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ABSTRACT

Motivation: Estimating a phenotype distribution conditional on a set of

discrete-valued predictors is a commonly encountered task. For ex-

ample, interest may be in how the density of a quantitative trait varies

with single nucleotide polymorphisms and patient characteristics. The

subset of important predictors is not usually known in advance. This

becomes more challenging with a high-dimensional predictor set

when there is the possibility of interaction.

Results: We demonstrate a novel non-parametric Bayes method

based on a tensor factorization of predictor-dependent weights for

Gaussian kernels. The method uses multistage predictor selection

for dimension reduction, providing succinct models for the phenotype

distribution. The resulting conditional density morphs flexibly with the

selected predictors. In a simulation study and an application to mo-

lecular epidemiology data, we demonstrate advantages over com-

monly used methods.
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1 INTRODUCTION

Many areas of research are concerned with learning the distribu-

tion of a response conditional on numerous categorical (discrete)

predictors. The important predictors for characterization of this
distribution are not usually known in advance, and there may be

hundreds or thousands of candidates. Methods that attempt to
accommodate interactions among these predictors become mired

in the enormous model space. For example, in a moderate-
dimensional case involving p¼ 40 categorical predictors, each

with dj ¼ 4 possible realizations, considering all possible levels

of interaction leads to a space of 440 � 1024 possible models.
Parallelization and technical tricks may work for smaller ex-

amples, but data sparsity and the sheer volume of models force
us to consider different approaches. The conditional density may

vary in more than just location; Chung and Dunson (2009) illu-
strated this in an application to the conditional density of blood

glucose levels given insulin sensitivity and age. In the work that

follows, we present a novel non-parametric Bayes (NPB)

approach to learning conditional densities that makes use of a

conditional tensor factorization to characterize the conditional

distribution given the predictor set, allowing for complex inter-
actions between the predictors. The particular form assumed for

the conditional density gives rise to an attractive predictor selec-

tion procedure, providing support for distinct predictor selection

steps. This addresses the challenges of high-dimensional data and
produces conditional density estimates that allow assessment of

tail risks and other complex quantities.

2 APPROACH

The primary goal of our work is to model the conditional density

fðyjxÞ, where the form of this density for the response y changes

flexibly with the predictor vector x. There is a large body of work

devoted to this idea of density regression in settings involving x

of dimension p � 30, and such models have provided many op-

tions for that situation. We wish to develop techniques for prob-

lems involving much larger p, and ideally to scenarios where

p41000. We want to provide a method that performs variable
selection, assesses the probability of a predictors inclusion in the

model and provides easily interpretable estimates of the impact

of different predictors. This problem has been addressed with

variations on the finite mixture model,

fðyÞ ¼
XK
h¼1

�hKðy; �hÞ ð1Þ

This is the basic form of the hierarchical mixture of experts

model [HME, Jordan and Jacobs (1994)]. In this representation,

K represents the number of contributing parametric kernels

Kð; �hÞ distinguished by parameters �h. The �h provides the
weights in this convex combination of kernels, wherePK

h¼1 �h ¼ 1 and ð�1, . . . ,�KÞ 2 SK�1, the K – 1 probability sim-

plex. The most straightforward forms rely on a pre-specified K

and include the predictors x in a linear model for the mean.

HME methods in the frequentist literature have often relied on

expectation maximization (EM) (Dempster et al., 1977) tech-
niques, which can suffer from overfitting (Bishop and Svensén,

2003). EM approaches in the Bayesian literature seek to avoid

this; Waterhouse et al. (1996) used EM to find maximum a pos-

teriori estimates using the inherent Bayesian penalty against
complexity to regulate those estimates. In addition, the

Bayesian framework allows the quantification of uncertainty

about the parameters in the model.*To whom correspondence should be addressed.
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NPB methods, such as the Dirichlet Process, prompted tech-
niques like that in Muller et al. (1996), which induced flexible
conditional regression through joint modeling of the response

and predictors. Subsequent methods included the predictors in
�h and/or �h via Dependent Dirichlet Process (DDP) mixtures.
De Iorio et al. (2004) proposed an ANOVA DDP model with

fixed weights f�hg that used a small number of categorical pre-
dictors to index random distributions for the response. Griffin
and Steel (2006) developed an ordered DDP, where the predictor

vectors were mapped to specific permutations of the weights
f�hg, yielding different density estimates for different predictor
vectors. Reich and Fuentes (2007) and Dunson and Park (2008)

used the kernel stick-breaking process to allow predictors to in-
fluence the weights. Chung and Dunson (2009) presented a fur-
ther alternative in the probit stick-breaking process, which uses a

probit transform of a real-valued function of the predictors to
incorporate them into the weights. Methods that use joint mod-
eling of response and predictors (Shahbaba and Neal, 2009;
Hannah et al., 2011; Dunson and Xing, 2009) are popular and

can work well under many circumstances, but estimation of the
marginal distribution of the predictors is a burden. Methods not
relying on discrete mixtures also exist; Tokdar et al. (2010) de-

veloped a technique based on logistic Gaussian processes. Jara
and Hanson (2011) presented an approach using mixtures of
transformed Gaussian processes.

These and other methods of Bayesian density regression have
proven successful, but as datasets have grown in size and com-
plexity, these approaches encounter difficulties. This is even more

daunting when we consider interactions of discretely valued pre-
dictors because we must consider the factorial combinations of
those levels.

The associated challenges of variable selection and dimension-
ality reduction have been explored in Bayesian density regres-
sion. Dimensionality reduction has a goal similar to that of

variable selection, that of finding a minimal set of predictors
that account for variation in the response. The logistic
Gaussian process approach of Tokdar et al. (2010) includes a

subspace projection method to reduce the dimension of the pre-
dictor space. Reich et al. (2011) developed a technique for
Bayesian sufficient dimensionality reduction based on a prior

for a central subspace. Although all of these approaches have
demonstrated their utility, they do not scale easily beyond p¼ 30
predictors.

There are also techniques like the random forest (Breiman,
2001) that aim to find parsimonious models for density estima-
tion involving a large number of predictors. One disadvantage to

this type of ‘black box’ method is in interpreting the impact of
specific predictors on the response. Bayesian additive regression
trees (BART) (Chipman et al., 2006, 2010) focus on modeling the

conditional mean and assume a common residual distribution.
As previously noted, there are many questions that require learn-
ing about more than just the conditional mean of the response.

Another flexible approach is the Bayes network (BN), which
considers the predictors and the response on equal footing to
develop a parsimonious network linking all variables (Pearl,

1988; Cowell et al., 1999; Lauritzen, 1992). The conditional dis-
tribution of the response given the predictors can be derived from
such a model, using developed BN techniques for mixed continu-

ous and discrete data (Lauritzen, 1992; Moral et al., 2001;

Langseth et al., 2012). A BN does estimate a joint density for

all of the predictors; the effort to estimate this very high-dimen-

sional nuisance parameter is unattractive, if the conditional dens-

ity is of primary interest.
We propose an approach based on a conditional tensor fac-

torization (CTF) for the mixing weights. As in the DDP and

certain of the kernel stick-breaking methods, the predictors in-

fluence the mixing weights for this CTF model. The conditional

tensor factorization facilitates borrowing of information across

different profiles in a flexible representation of the unknown

density. We focus our attention on situations involving continu-

ous responses and categorical predictors.

3 METHODS

We consider a univariate response y and a vector of p categorical pre-

dictors x ¼ ðx1, . . . , xpÞ, where the jth predictor xj can take values

1, . . . , dj. We would like a model that can flexibly accommodate condi-

tional densities that change in complex ways with changes in the predictor

vector. In addition, we must consider situations where p� n; there may

be no exemplars for certain predictor vectors. To address this, we propose

a Tucker-style factorization with the following general model for the

conditional density fðyjxÞ:

fðyjxÞ ¼
Xk1
h1¼1

� � �
Xkp
hp¼1

�h1, ... , hp ðxÞ�ðy; �h1, ... , hp Þ

where �h1, ... , hp ðxÞ ¼
Yp
j¼1

�ðjÞhj ðxjÞ: ð2Þ

This form uses the maps �ðjÞ, j ¼ 1, . . . , p to associate the predictor vector

x with a separate weight for each combination of the latent identifiers

h1, . . . , hp and thus with each of the k1 � � � � � kp kernels in the repre-

sentation. The xthj row of �ðjÞ is a vector of weights, one for each

hj ¼ 1, . . . , kj. These weights �ðjÞ1 ðxjÞ, . . . ,�ðjÞkj ðxjÞ are all in [0,1] andPkj
hj¼1

�ðjÞhj ðxjÞ ¼ 1. The number of latent predictors p, is the same as

the number of observed predictors, but the form of the �ðjÞhj may mean

that different predictor vectors x result in the same sets of weights

�1, ... , 1ðxÞ, . . . ,�k1, ... , kp ðxÞ. This provides the mechanism for dimension

reduction that we will develop. An important distinction from the

HME is in the treatment of the weights �h1, ... , hp ðxÞ as a tensor factoriza-

tion and the use of kernels �ðy; �h1, ... , hp Þ, which do not depend on

the predictor vector x. This is similar in spirit to the classification

approach proposed by Yang and Dunson, 2012, but we address

the problem of estimating an infinite-dimensional conditional density

rather than the finite-dimensional problem of a categorical response dis-

tribution. In addition, we make distinct improvements in predictor selec-

tion to allow the approach to scale to larger numbers of candidate

predictors.

Tucker decompositions (Tucker, 1966) and other kinds of decompos-

itions have appeared in the machine learning literature before. Xu et al.

(2012) developed an ‘infinite’ Tucker decomposition making use of latent

Gaussian processes rather than explicit treatment of tensors and matrices;

in comparison, the proposed method uses the Tucker decomposition to

characterize the mapping of predictors into weights. Other factorizations

have been used for similar problems; Hoff (2011) presented a reduced-

rank approach for table data, but this approach focused on the develop-

ment of estimates for the mean of a continuous response. Chu and

Ghahramani (2009) derive an approach for partially observed multi-

way data based on a Tucker decomposition; their objective is to learn
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about the latent factors driving observations rather than the character-

ization of the response distribution or variable selection.

The collection across j ¼ 1, . . . , p forms a ‘soft’ clustering from the

d1 � � � � � dp possible realizations of the x vector to each of the

M ¼ k1 � � � � � kp possible latent vectors. This means that a predictor

vector x is not exclusively associated with one of the M kernels, but has a

weight for each kernel determined by the product in (2). This allows each

observation to contribute some information about the influence of each

of the p sites, and thus allows borrowing of information across different

combinations of h1, . . . , hp. In settings of extreme sparsity, where most of

the possible predictor vectors are not represented, this is an attractive

property. This uses many fewer parameters than a full factorial represen-

tation and is still flexible enough to represent complex conditional distri-

butions. Finally, we assume normal kernels:

fðyijxiÞ ¼
Xk1
h1¼1

� � �
Xkp
hp¼1

Nðyi;�h1, ... , hp , �
�1
h1, ... , hp

Þ �
Yp
j¼1

�ðjÞhj ðxijÞ

( )
ð3Þ

This resembles other mixture-based approaches to density estimation as

originally specified in (1), but the proposed model for the weights pro-

vides the desired support for sparsity and information borrowing as pre-

viously discussed. In addition, the kernel-specific means �h1, ... , hp and

precisions �h1, ... , hp are not functions of the predictor vector. Figure 1

shows a conditional dependence graph for the model parameters and

the observed data.

3.1 Predictor selection

The first task in learning the conditional distribution is to identify those

predictors that provide the most information about the response; the

second task is to learn the form of the conditional distribution given

this set of informative predictors. The k1, . . . , kp parameters indicate

the number of latent levels for each predictor. Because each kj can take

on the values 1, . . . , dj, the possible combinations of different values for

k1, . . . , kp can be immense, and including these as parameters in an

Markov chainMonte Carlo (MCMC) sampler is not an attractive option.

In the notation of (3), predictors exclusion is equivalent to identifying

those sites j such that kj ¼ 1. Consequently, predictor vectors that differ

only at the jth position will have the same conditional density, and the jth

predictor can be excluded from the model. To identify those j such that

kj ¼ 1, we use a predictor selection step based on a special form of the

�ðjÞ. For each j ¼ 1, . . . , p and each xj ¼ 1, . . . , dj, we specify the �ðjÞ so

that �ðjÞhj ðxjÞ ¼ 1 for exactly one hj and �
ðjÞ
hk
ðxjÞ ¼ 0 for all hk 6¼ hj. This

form for the �ðjÞ associates each predictor vector x with exactly one of the

M ¼ k1 � � � � � kp kernels by giving that particular kernel a weight of

one. That is, if the set of maps �ðjÞ, j ¼ 1, . . . , p is such that

�ð1Þh1 ðxi1Þ ¼ 1, . . . ,�ðpÞhp ðxipÞ ¼ 1 for values h1, . . . , hp, then only the

kernel indexed by h1, . . . , hp will have non-zero weight. For computa-

tional convenience, we use conjugate priors and make the simplifying

assumption that the prior precision of each kernel mean �h1, ... , hp is the

same as the kernel precision �h1, ... , hp for each h1, . . . , hp, so that

�h1, ... , hp j�h1, ... , hp � Nð0, ��1h1, ... , hp
Þ and �h1, ... , hp � Gammað�t=2, �t=2Þ.

Because the proposed form for �ð1Þ, . . . ,�ðpÞ maps each predictor

vector to exactly one of the M groups, we can collect the observations

that map to each of the M groups and compute a marginal likelihood for

each group. Given the prior structure, the simplifying assumptions and

the clusterings defined by the �ð1Þ, . . . ,�ðpÞ, the log marginal likelihood

for the mth group is

Nm

2
logð�Þ �

1

2
logðNm þ 1Þ

þ log �
Nm þ �t

2

� �
� log �

�t
2

� �
þ
�t
2

logð�tÞ

�
1

2
ðNm þ �tÞ log YT

mYm �
ðYT

mJNm
Þ
2

Nm þ 1
þ �t

� �
,

where Ym is the vector of responses, Nm is the number of observations in

group m and JNm
is a Nm � 1 vector of 1’s. The sum of these M approxi-

mated log-marginal likelihoods gives a score for the particular levels of

k1, . . . , kp and the particular �ð1Þ, . . . ,�ðpÞ. Using these scores for differ-

ent levels of k1, . . . , kp and different hard-clustering forms of

�ð1Þ, . . . ,�ðpÞ, we can find those predictors with influence on the condi-

tional density.

It is not generally feasible to evaluate every possible set of k1, . . . , kp,

even for moderately sized problems. Instead, we begin with the null

model, where k1 ¼ k2 ¼ . . . ¼ kp ¼ 1 and propose random changes to

the different kj and the associated �ðjÞ. The randomly proposed changes

are of two types: ‘split’ and ‘merge’. A ‘split’ change at position j means

changing the �ðjÞ map so that the distinct xij map to more levels. For

example, assume that the jth position has three observed levels (dj ¼ 3)

and the current form of �ðjÞ is such that all three observed levels of xj are

mapped to the same level. In this case, kj ¼ 1 and �ðjÞ ¼
1
1
1

2
4

3
5. One pos-

sible ‘split’ move would propose �ðjÞ	 so that xj ¼ 2 maps to the second

latent level, so that kj ¼ 2 and �ðjÞ	 ¼
1 0
0 1
1 0

2
4

3
5. Conversely, a ‘merge’ move

will decrease the number of mapped levels by one; using the definitions

above, one such merge move would be to replace �ðjÞ	 with �ðjÞ. If site j

already has kj ¼ dj, then only merge moves are considered. Likewise, if

site j already has kj ¼ 1, then only split moves are considered. We use a

Metropolis step to accept or reject the proposed change; the stochastic

search proceeds as:

(i) Set nj ¼ 0, kj ¼ 1; j ¼ 1, . . . , p; set �ðjÞ ¼ Jdj , j ¼ 1, . . . , p; com-

pute the marginal likelihood MLc.

(ii) For j ¼ 1, . . . , p, draw from all possible split and merge moves

with equal probability. For a split, propose k	j ¼ kj þ 1; for a

merge, propose k	j ¼ kj � 1.

(iii) Compute ML	 for the proposed configuration; accept the move

with probability 1 ^ ML	

MLc. If the new configuration is accepted, set

kj ¼ k	j and MLc ¼ML	; if kj41, set nj ¼ nj þ 1.

(iv) After T iterations of steps 2-3, compute inclusion probabilities

pj ¼
nj
T for j ¼ 1, . . . , p.

(v) Retain those predictors such that pj4	; using 	 ¼ 0:5 is equiva-

lent to choosing the median probability model.

This stochastic search is similar to George and McCulloch (1997). The

approach we propose here is simple and appealing, but in our initial

simulation studies we noticed a tendency for this search to choose

overly complex models. Model selection was sensitive to the order in

which the predictors were considered. When the important features

were considered after many unimportant factors, randomly induced as-

sociations in the data and stochastic variation in the search led to com-

plex models that were not improved by addition of the important

predictors.

μh1, …, hp
τh1, …, hp πh1

(1) πh2

(2) … πhp

(p)

xi1 xi2 xip

yi

∏
j=1

p

kj

Fig. 1. Conditional dependence graph showing the relationship between

the model parameters and the observed data
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To combat this tendency, we introduced a preliminary predictor iden-

tification step that considers each of the predictors in isolation. We can

represent the entire stochastic search on the jth predictor with a dj � dj
discrete-time Markov transition matrix derived from the acceptance and

move probabilities defined above. We can then compute the long-run

proportion of time that the chain spends in states such that kj41. This

can be done in an embarrassingly parallel fashion, and the computation

of each pj proceeds quickly. For the simulation case, where dj ¼ 4 for all j,

computation of each pj took �0.3 s. At the conclusion of this single-pre-

dictor search step, we arrange the predictors in descending order of these

pj, retaining only those predictors such that pj4	, and proceed with the

full stochastic search to identify a final predictor set.

3.2 Estimation after predictor selection

To estimate the parameters in the model using the selected predictors, we

introduce a prior precision �0 � Gammað�0=2, �0=2Þ for each kernel mean

�h1, ... , hp � Nð0, �0Þ, a prior for each kernel precision

�h1, ... , hp � Gammað�t=2, �t=2Þ and separate Dirichlet priors for each

weight vector �ðjÞðxjÞ � Dirið 1kj , . . . , 1
kj
Þ.

To facilitate computation, we augment the model proposed in (3) with

classification vectors zi that associates the i
th observation with exactly one

kernel and gives a complete-data likelihood that can be expressed as a

product:

YN
i¼1

Yk1
h1¼1

� � �
Ykp
hp¼1

N yi;�h1, ... , hp , �
�1
h1, ... , hp

� �
�
Yp
j¼1

�ðjÞhj ðxijÞ

( )1½zi¼ðh1, ... , hpÞ


ð4Þ

The full conditional distributions are

(1) �h1, ... , hp j � � � � Nð�	h1, ... , hp , ð�
	
h1, ... , hp

Þ
�1
Þ, where:

�	h1, ... , hp ¼ �0 þ �h1, ... , hp
PN

i¼1 1½zi ¼ ðh1, � � � , hpÞ


�	h1, ... , hp ¼ f�h1, ... , hp
PN

i¼1 yi1½zi ¼ ðh1, � � � , hpÞ
g=�
	
h1, ... , hp

(2) �h1, ���, hp j � � � � Gammað�	=2, �	=2Þ, where:

�	 ¼ �t þ
PN

i¼1 1½zi ¼ ðh1, . . . , hpÞ


�	 ¼ �t þ
PN

i¼1 1½zi ¼ ðh1, . . . , hpÞ
ðyi � �h1, ... , hp Þ
2

(3) �0j � � � � Gammað½�0 þM
=2, ½�0 þ f
Pk1

h1¼1
� � �
Pkp

hp¼1
�2
h1, ... , hp

g
=2Þ

(4) ð�ðjÞ1 ð‘Þ, . . . ,�ðjÞkj ð‘ÞÞj � � � � Dirið 1kj þ
PN

i¼1 1½xij ¼ ‘
 1½zij ¼ 1
, . . . ,
1
kj
þ
PN

i¼1 1½xij ¼ ‘
 1½zij ¼ kj
Þ for ‘ ¼ 1, . . . , dj and j ¼ 1, . . . , p

(5) Pr½zi ¼ z	jm � ðh1, . . . , hj�1,m, hjþ1, . . . , hpÞ
j � � � / 
½ðyi � �z	jm
Þffiffiffiffiffiffiffi

�z	jm
p

 � �ðjÞm ðxijÞ for m ¼ 1, . . . , kj within each j ¼ 1, . . . , p; 
ð�Þ

indicates the standard normal density.

The updates for the �h1, ... , hp , �h1, ... , hp and �
ðjÞ can be done blockwise, and

the zi can be updated blockwise at each position j. Using the final pre-

dictor set and the full conditionals, we produce a posterior sample for the

model parameters. This posterior sample allows us to compute condi-

tional densities and credible intervals around those estimates for various

combinations of the predictors.

4 DISCUSSION

4.1 Simulation study

To assess the variable selection and prediction performance of
the CTF, we conducted a simulation study, varying the number

of training observations N 2 f300, 500, 1000, 1500g and using a
consistent ground truth to produce simulated datasets with total

number of predictors p¼ 1000. In each case, the true model was
based on three predictors at positions 30, 201 and 801, each with

dj ¼ 4 levels and including three-way interactions among these
predictors. The resulting marginal density is an equally weighted

mixture of 64 Gaussians with different means and the same

residual precision �. In other words, an observation with

ðxi, 30, xi, 201, xi, 801Þ ¼ ð3, 2, 1Þ is drawn from Nð�3, 2, 1, �
�1Þ, and

so forth for each of the 64 distinct predictor vectors.

For each of 20 training sets, we produced selected predictor

sets and posterior samples. We then made predictions for 20

validation sets drawn from the same underlying true distribution.

As competitor methods, we used random forests (RF) and

quantile regression random forests (QRF) (Meinshausen,

2006); these are implemented in the randomForest and

quantregForest packages in R. BART, as implemented in

the BayesTree package, was unable to run to completion on

any of the training sets, though we were able to use BART with

the real data example in Section 4.2. RF and QRF include pre-

dictor selection directly, and QRF directly addresses the idea of

coverage proportion. BART is another MCMC-based approach,

but it does not directly address variable selection, allowing us to

investigate the impact of the large predictor space. The implicit

cost in estimating the joint distribution of predictors and re-

sponse made Bayes networks unattractive.
We computed mean square prediction error (MSPE) as the

average squared difference between the response value predicted

by the model for a predictor vector from the validation set and

the actual response value for that observation. We defined cover-

age proportion as the proportion of times that the 95% predic-

tion interval for an observation in the validation set included the

actual response value, averaged over the intervals for each pos-

terior sample. When comparing performance with that of the

competitors, we attempted to give those competitors whatever

advantages we could provide. In the case of RF, this meant that

we did two passes over the training data. The first pass identified

important variables using the importance method in the

randomForest package. We used the ‘mean decrease in accur-

acy’ style of importance; this measurement is derived from the

impact of permuting out-of-bag data for each tree in the forest.

We then fed those variables identified as important as a pre-

selected set into a second run of RF. This generally improved

the MSPE performance of RF. An analogous method was not

available for QRF, so we could not treat that method in the same

manner. In each of the 20 cases for p¼ 1000 and training

N¼ 500, the CTF outperformed RF on mean square prediction

error and showed comparable 95% coverage proportions to

those derived from QRF; this is summarized in Figure 2. The

CTF and RF showed comparable accuracy in identifying import-

ant predictors, but RF tended to include many unimportant pre-

dictors. In contrast, the CTF produced no false-positive results,

identifying the correct subset of predictors in each case. This

performance is particularly attractive given the large number of

possible interactions in the original predictor set. Both RF and

QRF may have suffered because of the strong interactions pre-

sent in these simulated data.

4.2 Molecular epidemiology application

We also consider an application to an epidemiology dataset,

comparing CTF performance with that of the same competitor

methods (RF, QRF and BART). The dataset concerns DNA

damage to instances of different cell lines when exposed to en-

vironmental chemicals. The exposure types are hydrogen perox-

ide (H2O2) and methyl methane sulfonate (MMS), and the
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remainder of the predictor set is genotype information on 49 428

single nucleotide polymorphisms (SNPs). Rodriguez et al. (2009)

provide extensive details on the original experiments. One hun-

dred separate instances of each of 90 cell lines were exposed to

each chemical and examined at each of three time points (before

treatment, immediately after treatment and a longer time after

treatment). The nature of the measurement is destructive; at the

desired time interval, comet assay was performed on each cell

and the Olive tail moment (OTM) (Olive et al., 1991) was re-

corded; this assesses the amount of DNA damage in the cell, with

higher measurements indicating more damage. The cells from

each line are genetically identical, but the resulting distribution

of OTM has a different shape for each cell line. In addition, these

distributions are different at the separate time points; generally,

OTMs are smallest (least damage) before exposure to the chem-

ical, largest (most damage) immediately after exposure and

somewhere in-between after a longer recovery time.
We computed empirical quantiles of the OTM for each cell

line at each of the three time points and then derived a single-

number summary wij to tie these three quantile vectors together

for cell line i and exposure j. The summary measure wij 2 ð0, 1Þ is

the value that minimizes

X31
h¼17

jwijQij,N, h þ ð1� wijÞQij,L, h �Qij,A, hj ð5Þ

Here, Qij,N, h indicates the h=32th quantile for the ith cell line’s

OTM distribution at the ‘No treatment’ time, with corresponding

quantities for the ‘Later’ time point and the ‘immediately After’

time point for the jth exposure. The use of only the higher quan-

tiles reflects our desire to learn more about the extremes of DNA

repair. We used a logit transform to derive our final response

yij ¼ logð
wij

1�wij
Þ; this is appropriate for the assumptions of the

model. Negative values of the response indicate that the OTM

distribution long after treatment is closer to the distribution right

after treatment; positive values indicate that the ‘long after’ dis-

tribution is closer to the distribution before treatment.
SNPs in genes thought to be associated with some aspect of

DNA repair were genotyped, leading to data on 49428 individ-

ual SNPs. Given the small number of cell lines and the fact that

many individuals have two copies of the major allele for these

SNPs, many of the SNP profiles were identical or had no indi-

viduals with two copies of the minor allele. We recoded the

genotypes so that one indicated at most one copy of the major

allele and two indicated two copies of the major allele. After

recoding, we reduced the predictor set to those SNPs with dis-

tinct profiles, leaving 23 210SNPs for analysis.
We used leave-one-out cross-validation to assess the perform-

ance of CTF against the three competitors RF, QRF and BART.

We ran the variable selection chain for 5000 burn-in iterations

and computed inclusion probabilities from 10 000 samples. We

ran the MCMC chain for 40000 burn-in iterations and retained a

sample of 20 000 iterations. Autocorrelation diagnostics indi-

cated an effective sample size of 15 000. We used the same

burn-in and posterior sample sizes for BART. As in the simula-

tion study, we used the results from a first run of RF to seed a

final run of RF.
CTF showed consistent selection of the treatment (H2O2 or

MMS) as the most important predictor and selected a set of

four SNPs (IGFBP5, TGFBR3, CHC1L and XPA) as predictors;

information about these SNPS is summarized in Table 1. In con-

trast, RF chose the treatment variable in only 56 of the 180 cross-

validation scenarios and did not consistently identify any other

predictors. Comparison with the competitor methods showed pat-

terns similar to the simulation study; Table 2 compares the results

from each method. The interactions between the treatment and

the various SNPs may be weak enough that they do not contrib-

ute to the same elevated MSPE that RF demonstrated in the

simulation study. Even though the MSPE for RF was close to

that for the CTF, the CTF was able to achieve lower MSPE while

not sacrificing coverage performance. This improved performance

offsets the CTF’s higher computational time requirement.

Figure 3 shows estimated conditional densities with 95% credible

intervals from the full dataset given varying levels of the treatment

and of the IGFBP5 SNP while holding the other three SNPs at
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Fig. 2. Simulation study results, comparing CTF with random forests

and quantile regression random forests

Table 1. Details for SNPs included in the final CTF model for the mo-

lecular epidemiology data

Gene SNP Position

IGFBP5 RS11575170 217256085

TGFBR3 RS17880594 92118885

CHC1L RS9331997 47986441

XPA RS3176745 99478631

Table 2. Comparison of MSPE, 95% coverage proportion and mean

computation time for different methods applied to molecular epidemi-

ology data

Metric CTF RF QRF BART

MSPE 0.263 0.353 – 0.425

95% Coverage 0.961 – 0.928 0.817

Time (s) 3317 80 88 2343
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the ‘Zero/One Copy’ level, and illustrates how the conditional

density changes in more than the conditional mean when the

predictor vector changes. In this case, the interaction between

MMS treatment and two copies of the major allele for this

IGFBP5 SNP tightens the density markedly, although it has a

more muted impact on the conditional mean. The change is less

dramatic under the exposure to H2O2. Here, the shift in the mean

response as treatment and genetic profile change is less interesting

than the difference in conditional variance; under treatment with

H2O2, the mean response is slightly different than under treat-

ment with MMS, but the tail probabilities are noticeably differ-

ent. Table 3 summarizes these differences in conditional mean,

conditional variance and conditional 90th percentile for each scen-

ario. As suggested in Figure 3, the medians of the conditional

densities given the exposure (H2O2 or MMS) are close, but in

the tail of the distribution (the 90th percentile), the separation

between the estimated quantile curves is larger. This varying

shift in the 90th percentile reflects the interaction between the

exposure and the level of the IGFBP5 SNP.

5 CONCLUSION

We have presented a novel method for flexible conditional dens-

ity regression in the common case of a continuous response and

categorical predictors. The simulation study and real data ex-

ample suggest that this conditional tensor factorization method

can have better performance than other modeling tools when

there is substantial interaction between the predictors of interest.

The CTF does have a higher computational time requirement

than the competitor methods, but the improvement in prediction

accuracy and coverage still make the CTF an attractive method.
A particularly appealing aspect of the CTF is predictor selec-

tion, which finds low-dimensional structure in the high-dimen-

sional predictor set. This reduction to more parsimonious

models yields a succinct description of the ways in which the

phenotype varies given exposure and SNPs. Finally, a distinct

advantage of the CTF is its ability to produce conditional density

estimates. This property of the CTF provides insight beyond a

simple conditional expectation and makes it possible to answer

more complex questions about the relationship between the re-

sponse and the predictors.
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