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ABSTRACT

Motivation: Cancer cells are often characterized by epigenetic

changes, which include aberrant histone modifications. In particular,

local or regional epigenetic silencing is a common mechanism in

cancer for silencing expression of tumor suppressor genes. Though

several tools have been created to enable detection of histone marks

in ChIP-seq data from normal samples, it is unclear whether these

tools can be efficiently applied to ChIP-seq data generated from

cancer samples. Indeed, cancer genomes are often characterized by

frequent copy number alterations: gains and losses of large regions of

chromosomal material. Copy number alterations may create a sub-

stantial statistical bias in the evaluation of histone mark signal enrich-

ment and result in underdetection of the signal in the regions of loss

and overdetection of the signal in the regions of gain.

Results: We present HMCan (Histone modifications in cancer), a tool

specially designed to analyze histone modification ChIP-seq data pro-

duced from cancer genomes. HMCan corrects for the GC-content and

copy number bias and then applies Hidden Markov Models to detect

the signal from the corrected data. On simulated data, HMCan out-

performed several commonly used tools developed to analyze histone

modification data produced from genomes without copy number

alterations. HMCan also showed superior results on a ChIP-seq data-

set generated for the repressive histone mark H3K27me3 in a bladder

cancer cell line. HMCan predictions matched well with experimental

data (qPCR validated regions) and included, for example, the previ-

ously detected H3K27me3 mark in the promoter of the DLEC1 gene,

missed by other tools we tested.

Availability: Source code and binaries can be downloaded at http://

www.cbrc.kaust.edu.sa/hmcan/, implemented in Cþþ.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

ChIP-Seq is a combination of chromatin immunoprecipitation

and next-generation sequencing of extracted DNA fragments

(Robertson et al., 2007). The ChIP-Seq technique is now

widely used for identification of epigenetic marks such as histone

variants and different covalent modifications of histone tails

(Furey, 2012). Common histone modifications include lysine

acetylation, methylation, ubiquitylation and sumoylation,

serine and threonine phosphorylation and arginine methylation

(Kouzarides, 2007). Histone marks help partitioning the genome

into euchromatin, which is accessible for transcription, and

heterochromatin. For instance, trimethylation of lysine 9 of his-

tone 3 (H3K9me3) and trimethylation of lysine 27 of histone 3

(H3K27me3) are marks associated with pericentromeric hetero-

chromatin and regions of polycomb-mediated repression

(Kharchenko et al., 2011). Also, histone modifications and his-

tone variants are often associated with distinct biological func-

tions. For instance, trimethylation of lysine 36 of histone 3

(H3K36me3) is a mark of transcription elongation; trimethyla-

tion of lysine 4 of histone 3 (H3K4me3) marks active or poised

promoters; monomethylation of lysine 4 of histone 3 (H3K4me1)

together with acetylation of lysine 27 of histone 3 correlates with

active enhancers (Kouzarides, 2007). Some marks are narrow

and cover 1–10 consecutive nucleosomes (e.g. H3K4me1 or

H3K4me3), whereas others (e.g. H3K27me3 and H3K36me3)

can cover large genomic regions, from tens to hundreds of kilo-

bases in length.
Although genetic modifications remain the main cause of

cancer development, epigenetic modifications may also play a

role in cancer development and progression (Esteller, 2007).

DNA methylation and/or histone methylation and deacetylation

can be observed either as local modifications or along large gen-

omic regions. When regional, these modifications may cause

chromatin remodeling and silence expression of most genes in

these regions. This phenomenon is often called regional epigen-

etic silencing (RES) or long range epigenetic silencing (LRES).

RES/LRES has been shown to affect gene expression in many

cancer types including bladder cancer (Stransky et al., 2006),

colorectal cancer (Dallosso et al., 2012; Frigola et al., 2006),

breast cancer (Novak et al., 2008) and prostate cancer (Coolen

et al., 2010).
Because of the reversible nature of epigenetic modifications, a

substantial effort is being made to develop anticancer drugs able

to interfere with the activity of enzymes involved in histone

modification (Biancotto et al., 2010).*To whom correspondence should be addressed.
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Many tools have been developed to facilitate the analysis of

histone modification data obtained with the ChIP-Seq technique.

Some tools are designed to detect narrow peaks of type of

H3K4me3 (Kharchenko et al., 2008; Rozowsky et al., 2009;

Zhang et al., 2008). Other methods are able to identify epigenetic

marks covering large genomic regions; this is mostly done

through clustering (Zang et al., 2009), gene-by-gene quantifica-

tion (Hebenstreit et al., 2011), Hidden Markov Models (HMMs)

(Qin et al., 2010; Xu et al., 2008) and linear signal–noise models

(Xu et al., 2010).

However, there is no tool specifically developed to detect

histone modifications in cancer genomes that takes into account

copy number alterations. As we show later, most of the tools

tend to detect more signals in the regions of gain and less signal

in the regions of loss.
GC-content is known to influence read depth in both Illumina-

and SOLiD-generated datasets (Boeva et al., 2011; Dohm et al.,

2008). A possible difference in GC-content dependencies between

ChIP and control datasets can result in false predictions of

enrichment in histone modification marks (Chen et al., 2012).
Here we present a tool designed to identify histone modifica-

tions in genomes with large copy number alterations. HMCan

(Histone Modifications in Cancer) corrects for copy number bias

and for GC-content bias. It then uses HMMs to detect regions

rich in histone modifications.
We chose to compare HMCan with three tools commonly

used to detect histone modifications with CHIP-seq data:

CCAT (Xu et al., 2010), MACS (Zhang et al., 2008) and

SICER (Zang et al., 2009). We show that HMCan is able to

detect signal enrichment in simulated cancer genomes better

than these three tools. Only HMCan and CCAT did not show

copy number bias. Separately, on an experimental ChIP-seq

dataset of H3K27me3 in a bladder cancer cell line, HMCan

provided better results than CCAT.

2 METHODS

2.1 HMCan algorithm

The HMCan workflow consists of (i) estimation of the copy number

profile using a window approach on the control dataset (usually, input

DNA), (ii) calculation of the density profile, (iii) normalization of the

density profile by copy number, GC-content and background signal and

(iv) application of HMMs to detect regions with histone modifications

(Fig. 1).

2.1.1 Data profile construction Reads of ChIP and control datasets

are transformed into density profiles. To construct the profiles, the reads

are extended from read starts to the length of DNA fragments. Similarly

to FindPeaks, we use the triangular distribution for read extension (Fejes

et al., 2008). This method allows the user to set minimum median and

maximum fragment length used in the original ChIP-seq experiment.

After read extension, we keep one density value for each 50 nucleotides

(this value can be changed by the user).

2.1.2 Correction for copy number To estimate the copy number

variations in ChIP-seq data, we apply the algorithm implemented in

Control-FREEC (Boeva et al., 2011, 2012a). When the copy number of

each position is estimated, each value in the density profile is corrected

based on its copy number value.

2.1.3 Data size correction Assuming that the ChIP dataset contains

N reads and the control dataset contains M reads, the ChIP density

profile is multiplied by the ratio between these numbers (M/N).

2.1.4 Initial peak calling To calculate the correct GC-content profile

on the ChIP data and correctly estimate the initial parameters of HMM,

preliminary peak (enrichment signal) calling should be applied to serve as

a guide for both operations. A one-sided exact Poisson test is used to

label whether a bin belongs to a peak or not.

As a post-processing step, singleton bins labeled as peaks are removed.

Then, the bins labeled as peaks within 1 Kb are merged into a single peak

region.

2.1.5 GC-content normalization Sequencing technologies may result

in association between number of reads mapped to a specific DNA region

and its GC-content (Benjamini and Speed, 2012). Here, we apply a cor-

rection to remove GC-content bias, which otherwise may result in

aberrant read counts.

We estimate the GC-content bias from the density profiles previously

constructed. For each value of bin density, we take a window of length

twice that of the fragment length. With each window, we associate the

density value corresponding to the central point and we record the value

of the GC-content of that window.

GC-values are grouped in non-uniform groups, e.g. GC-content be-

tween 0 and 20% (group 1), GC-content between 20 and 22% (group 2),

and so forth. (Supplementary Methods). For each value gc in the group,

we will define Dgc – the sum of densities of the bins that have GC-content

gc and Ngc the total number of windows that have GC-content gc. We

denote the expected density for each gc value as �gc, defined as:

�gc ¼ Dgc=Ngc: ð1Þ

We will denote the average expected density along the genome by �,

defined as:

� ¼

P
gc Dgc

P
gc Ngc

: ð2Þ

Fig. 1. HMCan framework. HMCan initially estimates copy numbers

from control data and it builds density profiles for both libraries. Then,

HMCan performs a set of normalization steps including normalization by

copy number, GC-content and background noise. Finally, HMCan

detects histone modification regions with HMMs after estimating initial

parameters from the normalized profile
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Then, each density value D can be corrected as follows:

Dcorrected ¼
D � �

�gc
: ð3Þ

The correction process is applied to both ChIP and control data inde-

pendently. This leads to a more accurate correction compared with cal-

culating GC-content bias (� and �gc) for the control data only and then

correcting the ChIP and control densities based on the same � values.

Applying the described method to the control data is straightforward,

as the control data are not supposed to contain any signal. In the case of

ChIP data, the process is trickier because the signal contained in the ChIP

data may interfere with the GC bias, e.g. some histone modifications can

occur more frequently in GC-rich regions. To overcome this issue, we

first apply the module of initial peak calling to identify regions that most

probably belong to the signal (‘peaks’). Then, we apply the described

method for CG-bias evaluation to the regions labeled as ‘not peaks’.

We denote the expected density � in the control data as �control and � in

the ChIP data as �ChIP.
To get the noise values in the ChIP and control data on the same scale,

we multiply the values of density in the control by the noise ratio �noise,

where:

�noise ¼ �ChIP=�control: ð4Þ

To calculate the final density profile for the ChIP sample, we apply the

following normalization:

Dfinal ¼ DChIP
corrected �Dcontrol

corrected � �noise: ð5Þ

2.1.6 Initial estimation of HMM parameters HMM is used at the

final stage for peak calling. The motivation behind using HMM is that

this approach is able to call wide peaks regardless of the noise that may be

present. Such large peaks can correspond to RES/LRES, and thus the

HMM approach is preferable. Moreover, the HMM approach allows the

calling of narrow peaks if their signals are relatively strong. Thus, this

approach will not miss short regions with epigenetic changes, e.g. signal

present at the Transcription start sites (TSSs) of repressed genes.

The designed HMM has two states: ‘peak’ (1) and ‘not peak’ (0). The

description of HMM can be found in Supplementary Methods. The first

step in estimating HMM parameters and inputs is to re-call the peaks

after all normalization steps using a one-sided Poisson test.

The transition probabilities of HMM are estimated by counting four

possible combinations of the states. The emission probabilities are derived

from the distributions of the normalized densities over the peak and non-

peak data independently.

2.1.7 Iterative HMMs To infer the correct states along the genome,

we use the Viterbi algorithm (Viterbi, 1967). The Viterbi algorithm can

decode most of the states from the first run based on the estimated par-

ameters. We noticed that for our data, predictions obtained by the first

run contained a substantial amount of noise and predicted regions were

not as large as we expected. To overcome these two shortcomings of the

Viterbi algorithm, we introduced the iterative Viterbi algorithm, which

results in predictions corresponding to longer regions containing less

noise.

We iteratively use the following procedure. Each region associated

with a peak state has a score S, where S is the Bayesian log-likelihood

ratio:

S ¼ log
Pðpeak region

�
� Þ

Pðnot peak region
�
� Þ

¼ log
Pðregion peak

�
� Þ � PðpeakÞ

Pðregion not peak
�
� Þ � Pðnot peakÞ

, ð6Þ

where the probabilities are calculated based on the peak and density

distributions observed at the previous step. After calculating S for each

putative peak, we consider regions with scores less than S0, the minimum

score to accept the current peak in the next iteration, as ‘non-peaks’.

Then, the emission and transition probabilities are recalculated based

on the new set of regions. The process of recalculating emission and

transition probabilities is identical to the one used for the evaluation of

initial parameters. The algorithm keeps iterating until no improvement is

noticed or some maximum number of iterations is reached.

Finally, at the post-processing step, peaks within 1 Kb are merged into

a single region.

We also provide an option to calculate posterior probabilities for each

bin. HMCan calculates posterior probability using forward–backward

algorithm given the normalized density value at each bin.

2.2 ChIP assay

The human bladder cancer cell line CL1207 was derived from a muscle-

invasive bladder cancer (De Boer et al., 1997). CL1207 was cultured in

Dulbecco’s modified Eagle medium F-12 GlutaMAXTM (Invitrogen,

Cergy Pontoise, France) supplemented with 10% fetal bovine serum

(Lonza Verviers, Verviers, Belgium). One confluent 75 cm2 dish of

CL1207 was used for each ChIP-seq experiment.

CL1207 chromatin was extracted from cell nuclei and sheared enzy-

matically using an Active Motif kit (Active Motif, Rixensart, Belgium).

An extract of the original chromatin was kept as an internal standard

(input DNA). The 5� 105 cells were immunoprecipitated per ChIP assay

with 4�g of rabbit polyclonal antibodies against trimethyl histone H3

lysine 27 (Upstate Biotechnology, Santa Cruz, CA) and Dynabeads�

Protein A (Invitrogen, Cergy Pontoise, France) in dilution buffer con-

taining 1% Triton X-100, 150mMNaCl, 2mM EDTA, 20mM Tris–HCl

at pH 8.0 and protease inhibitors. Six ChIP assays in the same experi-

mental conditions were necessary to perform one ChIP-Seq experiment,

so we used the total of 6� 106 cells.

2.3 ChIP-seq library and SOLiD sequencing

The SOLiD System 2.0 workflow for the lower input/lower complexity

DNA fragment library preparation kit was used following the manufac-

turers’ instructions (Applied Biosystems) starting with 50 and 58ng of

ChIP or input DNA, respectively.

ChIP-seq DNA fragment libraries were sequenced using the SOLiD

5500 system to produce 75-bpreads. The sequencing reads were aligned to

the hg19 human genome using Bowtie 0.12.8 (Langmead et al., 2009) with

the following options: ‘-C -k 1 -y –col-keepends’.

2.4 Gene annotation for ChIP-seq data

To assign predicted H3K27me3 marks to genes, we used the annotation

tool included in the Nebula pipeline (Boeva et al., 2012b). A mark was

assigned to a gene (RefSeq Release 50; 34 062 gene isoforms), if it over-

lapped the region 1000bp upstream and 1000bp downstream of the gene

TSS (Young et al., 2011).

3 RESULTS

3.1 Evaluation on simulated data

To investigate the performance of HMCan on cancer samples,

we constructed a simulated ChIP-seq dataset for a fictional his-

tone mark. The signal covered multiple regions across chromo-

some 1 (human genome, hg19), with each region being of length

from 1 to 20 Kb. These regions comprised 5% of chromosome 1.

We simulated histone marks covering different numbers of alleles

in the regions of normal copy number, gain (of copy number)

and loss (of copy number) (Supplementary Table S1). In

our simulations, we set read length¼ 76bp, fragment

length¼ 150bp, �20% of the reads came from the signal regions
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and �80% of the reads came from the non-signal regions. We
assumed a constant length of DNA around one nucleosome to

be equal to 185 bp. We simulated more errors at the end of reads
using the standard Illumina error distribution. As sequencing

depth depends on GC-content, we used the experimentally
observed GC-content dependency function from the ENCODE

dataset for the MCF-7 cell line (input and H3K9me3). The code
for read generation together with parameters used and necessary

files can be found at the HMCan webpage (package
‘GenerateReadsChIP-seq’). Generated reads were aligned to

the reference genome with BWA (Li and Durbin, 2009) using
default parameters.

To quantify the quality of predictions of HMCan and other
tools, we calculated overlap between the predicted regions and

the simulated regions at the base pair level. If a base pair within a
predicted region overlapped with a simulated one, this base was

counted as true positive. If it lay outside of the simulated region,
it was counted as false positive. Finally, if a base pair within a

simulated region was not covered by any prediction it was
counted as false negative. Next, recall the definitions of recall

and precision as:

Recall ¼
TP

TPþ FN
;Precision ¼

TP

FPþ TP
: ð6Þ

The recall measures the sensitivity of a prediction method,

whereas precision measures the proportion of true predictions
within all positively predicted regions. In cases where the

number of true negatives is large, it is advisable to use ‘precision
vs recall’ curves instead of standard ROC curves (‘recall’ versus

‘false positive rate’) (Davis and Goadrich, 2006), for more details
check (Supplementary Methods). In our case, the number of TN

is large because the true signal covers a small fraction of the
genome (5%).

On the simulated data, HMCan demonstrated a better predic-
tion accuracy than three tools commonly used to detect histone

modifications with ChIP-seq data: CCAT (Xu et al., 2010),
MACS (Zhang et al., 2008) and SICER (Zang et al., 2009)

(Fig. 2). CCAT applies an iterative method to estimate the
noise-to-signal ratio in ChIP-seq and control data based on a

linear model. MACS shifts the reads toward the fragment centers
and uses a dynamic Poisson model that is able capture the mean

and standard deviation of the data. SICER applies a read clus-
tering approach to detect regions enriched with histone marks.

For each tool, we ranked the predicted regions according to the
in-built score or P-value and grouped them in sets of regions

having similar scores. By using a threshold on this score or

P-value, we obtained ‘precision vs recall’ curves. The accuracy
of predictions was qualified on the basis of the closest (Euclidian)

distance from the ideal predictor performance as introduced in
Bajić (2000), which in our case is the distance from the (1,1)-

corner of the ‘precision vs recall’ graph (Fig. 2). To make the
comparison fair, we checked several combinations of parameters

of other tools such as CCAT (Supplementary Fig. S1) and
SICER (Supplementary Fig. S2). The best parameters for

CCAT were: minScore¼ 2, window¼ 1000; for SICER:
Gap¼ 600.The result corresponding to the best combination of

parameters is shown in Figure 2. With the best configuration of
parameters, HMCan was able to identify 88.4% of base pairs

within simulated signal regions, and its positive predictions

contained only 3% of false-positive predictions at the base pair

level (Table 1). CCAT, MACS and SICER achieved lower ac-

curacy than HMCan. Generally, SICER demonstrated a high

sensitivity of predictions (recall¼ 87.4%) together with a consid-

erable false discovery rate (Precision¼ 79.8%). CCAT showed

high precision (81.1%), being second only to HMCan, but failed

to detect a large part of the signal (recall¼ 81%).
We assessed sensitivity of the HMCan’s iterative HMM

method to the change of the initial parameters (i.e. threshold

on the P-value of the exact Poisson test). We reported

high values of Jaccard similarity index between predictions

corresponding to different P-value thresholds (40.97, see

Supplementary Methods and Supplementary Table S2). The cor-

responding ‘Precision vs Recall’ curves (Supplementary Fig. S3)

for different P-value thresholds also confirm that the final pre-

dictions are not influenced by the initial threshold setting.
We explored what combination of copy number status and

number of alleles with histone modification signal was the

most challenging for histone modification detection (Fig. 3). As

expected, for all tools it was more difficult to detect the correct

regions in the situation when only one allele out of four was

bearing a histone modification mark (Fig. 3: C¼ 4, A¼ 3). In

this extreme situation, SICER demonstrated the best sensitivity

compared with other tools. However, the best combination of

recall and precision was achieved by HMCan. Interestingly, ac-

curacy of predictions of SICER and MACS highly depended on

copy number (Fig. 3, diagonal panels with A¼C). For instance,

the precision values of SICER’s and MACS’ predictions were

close to one when the signal was present in one allele out of

one or in two alleles out of two (Fig. 3, A¼C¼ 1 and

A¼C¼ 2). When the signal was present in three alleles out of

three or in four alleles out of four, both MACS and SICER

predicted more signal than it was put to the simulated data

(Fig. 3, A¼C¼ 3 and A¼C¼ 4).
HMCan and CCAT did not demonstrate such copy number

bias. Thus, we conclude that these two tools are the most suitable

for histone modification signal detection in cancer data.

Fig. 2. Relationship between recall and precision for HMCan and other

histone modification detection tools on the simulated data. HMCan

shows higher prediction accuracy compared with other tools and a notice-

able difference in the precision
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3.2 Evaluation on H3K27me3 data

To assess the performance of HMCan on real data, we generated

ChIP-seq dataset for trimethylation of lysine 27 on histone H3

(H3K27me3) for the CL1207 human bladder transitional cell

carcinoma cell line (see Materials and Methods). We compared

HMCan and CCAT on this dataset. As the MACS and SICER

tools demonstrated a bias toward high copy number regions

(Figs 3 and 4), the comparison of HMCan with MACS and

SICER is given in Supplementary Materials (Supplementary

Figs S4 and S5 and Supplementary Table S3).
To detect the H3K27me3 mark, we ran HMCan and CCAT

with the parameters learned from the simulated data study. We

considered all regions detected by HMCan or CCAT regardless

of the score (see justification in Supplementary Methods).

Overall, 32.8 and 28% of the genome were covered by regions

predicted by HMCan and CCAT, respectively. There was a large

overlap in the predictions (Fig. 5A and B). Further, we will

show that genomic regions, predicted to bear the repressive

H3K27me3 mark by HMCan only, are unlikely to be false-

positive predictions. We will demonstrate that such regions,

when falling within gene promoters, suggest lower gene expres-

sion. Also, the profile of HMCan predictions around gene TSS

has a relatively more prominent valley at TSS than the profile of

CCAT predictions. Finally, we will show that predictions of

HMCan are more accurate for a set of qPCR validated

H3K27me3 regions in the CL1207 cell line.

We studied the correlation between gene expression and

H3K27me3 predictions by HMCan and CCAT in promoter

regions. We used gene expression values calculated from exome

arrays (unpublished data) for the CL1207 cell line. Normalization

was performed with the robust multiarray averaging (RMA)

method to get exon expression signals; then the median over

exon signals was calculated to get a signal value per gene.

H3K27me3 is a repressive histone mark associated with DNA

methylation of CpG islands in gene promoters (Ku et al., 2008).

Thus, we expected the genes with the real H3K27me3 mark in

promoter (TSS� 1 Kb) to have lower expression than genes with-

out H3K27me3 in the promoter. Indeed, genes for which none of

the tools predicted an H3K27me3 site had higher expression than

genes with H3K27me3 predicted by both CCAT and HMCan

(Fig. 5C; one-tailed Mann-Whitney test, P-value510�16,

median values 117.94 versus 29.24). Interestingly, expression

values of genes with H3K27me3 predicted by HMCan only

were significantly lower than expression values of genes with

H3K27me3 predicted by CCAT (Fig. 5C; one-tailed Mann-

Whitney test, P-value 5.1� 10�10, median values 35.02 versus

47.98). This result indirectly shows that HMCan generally pre-

dicts stronger H3K27me3 sites that CCAT. However, this result

does not reject the hypothesis that CCAT-only predictions may

correspond to weaker but true H3K27me3 sites. Only slightly

more of the HMCan-only predictions fall within the copy

number alteration regions as compared with the CCAT-only pre-

dictions: 60.3% versus 57.6%, respectively (see Supplementary

Materials and Supplementary Fig. S6 for more detail).
We calculated the H3K27me3 signal distribution around TSSs

of coding genes (RefSeq Release 50; 34062 gene isoforms). For

both HMCan and CCAT, we added to the density counts nu-

cleotide positions covered by the predicted regions. Generally,

the H3K27me3 mark exhibits a decreasing profile from 50 to

30 with a pronounced valley in the vicinity of TSS (Barski

et al., 2007; He et al., 2012). We observed the expected profile

in regions predicted by HMCan and, to a slightly lower extent, in

the predictions of CCAT (Fig. 5D).

Fig. 3. Relationship between recall and precision for HMCan and other

histone modification detection tools on simulated data sub regions asso-

ciated with different copy number status and signal

Fig. 4. Predictions of SICER and MACS are biased toward regions of

genomic gain, whereas predictions of CCAT and HMCan do no show

copy number bias. Top track: copy number profile for chromosome 8 of

the CL1207 human bladder transitional cell carcinoma cell line calculated

by GAP (Popova et al., 2009) using SNP array technology; Bottom

tracks: regions predicted to have the H3K27me3 mark by HMCan,

CCAT, MACS and SICER. The black frame shows the chromosome

arm 8p, which has lower density of sites predicted by MACS and SICER

Table 1. HMCan provides better accuracy of predictions than CCAT,

MACS and SICER on simulated data

Method Best precision Best recall Best combination

Precision Recall Precision Recall Precision Recall

HMCan 0.984 0.493 0.939 0.888 0.971 0.884

CCAT 0.841 0.578 0.354 0.913 0.811 0.810

MACS 0.766 0.052 0.682 0.750 0.699 0.735

SICER 0.828 0.288 0.271 0.958 0.798 0.874

Note: The ‘best combination’ corresponds to the shortest distance from the ideal

predictor performance. The results of the best performingmethods are shown in bold.
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In our previous study (Vallot et al., 2011), we validated by
qPCR several gene regions bearing the repressive H3K27me3
mark in the CL1207 cell line. HMCan successfully detected

H3K27me3 marks on the DLEC1 gene, which is commonly
deleted in various carcinomas (Chan et al., 2010; Ying et al.,

2009), as well as on the homeobox D (HOXD) gene cluster
located at 2q31-2q37 chromosome regions. The HOXD cluster
includes genes HOXD1, HOXD3, HOXD4 and HOXD8-13.

Many of these genes have been shown to play a crucial role in
oncogenesis (Shah and Sukumar, 2010). Low expression of sev-

eral HOXD genes was detected in neuroblastoma (Manohar
et al., 1996; Zha et al., 2012), breast (Carrio et al., 2005) and

colorectal (Jung et al., 2005) cancer. Interestingly, although
CCAT successfully detected H3K27me3 on the HOXD cluster,
it failed to identify the H3K27me3 mark in the promoter

of DLEC1 [HMCan peak score 0.25, relative enrichment as-
sessed by ChIP-qPCR 0.22 (Vallot et al., 2011), Supplementary

Fig. S7 and Supplementary Table S3].

4 DISCUSSION

We have developed HMCan, a tool for detection of histone
modifications in cancer samples using ChIP-seq data. On simu-
lated data, HMCan demonstrated better accuracy of prediction

compared with the other tools we tested.

HMCan was originally developed to identify broad signals
such as H3K27me3 or H3K36me3. However, it can be also
applied to a class of histone modifications with narrow signal

(e.g. H3K4me3). The output of HMCan includes information
about peak maxima to facilitate functional annotation of

peaks. The output also includes normalized density profiles
(Fig. 5A, top), which is convenient for inspecting predicted

regions with histone marks and can be also used for producing
figures for publication.
The run time of HMCan is significantly longer than for the

majority of other tools (e.g. MACS, CCAT or SICER) and may
require up to 1 h on a standard PC (Supplementary Table S4).
Running iterative HMMs is the most time-consuming step.

However, we believe that the greater accuracy of HMCan
demonstrated in this study compensates for a longer run time.

In some cases, it might be interesting to detect differential his-
tone modifications using two ChIP-seq datasets generated for two
different conditions. HMCan does not as yet contain such a func-

tion, and we advise users to apply standard tools such as DESeq
(Anders and Huber, 2010) to the output from HMCan.

5 CONCLUSION

HMCan was specifically developed to analyze histone modifica-

tion data obtained for cancer genomes. Cancer genomes are

Fig. 5. Comparison of HMCan and CCAT on the H3K27me3 ChIP-seq dataset for the CL1207 (bladder cancer) cell line. (A) Predicted regions as well

as normalized density are visualized with Integrated Genome Browser (IGV) (Robinson et al., 2011; Thorvaldsdóttir et al., 2012); (B) Venn diagram

showing base pair overlap in the HMCan and CCAT predictions, numbers show the total number of nucleotides in predicted regions, Jaccard similarity

coefficient 0.66; (C) Genes with an H3K27me3 mark predicted by HMCan in the promoter regions (TSS� 1kb) tend to have lower expression than

genes with this mark predicted by CCAT. The graph shows the distribution of gene expression values after RMA normalization for the following gene

categories: genes with the promoter H3K27me3 mark predicted by (i) both HMCan and CCAT, 3846 genes, (ii) HMCan only, 635 genes, (iii) by CCAT

only, 391 genes and (iv) by none of the tools, 12826 genes. The orange dot shows the mean expression value. The black line shows the median and the

boxes are plotted between the first and the third quartiles; (D) Density of peaks detected by HMCan and CCAT around all gene TSSs for the H3k27me3

histone mark in the CL1207 cell line
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characterized by frequent copy number alterations: gains and

losses of large regions of chromosomal material. The designed

algorithm explicitly corrects for copy number alterations, and

thus does not demonstrate bias within the number of predicted

sites in the regions of gain or loss. In addition, HMCan corrects

for possible GC-content bias independently in the ChIP and

control sample. This guarantees GC-content-unbiased results

even in the case when the two experiments are performed in

different laboratories and even using different sequencing tech-

niques. Also, the iterative HMM method formulated in HMCan

allows for getting the best distinction between signal and noise on

sequential data. HMCan accepts the most common alignment

formats: SAM/BAM and BED, and outputs predicted regions in

BED and WIG formats.
We successfully applied HMCan on both simulated and

experimental data. On simulated data, we demonstrated

HMCan’s higher accuracy in signal prediction compared with

the tools designed for normal genomes (MACS, SICER and

CCAT). Unlike MACS and SICER, HMCan did not show

bias in number of identified peaks toward gained regions. In

our simulations, we modeled signal in regions present in 1, 2, 3

or 4 copies. HMCan detected the signal in all of them, including

cases where the signal was initially present in only one out of four

alleles. On the experimental ChIP-seq dataset generated for the

repressive mark H3K27me3 in the CL1207 human bladder tran-

sitional cell carcinoma cell line, peaks in proximity of gene TSSs

that were detected only by HMCan corresponded to lower gene

expression compared with the peaks detected only by CCAT.

Overall, HMCan proves to be an appropriate tool for predicting

histone modifications in genomes with copy number alterations.
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