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ABSTRACT

Summary: The Dirichlet-multinomial (DMN) distribution is a fundamen-

tal model for multicategory count data with overdispersion. This dis-

tribution has many uses in bioinformatics including applications to

metagenomics data, transctriptomics and alternative splicing. The

DMN distribution reduces to the multinomial distribution when the

overdispersion parameter  is 0. Unfortunately, numerical computation

of the DMN log-likelihood function by conventional methods results in

instability in the neighborhood of  ¼ 0. An alternative formulation cir-

cumvents this instability, but it leads to long runtimes that make it

impractical for large count data common in bioinformatics. We have

developed a new method for computation of the DMN log-likelihood to

solve the instability problem without incurring long runtimes. The new

approach is composed of a novel formula and an algorithm to extend

its applicability. Our numerical experiments show that this new method

both improves the accuracy of log-likelihood evaluation and the run-

time by several orders of magnitude, especially in high-count data

situations that are common in deep sequencing data. Using real meta-

genomic data, our method achieves manyfold runtime improvement.

Our method increases the feasibility of using the DMN distribution to

model many high-throughput problems in bioinformatics. We have

included in our work an R package giving access to this method and

a vingette applying this approach to metagenomic data.

Availability and implementation: An implementation of the algorithm

together with a vignette describing its use is available in

Supplementary data.

Contact: pengyu.bio@gmail.com or cashaw@bcm.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The analysis of count data (Cameron and Trivedi, 2013;

Winkelmann, 2008) or categorical data (Agresti, 2002) is an

important topic in statistics and has a wide variety of applications

in bioinformatics. The advent of high-throughput sequencing

technologies (Metzker, 2010) provides unprecedented opportu-

nities for investigating new and more powerful analysis methods

on count data (Anders and Huber, 2010; Robinson et al., 2010).

The Poisson distribution is a basic distribution for modeling

count data. An important property of the Poisson distribution is

that the mean and variance are the same, which is called equi-

dispersion. However, the mean and the variance of real count

data are often not the same; in fact, the variance is often greater

than the mean. This makes the Poisson distribution not ideal for

analyzing such data because the equidispersion assumption is

violated. The phenomenon where a dataset exhibits greater vari-

ance than what would be expected in a statistical model is called

overdispersion. A commonly used overdispersed model for the

Poisson distribution is the negative-binomial distribution. This

distribution has been extensively studied in Hilbe (2011) and is an

indispensable model for high-throughput sequencing data

(Anders and Huber, 2010).

Another fundamental model in count data analysis is the

multinomial (MN) distribution, which is useful for analysis of

count proportions among multiple categories. One important use

case of the MN distribution is Fisher’s exact test of contingency

tables (Fisher, 1973; Mehta and Patel, 1986), which has been

used in the analysis of alternative 30 UTR utilization (Wan,

2012) and splicing (Lu et al., 2013), as well as

metagenomics (Gomez-Alvarez et al., 2012). In the regression

context, MN logistic regression is also commonly used

(Agresti, 2002). However, real data often exhibit heterogeneity

that is usually thought to be caused by dependencies or the simi-

larity of responses of members of the same cluster in cluster

sampling (Brier, 1980). This leads to extra-multinomial variation

(Haseman and Kupper, 1979), i.e. overdispersion with respect to

the MN distribution.

The modeling of overdispersion of the MN distribution has

been addressed by extending the MN distribution to the

Dirichlet-multinomial (DMN) distribution (Mosimann, 1962;

Poortema, 1999). The beta-binomial (BB) distribution—a special

case of the DMN distribution with only two categories—has

been studied by many (Crowder, 1978; Kleinman, 1973;

Skellam, 1948). Because of its flexibility and its mathematical

convenience, the DMN distribution is widely applied to diverse

fields, such as topic modeling (Mimno and McCallum, 2008),

magazine exposure modeling (Leckenby and Kishi, 1984; Rust

and Leone, 1984), word burstiness modeling (Madsen et al.,

2005), language modeling and (MacKay and Bauman Peto,

1994) multiple sequence alignment (Brown et al., 1993;

Sjölander et al., 1996). Bouguila (2008) also considered a gener-

alization of the DMN distribution and applied it to count data*To whom correspondence should be addressed.
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clustering. Another related distribution for handling overdisper-
sion is the Dirichlet negative MN distribution (Mosimann, 1963)

allowing the modeling of correlated count data without an upper
bound, which has many possible uses in biostatistics and bio-

informatics (Farewell and Farewell, 2013).
Likelihood functions play a key role in statistical inference

(Casella and Berger, 2002). For example, likelihood functions

can be used for parameter estimation, hypothesis testing and inter-
val estimation. In the context of the DMN distribution, there has

been recent research to investigate the Fisher information matrix

(Paul et al., 2005) and maximum likelihood estimation (MLE)
(Neerchal and Morel, 2005). Not all statistical inference methods

are based on likelihood functions. For instanceKim andMargolin

(1992) developed a method for testing the goodness of fit of the
MNdistribution against the DMNdistribution based on theCð�Þ
test statistic (Tarone, 1979), a flexible framework built on the

likelihood approach that enables the analysis of complex experi-
mental designs (McCullagh and Nelder, 1989) that frequently

appear in genomic and bioinformatics studies.
In this article, we study the fundamental problem of the evalu-

ation of the DMN log-likelihood function. In Section 2, we dem-
onstrate the instability and runtime problems of two existing

methods for computing the DMN log-likelihood function and

propose a novel parameterization of the log-likelihood function
to allow smooth transition from the overdispersed case (theDMN

distribution) to the non-overdispersed case (theMNdistribution).

For this new parameterized form, in Section 3 we introduce a new
formula based on a truncated series consisting of Bernoulli poly-

nomials. In Section 4, a mesh algorithm is devised to increase the

applicability of this new formula. In Section 5, we show numerical
results of the mesh algorithm, confirm its stability and runtime

improvements. Finally, we applied our method to human micro-

biome data and demonstrated its large performance improvement
over the most accurate existing method.

2 DMN DISTRIBUTION

The DMN distribution, a.k.a., the compound MN distribution

(Mosimann, 1962), is an extension of the MN distribution. The probabil-

ity mass function (PMF) of the K categories MN distribution of N-inde-

pendent trials is given by

fMNðx;N, pÞ ¼
N!QK

k¼1 xk!

YK
k¼1

pxkk ð1Þ

where n! denotes the factorial of a non-negative integer n; the observa-

tions x ¼ ðx1, :::,xKÞ, satisfying
PK

k¼1 xk ¼ N, are non-negative integers;

and p ¼ ðp1, :::, pKÞ, satisfying
PK

k¼1 pk ¼ 1, are the probabilities that

these K categories occur.

The DMN distribution can be generated if the probabilities p follow a

prior distribution (of the positive parameters � ¼ ð�1, . . . ,�KÞ) conjugate

to the PMF fMNðx;N, pÞ (Bishop, 2006)

fDirðp;�Þ /
YK
i¼1

p�i�1i

This distribution is called the Dirichlet distribution whose normalized

form is

fDirðp;�Þ ¼
�ðAÞ

QK
i¼1

�ð�iÞ

YK
i¼1

p�i�1i ð2Þ

where �ðxÞ is the gamma function and A ¼
PK

i¼1 �i.

The PMF of the DMN distribution is derived by taking the integral of

the product of the Dirichlet prior (2) and the MN likelihood (1) with

respect to the probabilities p (Mosimann, 1962),

fDMNðx;N,�Þ ¼
N!

QK
k¼1

xk!

� Að Þ

� AþNð Þ

YK
k¼1

�ð�k þ xkÞ

�ð�kÞ
ð3Þ

where, same as the MN distribution, x ¼ ðx1, . . . ,xKÞ are non-negative

integers, satisfying N ¼
PK

k¼1 xk. The DMN distribution reduces to the

BB distribution when there are only two categories (K ¼ 2).

The first term on the right side of (3) does not depend on the parameter

�. For common uses of the likelihood function in statistics, e.g. in the

maximum-likelihood estimation, we are not interested in the first term

but in the product of the remaining two terms, i.e. we are interested in the

last two terms of the DMN likelihood function in (3)

Lð�;xÞ ¼
� Að Þ

� AþNð Þ

YK
k¼1

�ð�k þ xkÞ

�ð�kÞ
ð4Þ

By taking the logarithm of both sizes of (4), we get the log-likelihood

function

lnL�ð�;xÞ ¼ � ln�ðAþNÞ � ln�ðAÞð Þ

þ
XK
k¼1

ln�ð�k þ xkÞ � ln�ð�kÞð Þ
ð5Þ

When A!1, it can be shown that the DMN distribution is reduced to

the MN distribution. As  ¼ 1=A becomes 0 under this limit, it is con-

venient to use the parameter  instead of A.

The parameter  characterizes how different a DMN distribution is

from the corresponding MN distribution with the same category prob-

abilities. The greater the parameter  , the greater the difference. This

additional parameter gives the DMN distribution the ability to capture

variation that cannot be accommodated by the MN distribution. We call

 the overdispersion parameter in this article, with the understanding that

the greater the  , the greater the variance. As an example, Figure 1 shows

that increasing the dispersion parameter  of the BB dispersion increases

the variance of the count of the first category x1. Using  ¼ 1=A, (5)

becomes

lnLðp, ;xÞ ¼ �ðln�ð1= þNÞ � ln�ð1= ÞÞ

þ
XK
k¼1

ln� 1=
 

pk
þ xk

� �
� ln� 1=

 

pk

� �� �
ð6Þ

Fig. 1. The PMFs of a family of the BB distributions (N¼ 10) with dif-

ferent dispersion parameters  . The spread of the distributions increases

with the dispersion parameter, whereas the mean remains constant
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where p ¼  �. One shortcoming of (6) is that it is undefined for  ¼ 0.

Hence, R (R Core Team, 2013) functions implementing (6), such as

dirmult () from dirmult (Tvedebrink, 2009) and betabin () from

aod (Lesnoff and Lancelot, 2012), return NaN when  ¼ 0. Another

shortcoming of (6) is that as  ! 0 the function implementing (6) is

unstable as shown in Figure 2.

Alternatively, the likelihood representation used in the method in the

R package VGAM (Yee, 2010, 2012; Yee and Wild, 1996), (4) can be

written as

Lð�;xÞ ¼

QK
k¼1

Qxk
r¼1 ð�k þ ðr� 1ÞÞQN

r¼1 ðAþ ðr� 1ÞÞ

¼

QK
k¼1

Qxk
r¼1 ðApk þ ðr� 1ÞÞQN�1

r¼0 ðAþ ðr� 1ÞÞ

¼

QK
k¼1

Qxk
r¼1

A
1þA pk þ

r�1
1þA

� �
QN�1

r¼0
A

1þAþ
r�1
1þA

� �

¼

QK
k¼1

Qxk
r¼1 ðpkð1� �Þ þ ðr� 1Þ�ÞQN

r¼1 ðð1� �Þ þ ðr� 1Þ�Þ

where � ¼ 1=ð1þ AÞ is the overdispersion parameter defined therein,

which is different from our definition of the overdispersion parameter

 in (6). The log-likelihood function can be written as

lnLðp, �;xÞ ¼
XK
k¼1

Xxk
r¼1

ln pkð1� �Þ þ ðr� 1Þ�ð Þ

�
XN
r¼1

lnðð1� �Þ þ ðr� 1Þ�Þ

ð7Þ

When there is 0 overdispersion (� ¼ 0), (7) reduces to the MN log-like-

lihood and it is numerically stable when �! 0. But the number of terms

on the right side of (7) is proportional to N. When N is large, the runtime

is long.

3 APPROXIMATION OF PAIRED LOG-GAMMA
DIFFERENCE

We see that (6) consists of paired ln� differences, such as

ln�ð1= þNÞ � ln�ð1= Þ. When  is close to 0, each ln�

term becomes exceedingly large, but the paired differences

become relatively small. Because of the limited precision of the

floating-point arithmetic (IEEE Task P754, 2008), the large

terms cancel and the result is left with large errors. We solve

this large error problem by a new approximation to the ln�

difference. Let us consider ln�ðzþ aÞ and ln�ðzÞ. Rowe (1931)

showed that ln�ðzþ aÞ (z and a are complex numbers) can be

asymptotically expanded as

ln�ðzþ aÞ ¼ zþ a�
1

2

� �
ln z� zþ

1

2
lnð2�Þ

þ
Xm
n¼2

ð�1ÞnBnðaÞ

nðn� 1Þzn�1
þOðz�mÞ, as z!1

ð8Þ

where BnðaÞ denotes the nth Bernoulli polynomial. The term

Oðz�mÞ means that, for any fixed m, the error of the right side

of (8) (with the term Oðz�mÞ removed) as an approximation to

log�ðzþ aÞ is bounded by z�m times some constant as z!1.

Let a¼ 0,

ln�ðzÞ ¼ z�
1

2

� �
ln z� zþ

1

2
lnð2�Þ

þ
Xm
n¼2

ð�1ÞnBn

nðn� 1Þzn�1
þOðz�mÞ, as z!1

where Bn denotes the nth Bernoulli number (Bn ¼ Bnð0Þ). Let

z ¼ 1=x and a¼ y, the difference between the above two equa-

tions is

ln�ð1=xþ yÞ � ln�ð1=xÞ ¼ � y lnxþ
Xm
n¼2

ð�1Þn�nðyÞ

nðn� 1Þ
xn�1

þOðxmÞ, as x! 0

ð9Þ

where

�nðyÞ ¼ BnðyÞ � Bn ð10Þ

is the old type Bernoulli polynomial (Whittaker and Watson,

1927). The infinite series

D1ðx, yÞ ¼
X1
n¼2

ð�1Þn�nðyÞ

nðn� 1Þ
xn�1 ð11Þ

converges absolutely when y is an integer and

jxjminðjy� 1j, jyjÞ51 (Freitag and Busam, 2009). Note that

x¼ 0 is a removable singularity of ln�ð1=xþ yÞ�

ln�ð1=xÞ þ y lnx. Using the properties of analytic functions,

we have (Freitag and Busam, 2009)

ln�ð1=xþ yÞ � ln�ð1=xÞ ¼ �y lnxþD1ðx, yÞ ð12Þ

Therefore, for any integer y, we can use the following

approximation

ln�ð1=xþ yÞ � ln�ð1=xÞ � �y lnxþDmðx, yÞ ð13Þ

when y is an integer and jxjminðjy� 1j, jyjÞ51 and

Dmðx, yÞ ¼
Xm
n¼2

ð�1Þn�nðyÞ

nðn� 1Þ
xn�1 ð14Þ

Fig. 2. The function implementing (6) is unstable when  approaches 0.

The parameters are x ¼ ð2, 3, 1Þ and p ¼ ð:2, :3, :5Þ
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The error is bounded by

X1
n¼mþ1

1

n� 1
�n ð15Þ

if jxjminðjy� 1j, jyjÞ5�, where � is a constant51. For the appli-

cation of computing the DMN log-likelihood function, we have

x � 0 and y 2 N
þ. So we instead require

xy � � ð16Þ

for simplicity.
The error bound (15) can be arbitrarily small for arbitrarily

large m without considering the numerical errors in computing

the Bernoulli polynomials �nðyÞ. In practice, high order polyno-

mials are difficult to compute using floating-point arithmetic

(Lauter and Dinechin, 2008). Because the subscript n equals

the order of the Bernoulli polynomial �nðyÞ, if m is too large,

the error of each terms of Dmðx, yÞ may actually be large, which

makes Dmðx, yÞ inaccurate. Hence, we do not want too many

terms in (14). So we choose m¼ 20 such that �nðyÞ (n � m) are

still numerically accurate. We also do not need the error bound

(15) to be smaller than the machine epsilon of the double pre-

cision data type (� 2:22� 10�16). Therefore, we choose � ¼ 0:2,
which leads to an error bound of �1:30� 10�16, which is a little

less than the machine epsilon.

4 THE MESH ALGORITHM FOR COMPUTING THE
DMN LOG-LIKELIHOOD

We apply (13) to compute the DMN log-likelihood function (6).

To cope with the requirement (16), by using the idea of analytic

continuation (Freitag and Busam, 2009), we introduce a mesh

algorithm and allow the computation of the DMN log-likelihood

using the approximation (13) in the whole parameter domain of

the DMN log-likelihood function. First, we study lnLðp, ;xÞ in

(6) in detail. Let xþ be the vector of the non-zero elements in x,

pþ be a vector of the corresponding elements in p and Kþ be the

length of xþ, then (6) becomes

lnLðp, ; xÞ ¼ � ln�ð1= þNÞ � ln�ð1= Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�

0
@

1
A

þ
XKþ
k¼1

ln� 1=
 

pþk
þ xþk

� �
� ln� 1=

 

pþk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

��

0
BB@

1
CCA

¼ lnLðpþ, ; xþÞ:

ð17Þ

When

 xþk � �p
þ
k , ð18Þ

after taking the sum over k on both sides, we have

 N � �
XKþ
k¼1

pþk � � ð19Þ

Therefore, the (*) term and all the Kþ (**) terms in (17) meet the

condition (16). Then the approximation (13) can be used for all

Kþ þ 1 paired ln� differences in (17),

lnLðpþ, ;xþÞ � � �N ln þDmð ,NÞð Þ

þ
XKþ
k¼1

�xþk ln
 

pþk

� �
þDm

 

pþk
, xþk

� �� �

¼ �Dmð ,NÞ þ
XKþ
k¼1

xþk ln pþk þDm
 

pþk
, xþk

� �� �

ð20Þ

When some of the Kþ (**) terms in (17) do not meet the con-

dition (18), we can rewrite the vector x into the sum of L terms

choosing the terms to meet this condition

x ¼
XL
l¼1

xðlÞ ð21Þ

We describe the choice of xðlÞ below. For convenience, we

define

�ðlÞ ¼ �þ
Xl
i¼1

xðiÞ, for l ¼ 0, . . . ,L ð22Þ

Note that we have the following relation between the adjacent

�ðlÞ’s,

�ðl�1Þ þ xðlÞ ¼ �ðlÞ, for l ¼ 1, . . . ,L, ð23Þ

or

pðl�1Þ= ðl�1Þ þ xðlÞ ¼ pðlÞ= ðlÞ, for l ¼ 1, . . . ,L ð24Þ

By taking the sum of all the elements in each vector in (22), we

have

1

 ðlÞ
¼

1

 
þ
Xl
i¼1

NðiÞ, for l ¼ 0, 1, . . . ,L ð25Þ

where 1= ðlÞ ¼
PK

i¼1 �
ðlÞ
i and NðlÞ ¼

PK
i¼1 x

ðlÞ
i . Or we write it as

1

 ðlÞ
¼

1

 ðl�1Þ
þNðlÞ, for l ¼ 1, . . . ,L ð26Þ

Strictly speaking, (25) is undefined for  ¼ 0, but when  ¼ 0,

all  ðlÞ should be 0 s. To make (25) numerically valid for all

 2 ½0, þ1Þ, we write

 ðlÞ ¼

1
1
 þ
Pl

i¼1
NðiÞ

if  � 1

 

1þ 
Pl

i¼1
NðiÞ

if 0 �  51

8><
>: ð27Þ

Similarly, for p, we have

pðlÞ ¼

p
 þ
Pl

i¼1
xðiÞ

1
 þ
Pl

i¼1
NðiÞ

if  � 1

pþ 
Pl

i¼1
xðiÞ

1þ 
Pl

i¼1
NðiÞ

if 0 �  51

8>>><
>>>:

ð28Þ
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Then, using (24) and (26), (6) can be broken into a sum of L

log-likelihoods,

lnLðp, ;xÞ

¼ �
XL

l¼1
ln� 1= ðl�1Þ þNðlÞ

� �
� ln� 1= ðl�1Þ

� �� �
þ
XL

l¼1

XK

k¼1
ln� p

ðl�1Þ
k = ðl�1Þ þ x

ðlÞ
k

� �
� ln� p

ðl�1Þ
k = ðl�1Þ

� �� �
¼
XL

l¼1

�
� ln� 1= ðl�1Þ þNðlÞ

� �
� ln� 1= ðl�1Þ

� �� �
þ
XK

k¼1
ln� pðl�1Þk = ðl�1Þ þ xðlÞk

� �
� ln� pðl�1Þk = ðl�1Þ

� �� ��

¼
XL

l¼1
lnL pðl�1Þ, ðl�1Þ;xðlÞ

� �
¼
XL

l¼1
lnL pðl�1Þþ, ðl�1Þ;xðlÞþ

� �
ð29Þ

The sum in (29) is used in our algorithm to evaluate the log-

likelihood function. We can always increase L and set xðlÞ intel-

ligently, so that the condition (16) is satisfied for all the terms in

the last formula in (29). In this case, each of the L terms in (29)
can be computed using (20). This means that the log-likelihood

function lnLðp, ; xÞ can be evaluated incrementally on a mesh

(Fig. 3). Hence, we name this method the mesh algorithm. Note

that there can be many ways to generate the mesh. We describe

below how the mesh is generated in our implementation. We first
create an initial mesh with the following scheme

x
ðlÞ
i ¼ �ðl�1Þi �

j k
, for l ¼ 1, . . . ,L ð30Þ

where 	b c denotes the floor function. The level of mesh L is

chosen so that it is the smallest integer satisfying

XL
l¼1

x
ðlÞ
i � xi, for all i ¼ 1, . . . ,K ð31Þ

This initial mesh needs to be adjusted because the end of the

mesh should total to match xi exactly. To do so, let L0i be the

smallest number satisfying

XL0i
l¼1

xðlÞi � xi, for i ¼ 1, . . . ,K ð32Þ

We adjust x
ðL0iÞ
i so that

PL0i
l¼1 x

ðlÞ
i ¼ xi. For each i, all the re-

maining xðlÞi (l4L0i) are set to 0. With this adjusted mesh, we can

use the approximation (20) to compute the DMN log-likelihood

(29). Figure 3 shows an example with L¼ 3. The 3 segments of x2
is 0; hence, there are only two non-zero segments as shown. x1, x3
and x4 are broken into three non-zero segments. The last non-

zero segments of all the four lines are adjusted so the segment

sums equal xi (i ¼ 1, 2, 3, 4), respectively.
Note that the time complexity of the mesh algorithm is pro-

portional to
PK

i¼1 Li
0 �

PKþ

i¼1 logx
þ
i , which is smaller thanPK

i¼1 xi ¼
PKþ

i¼1 x
þ
i , the time complexity of (7) (VGAM). The

difference becomes especially prominent for high count data

(Figs 6 and 8).

5 THE NUMERICAL RESULTS

We implemented the mesh algorithm for computing the DMN

log-likelihood in Cþþ. In this section, we demonstrate the ac-

curacy and runtime of the mesh algorithm. All experiments were

run on a Linux machine with a 4-core Intel Xeon CPUs E5630@

3.53GHz. Each log-likelihood function call is single-threaded.

In contrast to Figure 2, Figure 4 shows that the mesh algo-

rithm is numerically stable when  approaches 0.

Fig. 4. The figure presents a comparison of methods for evaluation of the

DMN log-likelihood function when the dispersion parameter  varies.

For the mesh algorithm, the evaluation is accurate and stable when the

dispersion parameter  approaches 0. The aod(dirmult) algorithm is un-

stable. The parameters are x ¼ ð2, 3, 1Þ and p ¼ ð:2, :3, :5Þ

Fig. 3. A graphical depiction of the mesh algorithm for evaluation of the

log-likelihood in (29). The count in the ith category is represented by a

line segment and can be partitioned into a sum of L¼ 3 sub-counts rep-

resented by sub-segments. At points connected by the dashed lines (�ðlÞ),

the DMN log-likelihood can be evaluated using (20), and there are three

such evaluations in this example
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We compute the error of the mesh algorithm by comparing its

results with the results of an implementation of (4) in Sage

(Stein et al., 2012), which can achieve arbitrarily high accuracy.

Figure 5 compares the error of the mesh algorithm and the error

of the method in VGAM. We can see the mesh algorithm is more

accurate.
Figure 6 shows that the runtime of the mesh algorithm in-

creases more slowly as the counts n increase than the method

in VGAM. Note that only R code is used to implement the

method in VGAM, whose speed can be improved by using

Cþþ. However, its runtime scalability with respect to the par-

ameter n is intrinsic to the representation of the log-likelihood

function (7) and independent of the implementation. The slower

increase of runtime is especially important for the high count that

is typical in contemporary high-throughput sequencing datasets.

6 BIOINFORMATICS APPLICATION

We demonstrate below the application of our new method in

analyzing human microbiome data from the Human

Microbiome Project clinical production pilot study (The NCBI

BioProject website, 2010). This dataset consists of the pyrose-

quencing of 16S rRNA genes in samples from four body sites,

namely, saliva, throat, tongue and palatine tonsil of 24 human

subjects (Rosa et al., 2013). The sequences obtained from the

V1–V3 and V3–V5 variable regions of the 16 S ribosomal

RNA gene are classified into the 20 most abundant taxa at the

genus level and the remaining sequences are classified as the 21st

taxa (La Rosa et al., 2012). Figure 7 shows the taxa distribution

with each sample of the saliva dataset.

On real datasets, the mesh algorithm is much faster than the

algorithm in VGAM. For example, the mesh algorithm improves

the speed by over 50� on the saliva dataset (Fig. 8).
Because the Cð�Þ-based test (Kim and Margolin, 1992) rejects

the hypothesis that the data from any of the four body sites are

distributed according to the MN distribution (the P-values are 0

for all the four body sites), we use the DMN distribution to

model each of the four datasets. Table 1 shows the maximum

likelihood estimates of the dispersion parameters  for the data

from all four body sites.

7 DISCUSSION

Overdispersion is important and needs to be accommodated in

modeling count data. To handle overdispersion in MN data, the

DMN distribution is commonly used. The numerical computa-

tion of the log-likelihood function is important for performing

statistical inference using this distribution. Previous work has

provided useful methods for this calculation, but the require-

ments of bioinformatics are difficult to satisfy. Our method

solves the accuracy and runtime challenges.

Fig. 5. The error of the mesh algorithm is smaller than the error of the

method in VGAM. The error of the aod(dirmult) algorithm is larger than

the scale presented. The parameters are x ¼ nð1, 1, 1, 1Þ,  ¼ 1=200 and

p ¼ ð:1, :2, :3, :4Þ

Fig. 7. The heatmap of the saliva 16S rRNA pyrosequencing dataset.

Each row represents a sample and each column represents a taxa. The

brighter the color, the higher the proportion of the taxa within the sample

Fig. 6. The mesh algorithm is much faster than the algorithm in VGAM

for the DMN log-likelihood computation. The parameters are

x ¼ nð1, 2, 3Þ, p ¼ ð1=6, 1=3, 1=2Þ and  ¼ 1=60. The computation using

VGAM is only up to n ¼ 1� 105, as it takes too much runtime when n is

beyond this point. Each boxplot represents 100 DMN log-likelihood

evaluations
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Overdispersion is commonly found in high-throughput

sequencing data. The overdispersed Poisson model (the nega-

tive-binomial distribution) has been used to detect differential

gene expression. However, the DMN distribution has seen lim-

ited use in analyzing high-throughput sequencing data, possibly

because the existing methods based on the DMN distribution did

not anticipate the high counts and the vast amount of such count

tables extracted from the high-throughput sequencing

technologies.
To overcome the instability problem and the runtime problem

of the existing methods for computing the log-likelihood, we

derived a new approximation of the DMN log-likelihood func-

tion based on Bernoulli polynomials. Using a novel mesh algo-

rithm, we are able to compute the log-likelihood for any

parameters in the domains of the log-likelihood function.

Comparing with the existing methods, the mesh algorithm is

more accurate and is much faster. We demonstrate the applica-

tion of the new method in analyzing human microbiome data

with a large runtime improvement. This method is generally ap-

plicable to other scenarios involving proportions, such as alter-

native exon utilization (Wang et al., 2008) and alternative poly-A

utilization (Lutz and Moreira, 2011). For example, suppose we

have 10 000 alternative splicing events that need to be tested and

each test requires 1000 log-likelihood function evaluations. Our

method can reduce the runtime to hours instead of potentially

days. This work paves the way for application of the DMN

distribution to model overdispersion in large-scale count data

available in the high-throughput sequencing era.
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