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ABSTRACT

Motivation: Detection and quantification of the absolute DNA copy

number alterations in tumor cells is challenging because the DNA spe-

cimen is extracted from a mixture of tumor and normal stromal cells.

Estimates of tumor purity and ploidy are necessary to correctly infer

copy number, and ploidy may itself be a prognostic factor in cancer

progression. As deep sequencing of the exome or genome has

become routine for characterization of tumor samples, in this work,

we aim to develop a simple and robust algorithm to infer purity, ploidy

and absolute copy numbers in whole numbers for tumor cells from

sequencing data.

Results: A simulation study shows that estimates have reasonable

accuracy, and that the algorithm is robust against the presence of

segmentation errors and subclonal populations. We validated our al-

gorithm against a panel of cell lines with experimentally determined

ploidy. We also compared our algorithm with the well-established

single-nucleotide polymorphism array-based method called

ABSOLUTE on three sets of tumors of different types. Our method

had good performance on these four benchmark datasets for both

purity and ploidy estimates, and may offer a simple solution to copy

number alteration quantification for cancer sequencing projects.

Availability and implementation: The R package absCNseq is avail-

able from http://biostats.mcc.ucsd.edu/files/absCNseq_1.0.tar.gz.

Contact: kmesser@ucsd.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Copy number alterations (CNAs) are an important class of som-

atic aberrations in tumor genomes and have been extensively

studied in the hope of understanding the mutational landscape

and clonal evolution of cancer (Beroukhim et al., 2010). High-

throughput platforms such as array comparative genomic hy-

bridization (Rueda et al., 2007), single-nucleotide polymorphism

(SNP) arrays (LaFramboise et al., 2005) and next-generation

sequencing (NGS) (Koboldt et al., 2012; Xie et al., 2009) have

been widely used to measure CNAs. The direct readout from

these platforms is a measure of the relative DNA content be-

tween a tumor sample and its normal counterpart, over a set of

genomic regions. However, at the cellular level, CNAs are inte-

gers: for example, a region of DNA with normal copy number 2,

corresponding to the two chromosomes, may be duplicated in

one chromosome, resulting in copy number 3, or deleted, result-

ing in copy number 1. To estimate absolute copy numbers from

the observed ratio of tumor to normal DNA, it is necessary to

know two additional parameters, tumor purity, which is the ratio

of tumor cells to total cells in the sample, and tumor ploidy,

which is the average copy number of the entire tumor genome

and can be used to account for whole-genome duplication events

in the tumor (Carter et al., 2012). Tumor ploidy may itself be a

prognostic factor in cancer (Zanetti et al., 2012). A related issue

occurs with detection of somatic single nucleotide variants (SNV)

(DePristo et al., 2011; Koboldt et al., 2012; Li, 2011). As with

CNAs, it is more informative to know the integer multiplicity of

each gained somatic SNV, rather than the percentage of the

alternate allele in the tumor/stromal mixture. Incorporating

purity, ploidy and absolute copy number information may also

help popular SNV callers like samtools (Li, 2011) and GATK

(DePristo et al., 2011) to reduce both false-positive and false-

negative calls. All this highlights the importance of accurately

estimating the absolute copy number information from noisy

genomic data.

Recent work addressing this issue has aimed to control for the

effects of either tumor purity or ploidy or both in CNA detection

(Attiyeh et al., 2009; Bengtsson et al., 2010; Carter et al., 2012;

Greenman et al., 2010; Gusnanto et al., 2012; Van Loo et al.,

2010; Yau et al., 2010; Yu et al., 2011; Oesper et al., 2013).

ABSOLUTE (Carter et al., 2012) uses allele-specific copy

ratios from SNP array data to infer purity, ploidy and absolute

copy numbers and has demonstrated high accuracy. In principle,

ABSOLUTE can also be extended to sequencing data, although

the working pipeline and performance on sequencing data are

not yet published. As more cancer samples are sequenced using

NGS technology and as whole-exome sequencing (WES) be-

comes a routine platform for characterization of tumor samples,

there is an urgent need to develop a similar tool for NGS. Su

et al. (2012) developed a method to estimate tumor purity from

the deep whole-genome sequencing data; however, their method

does not offer the estimation of ploidy and absolute copy num-

bers, and has not been shown to work equally well on WES data.
In this work, we develop a simple and robust statistical

method to estimate tumor purity, ploidy and absolute CNAs

from WES data. We validated our method by comparing our

purity and ploidy estimates against independent gold standard*To whom correspondence should be addressed.
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values using recently published exome data from 31 cancer cell
lines (Abaan et al., 2013), 16 breast (Banerji et al., 2012), 16

prostate (The Cancer Genome Atlas Research Network, 2008)

and 17 glioblastoma cancer patients (The Cancer Genome Atlas

Research Network, 2008). We also study the effects of the exist-

ence of subclonal populations or segmentation errors on the ac-

curacy of the purity estimation. To the best of our knowledge,

this is the first work that has provided a working pipeline to

estimate purity, ploidy and absolute copy numbers from raw

WES data, which has been validated on several independently

published WES datasets. We implemented the algorithm in an R

package called absCNseq that is freely available from our Web

site (http://biostats.mcc.ucsd.edu/files/absCNseq_1.0.tar.gz).

2 METHODS

2.1 Exome sequencing datasets and post-alignment

processing pipeline

2.1.1 NCI60 cell line dataset The NCI60 tumor cell lines from mul-

tiple tissues of origin have long been used for in vitro anticancer drug

screening, and their molecular and cellular characteristics have been well

studied by a variety of biological assays. In particular, they have been

individually karyotyped by the spectral karyotyping (SKY) assay

(Roschke et al., 2003). Just recently, the majority of these cell lines also

had their exomes sequenced (Abaan et al., 2013); hence, this represents

an ideal validation dataset for our ploidy inference. We used the SKY-

determined modal ploidy as the reference ploidy value and compared our

ploidy estimates with these reference values.

2.1.2 dbGAP breast cancer dataset We obtained published data

from paired breast tumor-normal samples, which had both SNP array

data (Affymetrix Genome-Wide Human SNP Array 6.0) and WES data

(Illumina GA II, average coverage 100�) (Banerji et al., 2012). Published

estimates of purity and ploidy were available for these samples using

ABSOLUTE on the SNP array data. We downloaded the aligned read

files (BAM files) from dbGAP (Mailman et al., 2007) under the study

number phs000369.v1.p1 for the first 23 Mexican subjects (BR-M-005

through BR-M-085) in the published Supplementary Table S2 (Banerji

et al., 2012). We extracted the experimental information from the BAM

file headers. We excluded seven subjects from further analysis because the

sequencing date for the matched germ line and tumor samples were in

different weeks, and thus must have been in different sequencing runs.

The remaining 16 subjects all had the matched samples sequenced in the

same week. Interestingly, we found that the mean coverage ratio across

the genome recapitulated our inclusion/exclusion rule almost perfectly:

the mean coverage ratios are all close to 1.0 for the samples we included,

and obviously further away from 1.0 for the excluded samples

(Supplementary Table S2). This supports our selection of samples for

this analysis, as it implies that there may exist systematic bias between

different sequencing batches.

2.1.3 TCGA tumor dataset We selected two representative tumor

types (prostate and glioblastoma) from the TCGA database (The

Cancer Genome Atlas Research Network, 2008). We downloaded the

WES data for 20 random samples per each tumor type. We compared

the purity and ploidy estimates by our method with those by the

ABSOLUTE method.

2.1.4 Processing pipeline The flowchart of absCN-seq is shown in

Supplementary Figure S1. For all the WES data, the BAM files (Li et al.,

2009) have been realigned, deduplicated and recalibrated. We used sam-

tools (version 0.1.18) (Li et al., 2009) to count the number of total reads

that were properly paired and aligned in each BAM file, and used this as

a normalization constant to compare the coverage depth between the

paired tumor and germ line DNA samples. We then used varscan2 (ver-

sion 2.3.2) (Koboldt et al., 2012) to compute the ratio of coverage be-

tween the paired tumor/normal DNA samples for each bin, with bins

determined by varscan2. The bin size was �100bp. We used the

DNAcopy package (Olshen et al., 2004) to perform copy number seg-

mentation. Segments5200bp in length were excluded because short seg-

ments are likely caused by technical artifacts. In addition to calling copy

number ratios, the varscan2 software also outputs a set of high-confi-

dence somatic SNVs in the tumor exome. We computed the observed

allele frequencies for these somatic SNVs, which provide orthogonal

purity information to copy number variation. We included both the seg-

mented copy ratio information and the SNV allele frequencies in our

objective function to be optimized, as described later in the text.

2.2 Statistical framework

2.2.1 Basic notation and description of the sequencing data The

input data for AbsCN-seq are a set ofN segmented genomic intervals and

their accompanying observed read depths, for matched germ line and

tumor samples. If the segmentation algorithm is correct, then the

tumor cells have constant copy number on each segment. A segment

may be clonal, in that all tumor cells share the same copy number for

the segment, or subclonal, in that there are two or more subpopulations of

tumor cells with different, but constant, copy numbers on the segment. In

addition, the tumor sample is composed of mixed cancer and stromal

cells, where the stromal cells contain germ line DNA and the cancer cells

contain DNA with somatic mutations, including the copy number aber-

rations considered here.

Let the ith genomic segment be wi base pairs in length, and let l be the

read length. On the ith segment, the tumor sample has total aligned read

count tx, i and corresponding read depth xi ¼ ltx, i=wi, with total aligned

reads in the sample given by Tt ¼
PN

i¼1 tx, i. Similarly, let the germ line

read depth be denoted by yi ¼ lty, i=wi, with total read count in the germ

line sample Tg. Let �i ¼ E½yi�=2 be the haploid mean read depth for

segment i for the germ line sample, given that total read depth is Tg;

thus, �i is the mean read depth expected from each homologous chromo-

some in the germ line sample for this segment. Note that the �i capture

variation in aligned read depth at different locations in the genome due to

sequencing bias, which may arise, for example, from varying GC content

in the genomic segment, differences in mappability for repetitive regions,

differences in capture efficiency of probes in the case of targeted sequen-

cing, or PCR bias in the amplification step. If there is no sequencing bias,

so that coverage is expected to be uniform, then �i � � for all segments i.

We assume that for every segment i expected read depth is strictly pro-

portional to total read count, so that 2�iTt=Tg is the mean read depth

that would be expected from the germ line sample at total read count Tt

rather than Tg.

2.2.2 Purity (�) and ploidy (�0) Let � be the purity of the tumor

sample, that is, the proportion of cancer cells in the tumor sample. Let �0

represent the average genomic ploidy for the tumor sample, that is, twice

the ratio of the average amount of genomic DNA per cancer cell relative

to the total DNA within a stromal cell, so that �0 ¼ 2 for a tumor with no

copy number aberrations. Then in the tumor sample, the ratio of cancer

to stromal DNA will be ��0 : 2ð1� �Þ, and the proportion of DNA in the

sample from the cancer cells, �0, will be

�0 � ��0=ð��0 þ 2ð1� �ÞÞ:

2.2.3 Segment copy number, qi First, consider a clonal segment, so

that all the cancer cells have identical genomes for this segment. The

biologic model is that for each of the two homologous chromosomes,

maternal and paternal, the DNA sequence represented by interval i
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appears once in each germ line cell (copy number 2) and an integral

number of times in each cancer cell, qm, i times for the maternal copy

and qp, i times for the paternal copy. Then the copy number in the tumor

for the segment is qi ¼ qm, i þ qp, i, which is an integer. For a subclonal

segment, qi is the average copy number over the differing cancer cell

populations that form the tumor subclones, and so may not be an integer.

It is important to note that segmentation errors can also cause qi to not be

an integer, with qi then defined to be the average copy number over the wi

bases comprising genomic segment i.

To relate copy number to genomic ploidy, note that qiwi is the total

number of base pairs of DNA from genomic segment i per tumor cell and

2wi the corresponding number for a germ line cell, so that the relative

copy number qi=2 gives the ratio of total DNA from a cancer cell relative

to a normal cell for this segment. Then total genomic DNA in an average

tumor cell is given by
P
i

qiwi, and so twice the ratio of tumor to germ line

DNA is given by

�0 ¼

PN
i qiwiPN
i wi

:

However, �0 may not reflect the proportion of aligned reads captured

from tumor relative to germ line cells because the capture efficiency of

the sequencing may differ between genomic segments, as represented by

the parameters �i. Hence, we define the sequencing ploidy � as

� ¼

PN
i qiwi�iPN
i wi�i

: ð1Þ

Of the Tt total aligned reads from the tumor sample, �Tt are expected to

be from the tumor and ð1� �ÞTt from stroma, with

� ¼ ��=ð�� þ 2ð1� �ÞÞ: ð2Þ

2.2.4 A copy-number–based ratio estimator Expected read depth

for segment i in the tumor sample, E½xi�, can be expressed in terms of

purity �, copy number qi and expected germ line depth E½yi� ¼ �i. First,

the total read count in the tumor sample, overall and in segment i, is the

sum of reads from stromal cells, denoted with subscript s, and from

cancer cells, denoted by c, that is,

Tt ¼ Tc þ Ts

tx, i ¼ tc, i þ ts, i:

The total stromal reads Ts are not observed, but are equal to ð1� �ÞTt.

They will distribute across the genomic segments in expected proportion

to 2�iwi=Tg, so that for each segment the expected number of stromal

reads in the tumor sample is given by the following equation:

E½ts, i� ¼ 2�iwiðTt=TgÞð1� �Þ:

On segment i, the cancer to stromal DNA is in the ratio

�qi : ð2ð1� �ÞÞ, so that, assuming equal capture efficiency for the

cancer and stromal DNA within the segment,

E½tc, i� ¼ E½ts, i��qi=ð2ð1� �ÞÞ:

Combining these expressions,

E½tx, i� ¼ 2�iwiðTt=TgÞð1� �Þð1þ �qi=ð2ð1� �ÞÞ:

¼ 2�iwiðTt=TgÞ
�qi þ 2ð1� �Þ

�� þ 2ð1� �Þ

Let R ¼ ðTt=TgÞ. Then,

R�1E½tx, i�=E½ty, i� ¼ R�1E½xi�=E½yi� ¼
�qi þ 2ð1� �Þ

�� þ 2ð1� �Þ
: ð3Þ

Equation (3) suggests use of a ratio estimator based on the normalized

ratio of means ri ¼ R�1xi=yi to estimate the parameters of interest � and

qi, and thus �.

2.2.5 An SNV-frequency–based estimator Suppose segment i con-

tains one or more loci with an SNV, and let m(i) be the total number of

SNVs on the segment, and fj, j ¼ 1 . . .mðiÞ, be the corresponding

observed variant allele proportions out of the total aligned reads from

the tumor sample, for each of the SNVs. By similar arguments as above,

the expected SNV allele frequency may be estimated by the following:

E½fj� �
�sj

�qi þ 2ð1� �Þ
ð4Þ

where sj is the absolute copy number of the somatic allele at locus j.

Because up to qi copies of tumor DNA may carry the mutation,

sj � qi. Therefore, the observed allele frequencies fj can also be used to

estimate � and qi.

2.3 The least squares objective function

The least squares objective function is given by the sum of two terms, one

containing information about read depth, and the other about variant

allele frequency,

�
X
i

ri �
�qi þ 2ð1� �Þ

�� þ 2ð1� �Þ

� �2

þð1� �Þ
X
i

XmðiÞ
j¼1

fj �
�sj

�qi þ 2ð1� �Þ

� �2

, ð5Þ

and is to be minimized over the non-negative integers sj � qi and

� 2 ½0, 1�. As in Section 2.2 above, on segment i, ri is the observed nor-

malized copy number ratio and ri ¼ R�1xi=yi, and fj is the observed

variant allele frequency for each of the m(i) SNVs residing in segment i.

If there is no SNV in that segment, then fj ¼ sj ¼ 0. The relative import-

ance of these two parts is given by the weight parameter � 2 ð0, 1Þ. When

�¼ 1, the objective function reduces to the simple case where only the

copy number information is used. In this work, we assessed �¼ 1 and

�¼ 0.5 (equal weights).

2.4 Estimation algorithm

We propose an iterative estimation scheme in which we maximize each

parameter in turn, cycling through the parameters. Initially, we assume

qi 2 f0, 1, . . . ,Qg, so that all segments are clonal with maximum copy

number Q. The purity � is constrained to lie in the interval [0,1]. Step 0 is

an initialization step; steps 1 and 2 are iterated to convergence (relative

changes in objective function51e-4).

Step 0: Set �̂i ¼ yi. Initialize �
ð0Þ and �ð0Þ.

Step 1: Assume all intervals are clonal. For each i, set q
ðkÞ
i to solve

q
ðkÞ
i ¼ argmin

q2Q

jq� ð�ðkÞÞ�1f½�ðkÞ�ðkÞ þ 2ð1� �ðkÞÞ�ri � 2ð1� �ðkÞÞgj

s
ðkÞ
j ¼ arg min

s2f0, ..., qig
js� ð�ðkÞÞ�1½�ðkÞqðkÞi þ 2ð1� �ðkÞÞ�fjj

�ðkÞ ¼

PN
i q
ðkÞ
i wi�̂iPN

i wi�̂i

Note that the q’s and s’s are available in closed form, as this step only

requires rounding the right-hand term inside the absolute value sign to

the nearest integer. Here we have dropped the dependence of sj on i for

convenience.

1058

L.Bao et al.

which
,
give 
-
'
'
less than 
right 


Step 2: Given the estimates fq
ðkÞ
i g, fs

ðkÞ
j g and �

ðkÞ, use the non-linear least

square method to find �ðkþ1Þ that minimizes the objective function (5).

2.4.1 Grid search over initial values and ‘no estimate’ results This

integer optimization problem converges quickly. As with many integer

valued maximization problems, the algorithm may find a local optimum,

depending on the initial values of � and �. Hence, we use a grid search

strategy over the starting values �ð0Þ and �ð0Þ to find the global optimum

of the objective function.

We initiate the core algorithm described above over a grid of starting

values of purity (ranging from 0.20 to 0.95 with an increment of 0.05) and

ploidy (ranging from 1.5 to 5.0 with an increment of 0.05). The set of

local maxima found at convergence is inspected and filtered. Solutions

that occur only from a single starting value (i.e. solutions that do not

recur from multiple initialization points) are removed, as well as biologic-

ally implausible solutions (i.e. solutions outside the search range, e.g. with

purity 0 or 100%). From the remaining set of stable solutions, the par-

ameter set fqi, �, �g with the minimum mean-squared error is returned as

the optimal estimate of copy number, purity and ploidy. Our method

returns no estimate if the filtration results in no solution. The stable

solution set can be retained for further inspection, as there may be

more than one solution with nearly equal values of the objective function.

3 RESULTS

3.1 Performance on simulated data

We used two simulation studies, the first to assess the accuracy

and the second to assess robustness of our estimates of purity.

We based our simulated data on the empirically observed data in

our samples. We randomly chose sample BR-M-028 as a model.

3.1.1 Accuracy For the first study, to generate the data, we
obtained empirical values for the N segment lengths wi from

sample BR-M-028. We used the estimated segment integer

copy numbers qi. We then computed the true ploidy using

Equation (1). We generated ri’s from N(�i, �
2) where �i was

computed using Equation (3) with � fixed at 0.3, 0.5 or 0.7,

and �2 ¼ 0:1 fixed at the value obtained empirically from

cancer sample BR-M-028. Thus, these data model a tumor

sample with true known values of �, � and qi. We used a simu-

lation size of 50, to be consistent with the more extensive simu-

lation of robustness reported later in the text. Notably, to assess

worst-case performance of the algorithm, we did not apply the

filtering, which yields a ‘no call’ result, as described in Section

2.4.1, but instead report the values found by the optimization

routine. Thus, most of the extreme values reported here would

instead be ‘no call’ results.
Table 1 shows that the method appears to be unbiased; at all

purity levels, the median of the estimates are near the true values.

When the tumor purity is moderate to high (50–70%), the vari-

ability appears to be low, with interquartile range of 0.03 at 50%

purity and 0.02 at 70% purity. However, when tumor purity is

low (30%), while the median estimate is still close to the true

value, the 95% percentile estimate is much larger, demonstrating

increased variability. This is expected because in low purity sam-

ples, the signal (tumor cell) to noise (stromal contamination)

ratio is much lower, and finding the correct unique solution be-

comes more challenging.

3.1.2 Robustness For the second study, we used the same data

as above, but allowed the qi to be non-integer. Recall that qi is

the true average copy number for the ith genomic segment; qi will

fall between integer values if there is an error in the segmentation

algorithm, so that copy number is not constant across the seg-

ment, or if the tumor contains two or more subclonal mixtures of

cells with different copy numbers, so that read depth is averaged

from the two subclonal populations. Each of these circumstances

is likely to hold for at least a fraction of the genomic segments

that are fed into AbsCN-Seq.

To model non-integer copy numbers, we used the same basic

simulation setup as above. However, here we designated a frac-

tion n/N of segments to be non-integer, with n varying from 0 to

N=2. We chose N=2 as the upper limit because we thought it

unlikely that more than half of segments would be impacted

by a copy number event, which was either poorly estimated by

the segmentation algorithm or was impacted by a difference be-

tween subclones. For each simulated dataset, we then randomly

selected a subset of n segments, and for these, we set the true

copy number to be a random draw from the uniform distribution

U(qi � 0:5, qi þ 0:5). For each subclonal fraction n/N and purity

�, we simulated 50 different ri’s. We then applied AbsCN-seq to

the simulated ri’s and assessed the deviation from the true under-

lying � as the subclonal fraction increases. Again, we did not

filter out any ‘no call’ solutions, and so we forced the method

to produce an estimate in all 50 cases.
Figure 1 depicts the effects of the presence of subclonal seg-

ments or incorrect segmentation (i.e. non-integer qi) on the esti-

mated purity. The X-axis is the proportion of segments that are

non-integer, and varies from 0, which is the case reported in

Table 1, to 50%. The boxplots on the Y-axis show the estimated

purity for each of 50 simulated datasets. True purity is shown by

the horizonal line. We did not filter out ‘no calls’. In practice,

many of the extreme estimates of purity shown here would be

replaced by ‘no estimate’. At least some of the outliers seen in

Figure 1 (and in particular, all of the estimates with � ¼ 1) were

due to this ‘no filtration’ strategy. It can be seen that the esti-

mated purity is most accurate when the percentage of subclonal

segments is530%. As the proportion of segments with non-in-

teger q0is increases (e.g.430%), our method tends to underesti-

mate tumor purity, and the bias is larger when the true purity is

higher. However, even in the ‘worst’ case, at 70% purity and with

50% of segments impacted by segmentation errors or subclonal

copy number events, the median estimated purity is �66% and

almost all estimates (90%) are between 58 and 73%. Hence, even

in this extreme case, our method appears to give reasonably good

and practically useful estimates, although they are somewhat

Table 1. Variation in the purity estimate when all segments are clonal

True purity Median estimate Quantile

5% 25% 75% 95%

0.30 0.31 0.28 0.30 0.34 0.68

0.50 0.50 0.45 0.47 0.50 0.53

0.70 0.69 0.66 0.68 0.70 0.71
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biased toward lower purity in the presence of segmentation

errors.

3.2 Performance on real data

3.2.1 NCI60 cell line dataset We downloaded WES data for 38

cell lines with the first letter from A to P. Unlike the patient

tumor samples, the cell lines do not have their paired germ line

exomes. Therefore, we used the nearly diploid hematopoietic cell

line SR as a common reference for all other cell lines. Seven cell

lines with unreasonably small or large mean coverage ratios were

excluded. We ran our method on the remaining 31 cell lines and

compared our ploidy estimates to the SKY-determined values

(Fig. 2 and Supplementary Table S1). Throughout the article,

we recorded the top two solutions in terms of minimum fitting

errors and listed in the tables the one that better matches the

benchmark value. Using this approach, we obtained close ploidy

estimates from the WES data as compared with the SKY bench-

mark values for 29 of 31 (94%) cell lines. The top first solutions

and second solutions matched the SKY values for 22 and 7 cell

lines, respectively. Among the two outliers, HOP-92 is known for

presence of a large number of structural rearrangements

(Roschke et al., 2003) that potentially complicated the analysis.

The reason why HCC2998 was the other outlier was unclear to

us. If these two outliers are excluded, the Spearman correlation

coefficient is 0.93 (P50.0001), the root mean squared error

(RMSE) is 0.16 and the concordance correlation coefficient

(Lin, 1989) is 0.94, indicating high concordance between our

ploidy estimates and the SKY values for most cell lines. If

using only the top ranked solution for all 31 cell lines

(as compared with using 24 first and 7 second solutions as

above), the RMSE is 0.55, similar to the performance of

published SNP-based methods on similar cell lines (Carter

et al., 2012).

3.2.2 dbGAP breast cancer dataset We used a publicly available
exome sequencing dataset from 16 breast cancer patients (Banerji

et al., 2012), which has published estimates of purity and ploidy

from SNP array data using ABSOLUTE (Carter et al., 2012).

ABSOLUTE is a well-established method to estimate purity and

ploidy from SNP array data, and we used its estimates as a gold

standard.

We applied AbsCN-seq, both with and without SNV informa-

tion, to the exome sequencing data and compared the resulting

estimates of purity and ploidy with those of ABSOLUTE

(Table 2). The number of SNVs called in these samples ranges

from 17 to 154. As expected, ploidy estimates are almost the

same for AbsCN-Seq with and without SNV information

unless distinct solutions are selected, as Equation (4) shows

that SNV frequency does not provide direct information about

ploidy. For estimated purity, AbsCN-seq incorporating SNV in-

formation has a higher concordance with ABSOLUTE than

AbsCN-seq without this information. Hence, we will take

AbsCN-seq incorporating SNV information as our default

algorithm.
Overall, the estimates of purity and ploidy from AbsCN-seq

with SNV information have good concordance with

ABSOLUTE (Fig. 3 and Table 2). ABSOLUTE gave no estimate

for three subjects (18.8% no call rate), and AbsCN-seq gave no

estimate for one subject (6.3% no call rate). AbsCN-seq failed to

converge to a biologically plausible solution for subject 27, leav-

ing 12 subjects remaining for comparison. The top ranked first

solutions and second solutions matched the ABSOLUTE esti-

mates for 9 and 1 tumors, respectively. Subject BR-M-074 is the

only subject with a large discrepancy in both estimated purity

and ploidy (Fig. 3). ABSOLUTE estimates low purity (0.25) and

high ploidy (3.88), assigning this sample the extreme estimate in

both measures. By comparison, AbsCN-seq approximately

Fig. 1. Simulation showing effects of subclonal fraction on estimated

purity, at three purity levels (30, 50 and 70%; horizontal lines). Data

modeled after tumor sample BR-M-028. X-axis: proportion of segments

set to be subclonal, for which the copy number was perturbed by a uni-

form random shift away from its integer value. Y-axis: estimated purity

for n¼ 50 simulations. Solutions which would normally be ‘no call’ are

included for completeness. A subclonal fraction430% is seen to intro-

duce some bias, but estimated purity remains reasonable

Fig. 2. Ploidy estimates of Abs-CNseq versus SKY for 31 NCI cell lines.

Spearman rank correlation coefficient¼ 0.80, P50.001; RMSE¼ 0.34
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doubles the estimated purity (0.51) and halves the ploidy (1.95),

giving estimates for this sample near the middle of the group.

Thus, ABSOLUTE would appear to infer a whole-genome dou-

bling event, which AbsCN-seq does not. Notably, the

ABSOLUTE solution fits the exome sequencing data poorly

and does not belong to the stable solution set obtained by

AbsCN-seq. Thus, there appears to be a true discrepancy in

estimated purity and ploidy for subject BR-M-074, with

ABSOLUTE providing extreme, and AbsCN-seq mid-range, es-

timates. In particular, the exome sequencing data do not appear

to support a whole-genome doubling event. Hence, we will take

the AbsCN-seq estimate as reasonable for this sample, and omit

it from further comparisons. A second subject, BR-M-038, has

an alternate AbsCN-seq estimate in the stable solution set that

closely matches the ABSOLUTE estimates (purity 0.49 and

ploidy 1.93, shown as an open triangle on Fig. 3b), although

this alternate estimate did not belong to the top two solutions

as measured by the AbsCN-seq objective function. It is plausible

that, for subject BR-M-038, the discrepancy between the two

methods might result from which ABSOLUTE uses an external

database with expected frequency of karyotype information to

adjust the rank of the observed solutions.
Comparing the two series of estimates across all 12 subjects,

the RMSE is 0.20 for purity and 0.35 for ploidy, respectively.

Again, the moderate discrepancy of ploidy estimates is driven

by the outlier subject BR-M-074 discussed earlier in the text.

When this outlier subject is disregarded, the RMSE becomes

0.13 for purity and 0.22 for ploidy, respectively. Averaged over

the 11 samples, the estimated purity for ABSOLUTE is 0.48 and

for AbsCN-seq is 0.52, suggesting that on these samples, the

SNP-array–based ABSOLUTE estimates tend to give somewhat

lower estimated purity on average than AbsCN-seq. Estimated

ploidy is similar between the two algorithms, generally within

3%. Recall that the two algorithms are using independent sets

of data, exome sequencing data for AbsCN-seq and SNP array

data for ABSOLUTE, and so this performance appears to be

reasonable.
After determining the most likely purity and ploidy, AbsCN-

seq computed integer copy numbers qi’s and sj’s for each seg-

ment. A typical graphical representation of the CNAs on each

chromosome is shown in Figure 4, for subject BR-M-030 and

chromosome 16.

3.2.3 TCGA tumor dataset To evaluate whether our method
can be applied equally well to different tumor types other than

cell lines and breast tumors, we assessed our method on �20

prostate and 20 GBM tumor samples from the TCGA database.

(b)

(a)

Fig. 3. Comparison of purity (a) and ploidy (b) estimates from AbsCN-seq

(exome data) versus ABSOLUTE (SNP array data). The alternate estimate

for BR-M-038 mentioned in the main text is shown as an open triangle

Table 2. Purity �̂ and ploidy �̂ for breast tumor samples comparing pub-

lished estimates from ABSOLUTE using SNP array data and AbsCN-seq

using WES, with and without SNV data

Absolute AbsCN-seq Solution

rank

With SNVs Without SNVs

PID �̂ �̂ �̂ �̂ �̂ �̂

5 0.59 2.08 0.53 2.11 0.6 2.08 1

26 0.44 2.01 0.49 1.99 0.53 1.99 1

27 0.31 3.12 – – – – –

28 0.58 2.18 0.58 2.18 0.64 2.18 1

30 0.50 2.04 0.47 1.98 0.49 2.00 1

34 – – 0.49 2.32 0.56 2.29 1

37 – – 0.49 2.00 0.55 2.00 1

38 0.42 1.90 0.52 2.90 0.50 2.91 *

41 0.34 2.03 0.46 1.99 0.47 2.01 1

45 0.56 2.67 0.62 2.64 0.53 1.66 1

50 0.63 2.13 0.53 2.13 0.58 2.13 1

55 0.62 3.44 0.66 3.35 0.54 2.31 2

74 0.25 3.88 0.50 1.93 0.56 1.94 a

76 0.35 1.79 0.46 1.74 0.50 1.74 1

80 – – 0.49 2.02 0.51 2.02 1

83 0.30 2.00 0.45 2.00 0.48 2.00 1

PID: Patient ID; ‘–’ estimates not available. Solution rank ‘a’ indicates neither the

first nor the second ranked solution seems to match the benchmark value, and first

rank solution is listed.
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We compared the purity and ploidy estimates by our method

with those from ABSOLUTE, applied to the same data. We

excluded a few samples that ABSOLUTE output marked as

either ‘high entropy’ or ‘low purity’, with 16 prostate and 17

GBM samples remaining for comparison (Fig. 5 and

Supplementary Table S3). Figure 5 shows that the two estimates

are highly concordant over a broad purity and ploidy range. The

Spearman correlation for purity and ploidy is 0.80 (P50.0001)

and 0.91 (P50.0001), respectively, and the concordance correl-

ation coefficients are 0.78 and 0.89, respectively. Averaged over

the 33 samples, the estimated purity for ABSOLUTE is 0.581

and for AbsCN-seq is 0.589. We no longer observed the minor

discrepancy we saw in the breast tumor samples, implying that

the minor discrepancy might be induced by the difference be-

tween platforms. Interestingly, the distribution of the ploidy es-

timates for each tumor type (Fig. 5b) recapitulated what was

observed in SNP array data for a larger sample size [c.f.

Fig. 3c in (Carter et al., 2012)]. For example, prostate tumor

ploidy shows a bimodal distribution with peaks at 2.0 and

43.5, and few intermediate cases. In contrast, the GBMs tend

to have continuous ploidy in the range from 2.0 to 4.0. This

cross-platform consistent pattern not only substantiates that

our random samples are representative of the larger population,

but also provides additional evidence that our estimates as a

whole are likely reasonable.

4 DISCUSSION

We have developed a statistical approach, AbsCN-seq, which

can estimate tumor purity and ploidy from WES data, and

then use these estimates to infer absolute copy number and ab-

solute multiplicity of somatic SNVs in the tumor. The ploidy

estimates of our method fit the SKY values well. Our method

also has good concordance with ABSOLUTE, although the two

differ in several aspects. First, the input data are generated from

different high-throughput platforms, ABSOLUTE, in it standard

form, using SNP array data while our method takes NGS data.

Second, the statistical framework and implementation differ.

ABSOLUTE uses a Bayesian framework, whereas our method

uses a simpler frequentist approach. Third, ABSOLUTE uses

additional independent information to infer which solution is

most likely, such as empirical karyotype models, while our solu-

tion refers only to the data from the sample and chooses the

estimate that gives the best least-squares fit to the data. Given

these differences, it is encouraging to see the high concordance

between these two methods on our validation datasets. For the

breast cancer patients, ABSOLUTE did not make calls on three

(b)

(a)

Fig. 5. Comparison of purity (a) and ploidy (b) estimates from AbsCN-

seq versus ABSOLUTE for 17 GBM samples and 16 prostate samples

Fig. 4. Assignment of integer copy numbers to the segments on chromo-

some 16 for subject BR-M-030. Raw copy ratios and segmented copy

ratios between the tumor DNA mixture and the match germ line DNA

are in green and blue, respectively. The estimated absolute copy numbers

in pure tumor cells are in red. As a copy ratio of 1.0 corresponds to a

normal diploid segment, we multiply the copy ratios by two to bring the

copy ratio and the absolute copy number to the same scale
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subjects, and our method made reasonable calls on all three. We

are unclear whether the failure of ABSOLUTE to produce an

estimate for these subjects was due to a failure in SNP array

experiment or to the algorithm itself. Thus, it seems that

AbsCN-seq can work for certain samples where ABSOLUTE

cannot make a call. On the other hand, our method failed to

produce estimates in one case where ABSOLUTE could make an

estimate, thus providing complementary approaches. As has

been seen by ABSOLUTE, the best fitting solution is not

always the correct solution. The validation studies here show

that the top two solutions of our method usually cover the cor-

rect answer, but exceptions do exist. We recommend the user to

manually inspect each solution whenever possible. Although our

method does not yet incorporate subclonal tumor heterogeneity,

it has been shown to be robust to a considerable amount of such

heterogeneity, as well as to segmentation errors, in the estimates

of purity and ploidy.

Our method is flexible in the sense that it can also be applied

to shallow whole-genome sequencing data (Li et al., 2011), an

emerging NGS application to identification of copy number vari-

ants genome-wide. However, presence of somatic mutations

cannot be reliably called in these type of data, let alone the cor-

responding variant allele frequency. For these type of data, we

can set the algorithm to only use copy number information, by

setting � ¼ 1. The reduced objective function (first term of

Equation 5) in step 2 now has a closed form solution. Define a

new parameter

	 ¼ �=ð�� þ 2ð1� �ÞÞ:

It is easy to see that when qi’s are given, Equation (3) reduces

to a simple linear regression on qi’s. Then � can be obtained from

the 	 estimate. A caveat arises when we apply this form of

AbsCN-seq to the WES data as seen in Figure 3a. We observed

a systematic upward bias in the purity estimates as compared

with the SNP-based ABSOLUTE estimates. However, by incor-

porating the SNV information, such bias was greatly diminished,

and this did not appear to affect the ploidy estimates. This might

not be a concern in practice, as for WES data, we will always use

the default form with SNV information. At this moment, it is not

clear to us what is the major cause for the small remaining

observed bias. Platform-specific biases in the raw copy ratio

data could be one possible reason. For instance, as shown by

Carter et al. (2012), the algorithm relying on the Illumina SNP

array data (Van Loo et al., 2010) systematically underestimate

tumor purity, as compared with the ABSOLUTE method relying

on the Affymetrix SNP array data. Likewise, the apparent small

overestimation of purity by our method as compared with

ABSOLUTE might also be attributed to the characteristics of

WES data compared with SNP array data. A supporting evi-

dence is that we did not observe such minor biases when the

platform is fixed. We have not tested our method on shallow

WGS data with reference to purity estimates and we do not

know yet if such overestimation also exists in the WGS data.

Future work will examine the performance of the method on

shallow WGS data, when a benchmark dataset becomes

available.

Funding: This work was supported by [NIH U54HL108460] and

[R01CA166293-01A1] as well as a grant from the Breast Cancer

Research Foundation (Dr Barbara Parker, PI). The authors

thank Viswanath Nandigam at the Moores Cancer Center for
configuring the Apache. They also thank dbGAP team to grant

them access to the data.

Conflict of Interest: none declared.

REFERENCES

Abaan,O.D. et al. (2013) The exomes of the NCI-60 panel: a genomic resource for

cancer biology and systems pharmacology. Cancer Res., 73, 4372–4382.

Attiyeh,E.F. et al. (2009) Genomic copy number determination in cancer cells from

single nucleotide polymorphism microarrays based on quantitative genotyping

corrected for aneuploidy. Genome Res., 19, 276–283.

Banerji,S. et al. (2012) Sequence analysis of mutations and translocations across

breast cancer subtypes. Nature, 486, 405–409.

Bengtsson,H. et al. (2010) TumorBoost: normalization of allele-specific tumor copy

numbers from a single pair of tumor-normal genotyping microarrays. BMC

Bioinformatics, 11, 245.

Beroukhim,R. et al. (2010) The landscape of somatic copy-number alteration across

human cancers. Nature, 463, 899–905.

Carter,S.L. et al. (2012) Absolute quantification of somatic DNA alterations in

human cancer. Nat. Biotechnol., 30, 413–421.

DePristo,M.A. et al. (2011) A framework for variation discovery and genotyping

using next-generation DNA sequencing data. Nat. Genet., 43, 491–498.

Greenman,C.D. et al. (2010) PICNIC: an algorithm to predict absolute allelic copy

number variation with microarray cancer data. Biostatistics, 11, 164–175.

Gusnanto,A. et al. (2012) Correcting for cancer genome size and tumour cell con-

tent enables better estimation of copy number alterations from next-generation

sequence data. Bioinformatics, 28, 40–47.

Koboldt,D.C. et al. (2012) VarScan 2: somatic mutation and copy number alter-

ation discovery in cancer by exome sequencing. Genome Res., 22, 568–576.

LaFramboise,T. et al. (2005) Allele-specific amplification in cancer revealed by SNP

array analysis. PLoS Comput. Biol., 1, e65.

Li,H. et al. (2009) The sequence alignment/map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Li,H. (2011) A statistical framework for SNP calling, mutation discovery, associ-

ation mapping and population genetical parameter estimation from sequencing

data. Bioinformatics, 27, 2987–2993.

Li,Y. et al. (2011) Low-coverage sequencing: implications for design of complex

trait association studies. Genome Res., 21, 940–951.

Lin,L.I. (1989) A concordance correlation coefficient to evaluate reproducibility.

Biometrics, 45, 255–268.

Mailman,M.D. et al. (2007) The NCBI dbGaP database of genotypes and pheno-

types. Nat. Genet., 39, 1181–1186.

Oesper,L. et al. (2013) Inferring Intra-tumor Heterogeneity from High-Throughput

DNA Sequencing Data. Res. Comput. Mol. Biol., 7821, 171–172.

Olshen,A.B. et al. (2004) Circular binary segmentation for the analysis of array-

based DNA copy number data. Biostatistics, 5, 557–572.

Roschke,A.V. et al. (2003) Karyotypic complexity of the NCI-60 drug-screening

panel. Cancer Res., 63, 8634–8647.

Rueda,O.M. and Diaz-Uriarte,R. (2007) Flexible and accurate detection of genomic

copy-number changes from aCGH. PLoS Comput. Biol., 3, e122.

Su,X. et al. (2012) PurityEst: estimating purity of human tumor samples using next-

generation sequencing data. Bioinformatics, 28, 2265–2266.

The Cancer Genome Atlas Research Network. (2008) Comprehensive genomic

characterization defines human glioblastoma genes and core pathways.

Nature, 455, 1061–1068.

Van Loo,P. et al. (2010) Allele-specific copy number analysis of tumors. Proc. Natl

Acad. Sci. USA, 107, 16910–16915.

Xie,C. and Tammi,M.T. (2009) CNV-seq, a new method to detect copy number

variation using high-throughput sequencing. BMC Bioinformatics, 10, 80.

Yau,C. et al. (2010) A statistical approach for detecting genomic aberrations in

heterogeneous tumor samples from single nucleotide polymorphism genotyping

data. Genome Biol., 11, R92.

Yu,G. et al. (2011) BACOM: in silico detection of genomic deletion types and

correction of normal cell contamination in copy number data. Bioinformatics,

27, 1473–1480.

Zanetti,M. et al. (2012) Immune surveillance from Chormosomal Chaos? Science,

337, 1616–1617.

1063

AbsCN-seq

whole 
 (WGS)
this 
this 
Indeed, t
to
since
Platform 
to
to
to
n't
 set
.
We 
We 
us

