%. Thus, we constructed

a consensus predictor to further improve the prediction perform-

ance by merging the outputs of ensemble classifier OSC and

PSICOV (Jones et al., 2012), which is implemented as

MemBrain according to Equation (12). As shown in

Supplementary Figure S4B, the highest prediction accuracy was

obtained when the weight � is 0.56. The prediction accuracy of the
consensus predictor is 62.0%, as listed in SupplementaryTable S2.

The combination of OSC and PSICOV significantly improves

the prediction performance in terms of all the three measures. The

complementation contributes 9.2%prediction accuracy and 5.1%

accuracy (�¼ 4) to OSC. The consensus predictor achieves 19.9%

higher prediction accuracy than PSICOV alone.We also analyzed

statistical significance of the differences of the three criteria

between MemBrain and OSC/PSICOV using a paired t-test. If

the resulting P-value is below a level (e.g. 0.05), the performance

difference between two methods is considered to be statistically

significant. The resulting p-values in terms of accuracy, coverage

and accuracy (�¼ 4) are 1.2e-4/4.2e-7, 3.4e-3/2.6e-6 and 6.5e-3/

1.7e-7, respectively. These results indicate that MemBrain is stat-

istically better than the other two independent engines.

Supplementary Table S1 also shows the performance of

MemBrain on five groups of proteins according to MSAs’ size.

Comparing with PSICOV, we find that accuracies in all the five
groups are improved (see Fig. 2). The largest improvement occurs

in Group 2, where the accuracy is increased from 28.0 (PSICOV)
to 73.5% (MemBrain). For the very difficult targets in Group 1,

the accuracy is increased from 12.8 to 23.6%. These results show
that the combination ofOSC and PSICOV is helpful for fusing the

merits of both ML-based and CMA-based methods to enhance
the prediction accuracy. Supplementary Figure S5 elucidates how

OSC and PSICOV complement each other by taking two TMH
proteins 1bccC and 2nr9A as instances.

3.4 Performance comparison of residue contact prediction

with existing methods

In this section, we compared our predictor MemBrain with exist-
ing methods on both training and independent data sets, includ-

ing three inter-TMH residue contact predictors [TMHcon (Fuchs
et al., 2009), MEMPACK (Nugent and Jones, 2010) and

TMhhcp (Wang et al., 2011)] and two globular protein residue
contact predictors [SVMcon (Cheng and Baldi, 2007) and

SVMSEQ (Wu and Zhang, 2008)]. On the training data set,
the compared predictors for TMH proteins are evaluated on

the same data set with jackknife cross-validation. On the inde-
pendent data set, experimental results of TMHcon and

MEMPACK were taken from TMhhcp. PSICOV (Jones et al.,

2012) is also included for comparison. TMhhcp reported two
types of results based on all the features and the selected features

(denoted as TMhhcp1 and TMhhcp2), we list both of them for
comparison. For globular protein contact predictors, we only

ranked the residue pairs that lie on different TMHs.
As shown in Table 1, MemBrain performs substantially better

than other methods, with a prediction accuracy of 62.0%/64.1%
on the training/independent data set. Note that MEMPACK se-

lected the predicted contacts based on scores generated by the
SVMpredictor rather than the top L/5 predictions, and the cover-

age is the fraction of the total correctly predicted contacts from all

Fig. 2. Performance improvement on five groups by combining OSC to

PSICOV
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the observed contacts and hence is larger than the methods based
on the top L/5 predictions. Taking the best existing method
TMhhcp for comparison, MemBrain achieves 12.5%/16.0%

and 16.2%/15.5% higher prediction accuracy than TMhhcp1
and TMhhcp2, respectively, on the training/independent data

set, and the corresponding prediction accuracy (�¼ 4) is 6.5%/
5.2% and 6.6%/7.8% higher. It is noteworthy that globular pro-
tein contact predictors SVMcon and SVEMSEQ perform poorly

when applied to TMH proteins. We also conducted the paired
t-test to compare the statistical significance between MemBrain
and SVMcon/SVMSEQ on the training data set. The resulting

p-values in terms of accuracy, coverage and accuracy (�¼ 4) are
1.9e-21/2.5e-19, 1.1e-17/4.9e-15 and 1.9e-12/1.8e-11, respectively.
These results suggest that predictors designed for globular pro-

teins are not suitable for predicting inter-TMH residue contacts.
The reason can be the very different cellular environments of

residues in and out of the membrane, and hence the features
are also different. In addition, we also assessed our method
using a 4-fold cross-validation and obtained comparable results

with that of jackknife cross-validation. Supplementary Table S4
shows the performance on more non-redundant data sets.
Interestingly, PSICOV performs better on the independent

data set than the training data set, as shown in Table 1, where
the prediction accuracy is improved from 42.1 to 50.9%. We
found that 26 of 60 proteins from the training data set contained

less than 1000 aligned sequences in MSAs, whereas for the inde-
pendent data set, the ratio is 3 of 21. In addition, 10 proteins in
the training data set contained less than 500 aligned sequences,

whereas all the proteins in the independent data set contained
more than 500 aligned sequences. The results demonstrate that

the performance of PSICOV is highly dependent on sufficient
homology.

3.5 Performance comparison of TMH–TMH interaction

prediction with existing methods

One important use of the predicted contacts is to identify inter-

acting TMHs. Using the observed interactions described previ-
ously, the performance of TMH–TMH interaction prediction
can be assessed. The performance comparison with existing

methods is shown in Supplementary Table S5. MemBrain
achieves 90.1%/87.9% prediction accuracy and an MCC of
0.555/0.526 on the training/independent data set, which performs

better than the existing methods. As TMH interaction prediction
is derived from the predicted contacts, globular protein contact

predictors perform poorly on inter-TMH residue contact predic-
tion and thus are not as good as the TMH protein contact pre-
dictors for TMH–TMH interaction prediction. Also, as can

be seen from Supplementary Figure S5, the predicted contacts
obtained by PSICOV (Jones et al., 2012) are widespread. In other

words, it predicted more interacting TMH pairs with higher sen-
sitivity. Meanwhile, it predicted more spurious interacting TMH
pairs as well with lower accuracy, which resulted in a relative

lower MCC compared with MemBrain.

3.6 Benchmark test on MemBrain-guided GPCR

structure modeling

To have a direct examination of the impact of the MemBrain
contact predictions on three-dimensional (3D) GPCR modeling,

we collected all 13 GPCR proteins with known structure in the
PDB library (PDBID: 1u19A, 2rh1A, 2y00A, 2z73A, 3emlA,
3oduA, 3pblA, 3rzeA, 3vw7A, 4dajA, 4djhA, 4ea3A, 4grvA,

see Table 2). We then generate GPCR models by I-TASSER
(Roy et al., 2010; Xu et al., 2011) with MemBrain contacts and

also models without using MemBrain contacts.
Although MemBrain contact predictions are only on the C�

atoms, we found that the best GPCR models can be generated

when the same contact restraints are extended for all C�, C� and
side-chain center of mass in the I-TASSER simulations. Table 2
summarized the results of I-TASSER with and without using

MemBrain contacts, where all GPCR templates and the hom-
ologous templates with a sequence identity430% or detectable

by PSI-BLAST are excluded. First, although no GPCR tem-
plates were used, the inherent I-TASSER fragment assembly
simulation was able to assemble structures with an approxi-

mately correct TMH arrangement (TM-score40.5) in 7 of 13
cases; in 5 cases, the models have a TM-score40.6. The average

TM-score and RMSD to the X-ray structure are 0.465 and
10.9 Å, respectively, in the TMH regions.
The average accuracy of the MemBrain contact predictions is

0.57 for the top L/5 predictions, whereas I-TASSER uses the top
L contacts, which have an average accuracy of 0.35. As shown in
Table 2, the incorporation of MemBrain contacts has signifi-

cantly improved the quality of the GPCR models. For example,
the number of cases with a TM-score40.6 increases from 5 to 10

and the average TM-score increases by 37%. This TM-score
improvement on GPCRs by MemBrain contacts is dramatically
higher than that observed on the globular proteins by SVMSEQ

(Wu and Zhang, 2008) contacts for the I-TASSER models,
which have a TM-score increase by 4.6% (Wu et al., 2011).
The major reason for the difference is the higher accuracy

of the long-range contacts by MemBrain, which have been

Table 1. Performance comparison of residue contact prediction

Method Accuracy

(%)

Coverage

(%)

Accuracy

(�¼ 4) (%)

Comparison on the training data set

TMHcon 25.9 3.5 78.5

TMhhcp1 49.5 8.2 83.9

TMhhcp2 45.8 7.4 83.8

SVMcon 8.4 1.5 55.1

SVMSEQ 13.0 2.8 60.9

PSICOV 42.1 6.7 74.7

MemBraina 61.4 10.1 89.1

MemBrainb 62.0 10.2 90.4

Comparison on the independent data set

TMHcon 23.6 3.0 83.4

MEMPACK 36.2 10.4 63.0

TMhhcp1 48.1 6.1 84.4

TMhhcp2 48.6 6.1 81.8

SVMcon 10.4 1.6 68.0

SVMSEQ 17.7 2.4 66.0

PSICOV 50.9 6.6 81.1

MemBrain 64.1 8.3 89.6

Note: aResults obtained from 4-fold cross-validation.
bResults obtained from jackknife cross-validation.
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specifically trained for TMHs. If we apply SVMSEQ on the 13
GPCRs, the average accuracy of contacts is only 0.16 for top L/5

or 0.09 for top L predictions (not to mention that many of the
SVMSEQ predictions are short-range contacts, which are less
useful for protein 3D constructions).

As expected, there is an obvious correlation between the TM-
score improvement and the accuracy of the MemBrain contacts.

For the targets with the most significant improvement (e.g.
2z73A and 3rzeA), the accuracy of MemBrain for the top L
contacts is 46 and 31%, respectively. For targets of relatively

lower accuracy (3emlA with a contact accuracy 25%), the TM-
score of the I-TASSER models is slightly improved but still in
the unfoldable region (TM-score¼ 0.315). There are some tar-

gets, e.g. 4djhA, where the MemBrain contact accuracy is high
(0.57 for L/5 and 0.37 for L), but the TM-score improvement
(12%) is lower than average because a high proportion of

MemBrain contacts (78%) are already included in the I-
TASSER models. Nevertheless, the remaining 22% of the

novel contacts from MemBrain serve to refine the models.
In Figure 3, we present the superposition of MemBrain-guided

I-TASSER models and X-ray structures for all 13 GPCRs. Most

of the I-TASSERmodels indeed show a similar topology of TMH
packing to the targets. However, there are a few targets (e.g.
2z73A, 3pblA and 4djhA) where the I-TASSER models have

the TMH structure bended away from the axis at the middle of
the helices. This is due to the fact that the I-TASSER simulations
were fully automated and no TMH requirements were imple-

mented. Thus, the bended helices from non-homologous

templates resulted in the helix bending. If TMH predictions

fromMEMSTAT (Jones et al., 1994) were used, the TMH bend-
ing could be eliminated but the overall TM-score was not obvi-

ously improved (data not shown).
Although theMemBrain contacts are only in the TMH regions,

the overall I-TASSER models along the entire chain are also im-

proved. As shown in Supplementary Table S6 and Supplementary
Figure S6, the average TM-score of the whole-chain models is
increased by 35% and RMSD reduced by 2.6 Å. The number of

targets with a correct fold (TM-score40.5) increases from 5 to 10,
when the MemBrain contact predictions are used. It is worth
mentioning that all GPCR templates and homologous templates

with sequence identity430% were both excluded in aforemen-
tioned I-TASSER simulations. If we only excluded the homolo-
gous templates with sequence identity 430% in I-TASSER

simulations, in which case some GPCR templates can be kept,
then the final average RMSD is as low as 1.8 Å with a TM-score
0.902, as demonstrated in Supplementary Table S7.

3.7 Case studies

The usefulness ofMemBrain contact predictions has been demon-
strated in the case of GPCR 3D structure modeling. To further
demonstrate the effectiveness of MemBrain contact predictions

for other TMH proteins besides GPCRs, we performed structure
prediction for two newly solved membrane protein structures, i.e.

heterodimeric ABC transporter (3qf4A) (Hohl et al., 2012) and
channelrhodopsin (ChR) chimera between ChR1 and ChR2

Fig. 3. Superposition of the first model (blue) and the X-ray structure

(red) in the transmembrane regions for 13 known GPCRs. Models are

generated by I-TASSER with contact restraints from MemBrain. All

GPCR templates and the homologous templates with a sequence identity

430% detectable by PSI-BLAST have been excluded during I-TASSER

simulations

Table 2. Protein structure modeling of 13 GPCRs by I-TASSER with or

without using MemBrain contact predictions with RMSD and TM-score

calculated in the transmembrane regionsa

PDBID Lb LTM
c Acc

(L/5)d
Acc

(L)e
RMSD/

TMf
RMSD/

TMg

1u19A 348 169 0.52 0.36 9.9/0.547 7.1/0.667

2rh1A 282 180 0.58 0.35 20.7/0.208 11.6/0.498

2y00A 286 180 0.61 0.35 6.7/0.466 5.0/0.604

2z73A 350 181 0.69 0.46 18.0/0.213 8.7/0.687

3emlA 286 186 0.35 0.25 19.1/0.196 18.6/0.315

3oduA 282 182 0.72 0.36 6.7/0.615 4.4/0.771

3pblA 272 174 0.59 0.36 15.1/0.287 15.5/0.398

3rzeA 267 176 0.57 0.31 14.4/0.243 5.1/0.616

3vw7A 284 182 0.56 0.36 9.4/0.552 8.2/0.634

4dajA 264 177 0.54 0.30 4.1/0.729 3.7/0.806

4djhA 286 177 0.57 0.37 5.9/0.686 5.2/0.768

4ea3A 278 177 0.51 0.29 5.7/0.669 3.9/0.803

4grvA 298 182 0.61 0.36 5.9/0.634 4.4/0.719

Average 291 178 0.57 0.35 10.9/0.465 7.8/0.637

Note: aAll GPCR templates and homologous templates with sequence identity

430% were excluded.
bNumber of residues of the whole chain.
cNumber of residues in the transmembrane regions.
dAccuracy of the top L/5 contact predictions by MemBrain.
eAccuracy of the top L contact predictions used by I-TASSER.
fRMSD (Å) and TM-score of the first model by I-TASSER without using

MemBrain predictions.
gRMSD (Å) and TM-score of the first model by I-TASSER using MemBrain

predictions.
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(3ug9A) (Kato et al., 2012). The pairwise sequence identities of

the two proteins to the training data set are 530%. Using
MemBrain, 64.5 and 80.7% of the predicted top L/5 contacts
are native contacts for the two proteins, respectively. Their cor-

responding accuracies derived from �-analysis (�¼ 4) are both
100%. These results are shown in Supplementary Figure S7.
Similar to the GPCR benchmark, homologous templates were

removed. We first tried removing templates that have sequence
identity430%. In both proteins when contact predictions were
not used, the RMSD in the TMH region was 4.3 and 3.0 Å for

3qf4A and 3ug9A, respectively. The results are given in Table 3.
For both proteins, the accuracy without predicted contacts is
already high. Although MemBrain predictions are good relative

to current contact prediction methods, the probability of improv-
ing these structures further with predicted contacts is small, and
the structures may even be made slightly worst. This was indeed

the case for both proteins (Table 3), where no improvement
occurred. Nevertheless, contact prediction can improve struc-

tures of mediocre quality, so we also tried removing templates
that have sequence identity415% to generate these structures for
improvement.

For 3qf4A, in the 15% sequence identity case, the resulting
model without MemBrain contacts remained similar at 4.2 Å in
the TMH region, but the RMSD of the entire chain increased

significantly by 419.0 Å relative to the 30% case. With
MemBrain contacts, the RMSD in the TMH region also re-
mained similar at 4.2 Å, and the whole-chain RMSD increased

by 17.0 Å. Although the predicted contacts did not have much
effect on the first model, the contacts did reduce the number of
poorly predicted structures among the top 10models.Without the

predicted contacts, the two worst models were 9.9 and 20.4 Å;
whereas with the contacts, the worst model was 5.5 Å, which
makes the significant improvement in the top 10 models in

terms of both the average RMSD and TM-score (Table 3). It is

worth pointing out that 3qf4A is an especially challenging case
because it is a dimer, and the helices that span the membrane also
protrude significantly outside the membrane to form an intracel-

lular domain. In addition to inter-chain contacts, inter-helix con-
tacts were not predicted for the residues outside the membrane,
which limited the accuracy of helix placement and reduced the

impact of MemBrain contact predictions.
For 3ug9A, in the 15% sequence identity case, the result was

5.6 and 4.2 Å in the TMH region, respectively, for the case with-

out and with MemBrain-predicted contacts. As to the top 10
models, the MemBrain-predicted contacts are found also helpful
by improving the average RMSD from 10.9 to 5.3 Å, with TM-

score improved from 0.369 to 0.6.
To challenge MemBrain further, templates with TM-score

40.5 to the X-ray structure were removed to increase the depend-

ence on the predicted contacts rather than on the templates for
protein folding. In this case, the improvement was significant for
3ug9A, where the change was from 15.0 to 6.9 Å in the TMH

region. We tried the same40.5 cutoff for 3qf4A, but the result
was416 Å in the TMH region for both cases because of the lack

of inter-helical contact information in the intracellular domain.

4 DISCUSSION

Our results demonstrate that the weakness of CMA (sufficient
homology) can be compensated for by combining it with ML
methods, and the weakness of statistical ML (local condensed

predictions) can also be complemented by combining with
CMA-based approaches. It would be interesting to investigate

whether the idea of combining ML-based methods with CMA-
based approaches in MemBrain can also be used to enhance the
contact prediction accuracy in globular proteins. To demonstrate

this, we used PSI-BLAST to search against UniRef90 database
for the 22 targets containing free modeling or free modeling/tem-
plate-based modeling domains in CASP9. Supplementary Figure

S8 shows the distributions of the number of homologous se-
quences on the CASP9 targets.
The results in Supplementary Figure S8 demonstrate: (i)

Although some targets have very fewor no homologous structures
in the PDB, which causes difficulties for homology structuremod-
eling, they have a large number of homologous sequences avail-

able. For example, four of these targets have more than 1000
homologous sequences in the UniRef90 database. This means
we can get reliable predicted contacts for these four proteins

(�61% average accuracy for top L/5 predictions on the training
data set). (ii) In the other 18 targets, 9 of them contain less than

250 homologous sequences.According to our results, the accuracy
of PSICOV in this group was very low (12.8% in this work), and
the combination of ML-based method with PSICOV is expected

to improve the accuracy (23.6% in this work). Furthermore, there
are six proteins in the homology size region of (250 500). When
directly applying PSICOV on this group, the results are also not

satisfactory (28.0% in this work). However, the MemBrain pre-
diction significantly improves the results in this group (73.5% in
this work).

To further illustrate the potential merit of the combination of
ML-based methods with CMA-based approaches on globular
proteins, we replaced the ML-part of the MemBrain predictor

with SVMSEQ. The predictions of SVMSEQ for the 22 targets

Table 3. The top I-TASSERmodel (largest cluster) for 3qf4A and 3ug9A

with or without using MemBrain contact predictions

PDBID Cutoff RMSD/

TMa
RMSD/

TMb
RMSD/

TMc
RMSD/

TMd

3qf4A 30e 4.3/0.607 4.2/0.610 6.1/0.715 6.0/0.716

15e 4.2/0.605 4.2/0.606 25.3/0.437 23.0/0.449

A15f 6.7/0.523 4.6/0.600 26.0/0.422 25.4/0.417

50g 16.7/0.264 16.5/0.261 22.2/0.288 22.0/0.286

3ug9A 30e 3.0/0.795 3.2/0.765 15.0/0.649 14.9/0.642

15e 5.6/0.524 4.2/0.599 12.5/0.450 11.9/0.500

A15f 10.9/0.369 5.3/0.600 19.9/0.323 16.0/0.500

50g 15.0/0.219 6.9/0.564 17.4/0.231 16.3/0.472

Note: The RMSD and TM-score to native for different degrees of template structure

removal are given.
aRMSD (Å) and TM-score in the TMH region without usingMemBrain predictions.
bRMSD (Å) and TM-score in the TMH region using MemBrain predictions.
cRMSD (Å) and TM-score of the whole chain without usingMemBrain predictions.
dRMSD (Å) and TM-score of the whole chain using MemBrain predictions.
eTemplates whose sequence has4X%sequence identity to the protein were removed.
fAverage results of the top 10 models, where templates whose sequence has415%

sequence identity to the protein were removed.
gTemplates whose structure has TM-score40.5 to the native structure were removed.
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were extracted from http://www.predictioncenter.org/download_
area/CASP9/predictions/, which were merged with PSICOV out-
puts using a linear combination strategy. Supplementary Table
S8 lists the detailed performance of top L/5 predictions for each

range contact on the 22 targets. As can be seen, the performance
improved as expected. From the results, it is very interesting to
see the following: SVMSEQ performs better than PSICOV on

the short-range contacts (33.6% versus 12.8%), and worse than
PSICOV on the long-rang contacts (17.1% versus 20.3%). This
is consistent with our previous observation that the ML-based

approach gives more local condensed predictions. The results
also show that SVMSEQ and PSICOV predictions are largely
complementary on long-range contacts, which makes the com-

bination of them more accurate. These results suggest that a
proper consensus of CMA-based approaches with ML-based
methods is also promising for enhancing the ab initio contact
predictions in globular proteins.

Besides inter-TMH residue contacts in TMHs (denoted as
Type 1), there exist two other contact types in TMH proteins:
contacts where one residue is in the membrane region and the

other residue in the water-soluble loop region (denoted as Type
2), and contacts where both residues are in the water soluble
region (denoted as Type 3). These two types of contacts are also

important for 3D structure prediction, especially for the loop
region. By observing the native contacts from known structures
in the training and the independent data set at the whole-chain
level, we found that 48.0 and 45.9% are Type 3 contacts, and 14.1

and 14.8% are Type 2 contacts. Hence, predicting these two types
of contacts will be important future work. In this case, the pre-
dictors developed for predicting residue contacts in globular pro-

teins are expected to contribute.
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