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ABSTRACT

Motivation: Computational methods are essential to extract action-

able information from raw sequencing data, and to thus fulfill the

promise of next-generation sequencing technology. Unfortunately,

computational tools developed to call variants from human sequen-

cing data disagree on many of their predictions, and current methods

to evaluate accuracy and computational performance are ad hoc and

incomplete. Agreement on benchmarking variant calling methods

would stimulate development of genomic processing tools and

facilitate communication among researchers.

Results: We propose SMASH, a benchmarking methodology for

evaluating germline variant calling algorithms. We generate synthetic

datasets, organize and interpret a wide range of existing benchmark-

ing data for real genomes and propose a set of accuracy and com-

putational performance metrics for evaluating variant calling methods

on these benchmarking data. Moreover, we illustrate the utility of

SMASH to evaluate the performance of some leading single-nucleotide

polymorphism, indel and structural variant calling algorithms.

Availability and implementation: We provide free and open access

online to the SMASH tool kit, along with detailed documentation, at

smash.cs.berkeley.edu

Contact: ameet@cs.berkeley.edu or pattrsn@cs.berkeley.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Next-generation sequencing is revolutionizing biological and

clinical research. Long hampered by the difficulty and expense

of obtaining genomic data, life scientists now face the opposite

problem: faster, cheaper technologies are beginning to generate

massive amounts of new sequencing data that are overwhelming

our technological capacity to conduct genomic analyses (Mardis,

2010). Computational processing will soon become the

bottleneck in genome sequencing research, and as a result,

computational biologists are actively developing new tools to

more efficiently and accurately process human genomes and

call variants, e.g. SAMTools (Li et al., 2009), GATK (DePristo

et al., 2011), Platypus (http://www.well.ox.ac.uk/platypus),

BreakDancer (Chen et al., 2009), Pindel (Ye et al., 2009) and

Dindel (Albers et al., 2011).
Unfortunately, single-nucleotide polymorphism (SNP) callers

disagree as much as 20% of the time (Lyon et al., 2012), and

there is even less consensus in the outputs of structural variant

algorithms (Alkan et al., 2011). Moreover, reproducibility, inter-

pretability and ease of setup and use of existing software are

pressing issues currently hindering clinical adoption

(Nekrutenko and Taylor, 2012). Indeed, reliable benchmarks

are required to measure accuracy, computational performance

and software robustness, and thereby improve them.
In an ideal world, benchmarking data to evaluate variant

calling algorithms would consist of several fully sequenced,

perfectly known human genomes. However, ideal validation

data do not exist in practice. Technical limitations, such as the

difficulty in accurately sequencing low-complexity regions,

along with budget constraints, such as the cost to generate

high-coverage Sanger reads, limit the quality and scope of

validation data. Nonetheless, significant resources have already

been devoted to generate subsets of benchmarking data that are

substantial enough to drive algorithmic innovation. Alas, the

existing data are not curated, thus making it extremely difficult

to access, interpret and ultimately use for benchmarking

purposes.
Owing to the lack of curated ground truth data, current

benchmarking efforts with sequenced human genomes are

lacking. The majority of benchmarking today relies on either

simulated data or a limited set of validation data associated

with real-world datasets. Simulated data are valuable but do

not tell the full story, as variant calling is often substantially

easier using synthetic reads generated via simple generative

models. Sampled data, as mentioned earlier, are not well curated,

resulting in benchmarking efforts, such as the Genome in a

Bottle Consortium (Zook and Salit, 2011) and the Comparison

and Analytic Testing resource (GCAT) (http://www.bioplanet.

com/gcat), that rely on a single dataset with a limited quantity

of validation data.

Rigorously evaluating predictions against a validation dataset

presents several additional challenges. Consensus-based

evaluation approaches, used in various benchmarking efforts

(The 1000 Genomes Project Consortium, 2010; DePristo et al.,

2011; Kedes and Campany, 2011), may be misleading. Indeed,
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different methods may in fact make similar errors, a fact

that remains hidden without ground truth data. In cases

where ‘noisy’ ground truth data are used, e.g. calls based on

Sanger sequencing with some known error rate or using

SNP chips with known error rates, accuracy metrics should

account for the effect of this noise on predictive accuracy.

Additionally, given the inherent ambiguity in the Variant

Calling Format (VCF) format used to represent variants, evalu-

ation can be quite sensitive to the (potentially inconsistent) rep-

resentations of predicted and ground truth variants. Moreover,

owing to the growing need to efficiently process raw sequencing

data, computational performance is an increasingly important

yet to date largely overlooked factor in benchmarking. There

currently exist no benchmarking methodologies that—in a con-

sistent and principled fashion—account for noise in validation

data, ambiguity in variant representation or computational effi-

ciency of variant calling methods.

Without any standard datasets and evaluation methodologies,

research groups inevitably perform ad hoc benchmarking studies,

working with different datasets and accuracy metrics, and

performing studies on a variety of computational infrastructures.

Competition-based exercises (Earl et al., 2011; Kedes and

Campany, 2011) are a popular route for benchmarking that

aim to address some of these inconsistencies, but they are

ephemeral by design and often suffer from the same data and

evaluation pitfalls described earlier.
In short, the lack of consistency in datasets, computational

frameworks and evaluation metrics across the field prevents

simple comparisons across methodologies, and in this work, we

make a first attempt at addressing these issues. We propose

SMASH, a standard methodology for benchmarking variant

calling algorithms based on a suite of Synthetic, Mouse and

Sampled Human data. SMASH leverages a rich set of validation

resources, in part bootstrapped from the patchwork of

existing data. We provide free and open access to SMASH,

which consists of:

� A set of five full genomes with associated deep coverage

short-read datasets (real and synthetic);

� Three contaminated variants of these datasets that

mimic real-world use cases (M.DePristo, 2013, personal

communication) and test the robustness of variant

callers in terms of accuracy and required computational

resources;

� Ground truth validation data for each genome along with

detailed error profiles;

� Accuracy metrics that account for the uncertainty in valid-

ation data;

� Methodology to resolve the ambiguity in variant represen-

tations, resulting in stable measurements of accuracy; and

� Performance metrics to measure computational efficiency

(and implicitly measure software robustness) that leverage

the Amazon Web Services (AWS) cloud computing

environment.

SMASH is designed to facilitate progress in algorithm devel-

opment by making it easier for researchers to evaluate their

systems against each other.

2 METHODS

2.1 Benchmarking datasets

In this section, we describe the benchmarking datasets contained within

SMASH. A ‘benchmarking dataset’ consists of three components. The

first two components are the inputs to the variant calling algorithm to

be benchmarked, namely, short reads generated from next-generation

sequencing technology and a reference genome (used for alignment

and variant representation). The third component is the validation data

(represented via the standard VCF format) that are used to evaluate the

quality of an algorithm’s predictions.

The left panel of Figure 1 illustrates the three desired properties of a

benchmarking dataset. Ideally, we would like to evaluate variant calling

performance on a human genome (H), have access to comprehensive

validation (C) of the underlying sequenced genome and call variants

using real reads (R), i.e. reads generated by an actual sequencing machine

and not a simulator. To the best of our knowledge, no existing dataset

satisfies all three properties. Instead, SMASH consists of three types of

benchmarking datasets that satisfy two of these three properties, as

depicted in the three panels on the right of Figure 1. Additionally, for

each type of dataset, we also include a contaminated version in which the

short reads are contaminated with reads from a separate genome,

mimicking the impurities that can be introduced in practice while prepar-

ing a sample and/or using a contaminated sequencing machine, and thus

testing the robustness of variant callers in this challenging and realistic

setting. Table 1 summarizes our validation data, and we next provide

details about these datasets.

2.1.1 Synthetic datasets We derive our synthetic datasets from J.

Craig Venter’s genome (HuRef). HuRef variants provided by Levy

et al. (2007) are represented as variations relative to the human reference

genome (in VCF format). We create an unphased diploid sample genome

by starting with two copies of the hg19 reference genome and inserting

each HuRef variant into one or both of these copies depending on its

zygosity. We simulate Illumina reads from this diploid sample genome

using simNGS (http://www.ebi.ac.uk/goldman-srv/simNGS) with its

default settings. Our second dataset uses the same validation data as

the first, along with a version of Venter’s short-read data contaminated

by similar short-read data derived from an approximation of James

Watson’s genome.

Validation Error Profile: Any errors in HuRef will be carried through

to our synthetic genome, and it is likely that errors in HuRef are

sequence-context specific. Nonetheless, as the sample genome and the

reads are synthetically generated, the VCF files contain noiseless

ground truth data.

2.1.2 Mouse datasets The mouse datasets leverage existing mouse

genomic data associated with the canonical mouse reference as well as

from the Mouse Genomes Project (Yalcin et al., 2011). From these data,

we create benchmarking datasets with real reads and with comprehensive

validation, using the canonical homozygous mouse reference as our

Fig. 1. An ‘ideal’ benchmarking dataset satisfies three properties: it

contains real reads (R), it includes comprehensive validation of the

underlying genome (C) and its underlying genome is human (H).

SMASH contains three types of benchmarking datasets, each of which

satisfies two of the three desirable properties of an ideal dataset, so as to

cover all three properties
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sample genome (Church et al., 2009). Our first dataset consists of paired-

end reads from the B6 mouse strain (Gnerre et al., 2011), a VCF derived

from differences between the mouse reference (based on the B6 mouse

strain), and a ‘fake’ reference we created using an alternative mouse strain

(the DBA mouse strain). Figure 2 illustrates the process by which we

create this dataset, and further details are provided in Supplementary

Material B.2. Our second dataset uses the same validation data as the

first, along with a version of the B6 short reads contaminated by short

reads corresponding to a human genome (NA12878). We use these

human reads because, to the best of our knowledge, they are the only

publicly available reads generated by the same sequencing methodology

as the mouse reads (Gnerre et al., 2011).

Validation Error Profile: There are two main sources of error in this

dataset, namely, errors in the mouse reference genome itself and gen-

etic differences between the mouse reference genome and the individual

from which short reads were produced. Based on calculations detailed

in Supplementary Material B.2, we upper bound the error rates for

SNPs and indels at 0.2% and the error rate for Structural Variants

(SVs) at 0.3%. Finally, it is worth noting that there are systematic

differences between mouse and human genomes. Mouse segmental du-

plication is more intrachromosomal, and human intrachromosomal

duplication is more high-identity (Church et al., 2009). As a result,

variant calling performance may vary between the mouse and human

datasets.

2.1.3 Sampled human datasets Our real human genomes consist of

three well-studied human genomes, including a European female

(NA12878), a Nigerian male (NA18507) and a Nigerian female

(NA19240). Short reads for NA12878 and NA18507 were obtained

from Illumina’s Platinum Genomes (http://www.illumina.com/platinum

genomes/); the NA19240 short reads are available from Sequence Read

Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra/SRX152746). Our val-

idation data consist of subsets of validated SNP and SV information.

SMASH also includes high-coverage Illumina reads for each of these

datasets.

We derive our validated SNPs from the intersection of calls from two

SNP chips from HapMap2: Perlegen and Illumina BeadArray (Frazer

et al., 2007). We chose these chips owing to the substantial intersection

of their call sites, and because their calls could be readily disambiguated,

unlike the two chip technologies used in HapMap3 (HapMap

Consortium, 2010). The intersection of their results in NA12878 yields

132K calls, of which 55K are non-reference. Our SV validation data

consist of 169 insertions and deletions called from the alignment of fin-

ished fosmid sequences (Kidd et al., 2010a, b).

Finally, we include a contaminated version of our NA12878 dataset,

in which the NA12878 short reads are contaminated by short reads

corresponding to this individual’s husband (NA12877), generated by

the same sequencing methodology by Illumina’s Platinum Genomes

project.

Validation Error Profile: The error in our validated SNP data is owing

to errors in the underlying SNP chip technologies used to generate the

data. Moreover, there are various sources of error for our validated SVs,

associated with generating and processing the fosmid sequences. As

detailed in Supplementary Material B.3, we upper bound the error rate

for SNPs at 0.04% and the error rate for SVs at 1.0%.

2.2 Evaluation metrics

We now discuss our set of evaluation metrics of variant calling algorithms

against the benchmarking datasets described in Section 2.1. We propose

the use of both accuracy and computational performance metrics.

Moreover, although SMASH focuses on reference-based variant calling

methods, it does not include alignment-specific metrics, as alignment is an

intermediate step (albeit an important one) in the process of variant

calling. We believe that improvements in alignment should be measured

as a function of their impact on variant calling, both in terms of accuracy

and computational performance.

2.2.1 Accuracy We report two standard metrics from information

retrieval. The first metric, recall, measures the ‘probability of calling a

validated variant’, while the second metric, precision, measures the ‘prob-

ability that a called variant is correct’ (See Section C in the

Supplementary Material for a more detailed discussion of the use of

recall and precision in the context of variant calling.). For SNPs and

Table 1. Summary of SMASH’S validation datasets

Type Genome Validation error Sequencer Length (bp) Insert size (bp) Coverage (�)

Synthetic Venter None SimNGS 101 400 30

Contam. Venter

Mouse B6 strain 0.2% (SNP/Indel), 0.3% (SV) GAIIx 101 –34 58.6

Contam. B6 strain

Human NA12878 0.04% (SNP), 1% (SV) HiSeq2000 101 300 50

Contam. NA12878 HiSeq2000 101 300 50

NA18507 HiSeq2500 100 300 44

NA19240 HiSeq2000 101 296 49

Fig. 2. Schematic illustrating process by which SMASH’s first ‘Mouse’

dataset is generated. (a) Our ideal setup in which the B6 strain (with

comprehensive validation and corresponding short reads) serves as the

sample and the DBA strain serves as the reference. (b) Publicly available

data (note that the B6 validation data are the canonical mouse reference).

(c) Construction of an approximate DBA validation set (the ‘fake’ refer-

ence) by leveraging a rough set of variants for the DBA strain called

relative to the canonical reference
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indels (50 bp or less), we measure alternate alleles and exact breakpoints,

thus checking zygosity but ignoring phasing. For structural variants,

we ignore zygosity, and evaluate left breakpoint and length, both

approximately and exactly. Specifically, we report results with error

tolerances of 0 (exact), 100 and 1000bp to highlight the accuracy of

variant callers at different resolutions. In some situations, such as

our human SNP or SV validation data, the validation data have

positive labels but little or no negative labels, and in these situations,

only recall (and not precision) is reported. Additionally, our compu-

tation of recall does not explicitly take into account the impact of

sampling in the context of SMASH’S sampled human benchmarking

datasets.

2.2.2 Computational performance We use two chief metrics to

measure computational performance, namely, hours per genome and

dollars per genome, and we benchmark performance on AWS. AWS’

cloud infrastructure allows for reproducible benchmarking and ensures

robust implementations of variant calling algorithms. When using

SMASH, researchers can benchmark algorithms on AWS using their

preferred compute instances, such as single core, multicore, Graphics

processing unit (GPU) or distributed cluster, and AWS’ pricing mechan-

ism naturally dictates the tradeoff between cost and time. We additionally

report more fine-grained performance metrics to help researchers opti-

mize their AWS configuration, including clock time, CPU time, the max-

imum number of threads used, the maximum disk space required and the

maximum and average amount of memory used during the run of the

algorithm.

2.2.3 Accounting for noisy validation data The performance of an

algorithm can only be quantified up to the level of noise in the validation

data itself. Because we are working with noisy validation data, it is crucial

to capture this uncertainty when reporting results. To do so, we assume

that we have an estimate for the number E of validation errors. In settings

where we only have positive labels, this estimate captures the number of

positive labels that are incorrectly genotyped (either a positive label where

there should be none, or a validated variant that is correctly located but

incorrectly genotyped). In settings where we have access to both positive

and negative labels, this estimate measures either omissions or errors of

the aforementioned type.

To quantify these errors, we first note that each called variant can be

described via two sets of labels: positive or negative, depending solely on

the caller, and true or false, depending also on the validation dataset. We

can compute true positives (TPs), false positives (FPs) and false negatives

(FNs) from these two sets of labels. Proposition 1 presents bounds on

recall and precision given E and in terms of TP, FP and FN. These

bounds hold generally for SNPs, indels and SVs evaluation, and for

various evaluation metrics, e.g. metrics considering zygosity and insertion

sequence (see Section D in the Supplementary Material for further details

and proof).

PROPOSITION 1. Let present=TP+FN be the number of positive labels,

and let P=TP+FP be the number of positive calls. In the case of only

positive validated labels,

TP� E

present
� recall �

TP+E

present
if E � FN

TP

present� E
otherwise

8>>><
>>>:

In the case of both positive and negative labels, the same recall bounds

apply, and the following precision bounds hold:

TP� E

P
� precision �

TP+E

P
ð1Þ

Proposition 1 states that recall and precision have worst-case additive

errors of the form E=present and E/P, respectively. We use these bounds

when reporting results in Section 3.

2.2.4 Ambiguity resolution SMASH incorporates three steps in the

evaluation process to minimize the impact of VCF ambiguity. The first

two steps, cleaning and left normalization, are (standard) VCF

preprocessing steps that we perform independently on both the ground

truth VCF and the predicted VCF. The cleaning step removes ambiguity

associated with case discrepancies, and also filters out extraneous VCF

entries, i.e. homozygous reference calls and calls where the reference and

alternate alleles match. Left normalization involves left shifting all

variants as far as possible and is the VCF standard, although this

convention is not followed by all variant calling algorithms. Left

normalization removes certain types of ambiguity associated with indels

and SVs, such as by unambiguously representing the deletion ‘GCGCGC

! GCGC’ as a deletion event associated with the two leftmost ‘GC’

bases.

Our final step is a novel ambiguity resolution algorithm, RESCUE,

which involves a second pass over the VCF files during evaluation.

After initially strictly comparing the calls between the predicted and the

true VCFs, we aim to ‘rescue’ variants marked as incorrect (both FPs and

FNs) owing to VCF ambiguity. For each such call, we create two short

sequences by expanding the full sequence in some short window around

the call in the true and predicted VCF, respectively. We then rescue the

call if the two sequences are equivalent. Rescued calls are thus by defin-

ition correct, and notably, RESCUE can only improve the quality of the

reported precision and recall figures. Nonetheless, the number of calls

that RESCUE is able to rescue is dependent on the window size, as

discussed in Section 3.1.

See Section E in the Supplementary Material for further algorithmic

details, including discussions about edge cases such as overlapping alleles

and combinations of alleles that cancel out.

2.3 Usage

All the materials necessary to run SMASH are available at our Web site,

smash.cs.berkeley.edu. All relevant files are available for down-

load, including Burrows-Wheeler Aligner (BWA)-aligned BAM files con-

taining the raw reads, ground truth VCF files and reference files. All

scripts used to calculate results are available in a public repository at

github.com/amplab/smash, including evaluation, rescue, VCF nor-

malization and contamination scripts. All data included in SMASH are

derived from publicly available sources and thus can be freely

redistributed.

We provide detailed instructions for running SMASH on AWS. For a

researcher wishing to benchmark a new aligner, we describe how to

download the short reads, run the aligner on AWS, execute some or all

of the variant callers evaluated in Section 3 and run the SMASH evalu-

ation scripts to get performance and accuracy metrics. In contrast, for a

researcher with a new variant caller, we describe how to download our

aligned BAM files, run the caller on AWS and evaluate the overall

performance and accuracy.

Finally, we plan to update SMASH as new validated datasets become

available. We also invite users to submit performance and accuracy

results associated with new aligner and variant caller pipelines to our

results page.

3 RESULTS

In this section, we first evaluate the impact of our ambiguity

resolution algorithms. We next illustrate the utility of SMASH

by evaluating the performance of some leading SNP, indel and

structural variant calling algorithms. The goal of these
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experiments is to highlight SMASH’S functionality, and to sim-

plify the discussion, we use the default settings for all variant

calling algorithms and the same machine instance in all of our

Amazon Elastic Compute Cloud (EC2) experiments. We note

that improved accuracy and computational performance results

may indeed be possible via parameter tuning and optimizing to

minimize EC2 instance footprints.

In all reported results, evaluation is reported as described in

Section 2.2. See Section G in the Supplementary Material for

further implementation details.

3.1 Ambiguity resolution

We first examine the precision and recall rates for mpileup and

GATK as a function of this user-specified window parameter, as

Table 2 illustrates. We see that precision and recall are quite

robust to various window sizes. Nonetheless, for small windows

(� 25 bp), comparatively fewer TPs are rescued, likely owing to

the omission of variants associated with an ambiguously

represented event. Meanwhile, large windows (� 150 bp) also

lead to fewer rescues, likely owing to nearby FPs unrelated to

the ambiguously represented event entering the window. We

observe that a 50–100bp window balances these two tradeoffs,

and we use a 50 bp window in all subsequent experiments for

computational reasons.
Next, Table 3 shows the impact of each of the three ambiguity

resolution steps. The results show that all three steps significantly

impact the precision and recall of both GATK (DePristo et al.,

2011) and mpileup (Li et al., 2009) on calling indels for the mouse

dataset. Our ambiguity resolution has a similar impact on indel

detection for the Venter dataset, and also has a significant

(although less drastic) impact on SNP detection for both datasets

(See Section E in the Supplementary Material for further results).

3.2 SNP calling

We benchmark the performance of GATK and mpileup to

call SNPs, and Table 4 summarizes the results. The results

show that GATK is more computationally expensive, but does

not strictly outperform mpileup on the uncontaminated datasets.

Moreover, the effect of contamination on precision is fairly

visible on Venter, where mpileup’s accuracy clearly degrades

while GATK appears robust to the contamination. The differ-

ence in performance on the mouse and contaminated mouse

dataset is less pronounced, because, as noted in Section F

(Supplementary Material), the aligner was able to filter the con-

taminated reads before they were processed by mpileup or

GATK.

3.3 Indel calling

We evaluate the performance of mpileup, GATK and Pindel on

the detection of indels, in particular insertions or deletions of

50 bp or less, with detailed results presented in Table 5 and

Supplementary Tables S6 and S7 (SMASH’S sampled human

benchmarking datasets do not include any validated indels,

and so the indel results are restricted to the mouse and synthetic

human datasets.). These results demonstrate that GATK and

Pindel outperform mpileup in terms of accuracy, but are more

expensive computationally. In fact, Pindel highlights the import-

ance of SMASH’S computational performance metrics, as it

failed to complete within our predetermined time limit of 400 h

(i.e. a $1000 AWS budget) on both the contaminated Venter and

mouse datasets, and we thus did not obtain results for these

experiments. On both contaminated Venter and contaminated

mouse, mpileup and GATK gained slightly in precision and

worsened in recall as compared with their uncontaminated coun-

terparts. This difference seems to result from the fact that both

algorithms predicted fewer indels overall on the contaminated

sets than they did SNPs; for example, mpileup called 2.5%

fewer indel deletions on mouse and only 0.5% fewer SNPs.

Consistent with the SNP results, however, mpileup was less

robust to contamination than GATK.

3.4 Structural variant calling

We benchmark Pindel and BreakDancerMax on insertions and

deletions 450bp in length, reporting approximate breakpoint

results with tolerance of 100 bp in Table 6 and Supplementary

Table S10. We first note that we do not report results for the

several experiments that ran longer than our 400h budget,

namely, BreakDancer on contaminated NA12878 and Pindel

on mouse, contaminated Venter and contaminated NA12878.

On the experiments that did complete, we observe that (perhaps

unsurprisingly) SV accuracy is much lower than SNP and indel

accuracies, and in particular, both Pindel and BreakDancer have

fairly low accuracy on long insertions. Indeed, for NA12827,

BreakDancer misses all insertions even though it accurately

Table 2. Effect of the window size parameter in the RESCUE algorithm on indel precision and recall for mpileup and GATK on the Venter genome

Window mpileup GATK

Insertions Deletions Insertions Deletions

Prec (%) Rec (%) Prec (%) Rec (%) Prec (%) Rec (%) Prec (%) Rec (%)

25 85.8 70.9 91.2 75.2 90.3 87.8 91.9 90.6

50 85.8 70.9 91.3 75.2 90.6 88.1 92.3 90.9

100 85.8 70.9 91.3 75.2 90.6 88.1 92.3 90.9

150 85.7 70.9 91.3 75.2 90.5 88.1 92.2 90.8

Note: Error bounds are excluded, as there is no uncertainty in the Venter validation data.
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identifies more than half of the deletions. Moreover, we observe

that BreakDancer’s recall is much higher for the sampled human

datasets than for Venter and mouse. This discrepancy can be
explained by the fact that, unlike the sampled NA12878 valid-

ation data, the comprehensive Venter and mouse datasets con-

tain many short structural deletions, and BreakDancer is not
designed for shorter variants.

Increasing breakpoint tolerance to 1000 bp, as reported
in Supplementary Tables S8 and S11, improves both callers’

precision on the synthetic and mouse datasets, more dramatically

in the case of BreakDancer. Recall is only slightly improved by

increasing tolerance from 100 to 1000bp, with the notable

exception being the NA19240 dataset.
We observe notably different results when evaluating the exact

breakpoint of accuracy of these methods (Table 7 and

Supplementary Table S9). BreakDancer makes almost no exactly

accurate calls for insertions or deletions on any dataset. Pindel
fares better, but loses �2–5% of its precision and a smaller

degree of recall when evaluating only variants at exact

breakpoints.
Finally, we note that neither caller handles the contaminated

datasets particularly well, although with somewhat different

Table 4. Benchmarking results for SNPs

Dataset mpileup GATK

Hours (h) Cost ($) Pre (%) Rec (%) Hours (h) Cost ($) Pre (%) Rec (%)

Venter 2 5 98:5� 0:0 97:0 � 0:0 46 115 98:7 � 0:0 97:2� 0:0

Contaminated venter 3 8 91:1� 0:0 96:7 � 0:0 57 143 98:5 � 0:0 92:9� 0:0

NA12878 5 13 – 98:8� 0:0 97 243 – 98:8� 0:0
Contaminated NA12878 5 13 – 98:8� 0:0 90 225 – 98:8� 0:0

NA18507 4 10 – 99:0� 0:0 78 195 – 99:0 � 0:0

NA19240 4 10 – 99:0� 0:0 72 180 – 99:0� 0:0

Mouse 6 15 98:4� 0:2 87:3� 0:2 107 268 97:8 � 0:2 94:9 � 0:2
Contaminated mouse 5 13 98:3� 0:2 86:7� 0:2 96 240 97:9� 0:2 94:6 � 0:2

Table 3. Effect of ambiguity resolution on benchmarking GATK and mpileup on indels using the mouse dataset

Strategy mpileup GATK

Insertions Deletions Insertions Deletions

Pre Rec Pre Rec Pre Rec Pre Rec

Cleaning 81.1� 3.5 12.2� 0.5 75.2� 3.3 12.6� 0.6 73.1� 0.4 86.4� 0.5 68.9� 0.4 91.2� 0.6

Normalization 76.6� 0.5 66.5� 0.4 76.6� 0.5 74.9� 0.5 85.7� 0.4 84.0� 0.4 80.5� 0.4 89.9� 0.5

RESCUE 87.8� 0.5 76.6� 0.4 79.0� 0.4 85.9� 0.5 92.0� 0.5 86.2� 0.4 85.5� 0.4 91.8� 0.5

Note: The results illustrate the impact of each successive step of resolution, namely, cleaning, left normalization and rescuing.

Table 5. Benchmarking results for small deletions (excluding Pindel results)

Dataset mpileup GATK

Hours (h) Cost ($) Pre (%) Rec (%) Hours (h) Cost ($) Pre (%) Rec (%)

Venter 2 5 91:3%� 0:0 75:2%� 0:0 46 115 92:4%� 0:0 91:3%� 0:0
Contaminated Venter 3 8 91:7%� 0:0 71:7%� 0:0 57 143 92:4%� 0:0 90:5%� 0:0

Mouse 6 15 79:0%� 0:4 85:9%� 0:4 107 268 81:5%� 0:4 95:8%� 0:4

Contaminated mouse 5 13 80:4%� 0:4 84:9%� 0:4 96 240 82:8%� 0:4 95:6%� 0:4

2792

A.Talwalkar et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu345/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu345/-/DC1
 (Supplementary Material)
bp
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu345/-/DC1
 in Supplementary Material
about 
 to 
 percent


modes of failure. Pindel suffered computationally when dealing

with the contaminated datasets, failing to complete on the con-

taminated Venter and the contaminated NA12878 datasets, and

required 375h to process the contaminated mouse dataset.

Although BreakDancer did not complete on the contaminated

NA12878 dataset, it in fact executed very quickly on both the

contaminated Venter and contaminated mouse datasets.

However, its accuracy suffered greatly relative to its accuracy

on the analogous non-contaminated datasets, as it found

almost no variants in either case.

3.5 Computational performance

Although the cost of running a given caller on Amazon’s AWS

platform provides a convenient single metric for comparison, we

also provide more fine-grained computational performance

metrics to highlight differences between the callers and to help

researchers optimize their choice of computational platforms. In

Table 8, we present the performance metrics for all four callers

on the Venter dataset (Supplementary Table S12 for statistics on

other datasets). All four callers use virtually all 60.5 GB of

memory available to them on Amazon’s cc2.8xlarge instance;

mpileup, Pindel and BreakDancer do so consistently through

their runs, but GATK’s memory usage fluctuates, as shown by

its lower average memory usage, most likely because only

portions of the GATK pipeline are multi-threaded. GATK

also requires a large amount of disk space, while mpileup and

Pindel use only modest amounts; as BreakDancer’s output is in a

more compact format than VCF, it requires almost none. We

also note that because Pindel became memory-bound on our

chosen instance type, we ran it single-threaded; we thus ran

BreakDancer on a single thread for consistency.

4 DISCUSSION

Hundreds of variant calling algorithms have been proposed, and

the majority of these algorithms have been benchmarked in some

form (see detailed discussion in Section A in the Supplementary

Material). To the best of our knowledge, none of these existing

benchmarking methodologies accounts for noise in validation

data, ambiguity in variant representation or computational

efficiency of variant calling methods in a consistent and

principled fashion. Given the rapid growth of next-generation

sequencing data, the need for a robust and standardized meth-

odology has never been greater.

Table 6. Benchmarking results for long deletions (approximate evaluation with breakpoint tolerance of 100bp)

Dataset Pindel BreakDancer

Hours (h) Cost ($) Pre (%) Rec (%) Hours (h) Cost ($) Pre (%) Rec (%)

Venter 80 200 71:8� 0:0 43:0� 0:0 2 5 7:1� 0:0 4:9� 0:0

Contaminated venter 4400 41000 – – 1 3 0:0� 0:0 0:0 � 0:0

NA12878 81 203 – 3 8 – 95:7� 2:9
Contaminated NA12878 4400 41000 – – 4400 41000 – –

NA18507 168 420 – 60:0� 3:0 3 8 – 60:0� 3:0

NA19240 221 553 – 69:0%� 2:8 29 73 – 77:6� 2:8

Mouse 4400 41000 – – 4 10 17:4� 1:0 15:1� 0:8
Contaminated mouse 345 863 74:7� 1:2 53:2� 0:8 3 8 16:7� 1:3 10:9� 0:8

Table 7. Benchmarking results for long deletions (exact evaluation)

Dataset Pindel BreakDancer

Hours (h) Cost ($) Pre (%) Rec (%) Hours (h) Cost ($) Pre (%) Rec (%)

Venter 80 200 67:2� 0:0 40:2� 0:0 2 5 0:2 � 0:0 0:2 � 0:0

Contaminated venter 4400 41000 – – 1 3 0:0 � 0:0 0:0� 0:0

NA12878 81 203 – 78:3 � 2:9 3 8 – 0:0� 2:9
Contaminated NA12878 4400 41000 – – 4400 41000 – –

NA18507 168 420 – 60:0 � 3:0 3 8 – 0:0� 3:0

NA19240 221 553 – 69:0 � 2:8 29 73 – 5:2� 2:8
Mouse 4400 41000 – – 4 10 0:2� 1:0 0:1� 0:8

Contaminated mouse 345 863 72:5%� 1:2 51:6 � 0:8 3 8 0:2� 1:3 0:2� 0:8
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The IT industry serves as an illuminating case study in the

context of benchmarking. Similar to next-generation sequencing

technology, the IT industry has benefited greatly from the

additional hardware resources provided by Moore’s Law.

However, the industry’s rapid progress also hinged on the

agreement on proper metrics to measure performance as well

as consensus regarding the best benchmarks to run to fairly

evaluate competing systems (Patterson, 2012). Prior to this

industry-wide agreement, each company invented its own metrics

and ran its own set of benchmarking evaluations, making the

results incomparable and customers suspicious of them. Even

worse, engineers at competing companies were unable to

determine the usefulness of their competitors’ innovations, and

so the competition to improve performance occurred only within

companies rather than between them. Once the IT indus-

try agreed on a fair playing field, progress accelerated, as

engineers could see which ideas worked well (and which did

not), and new techniques were developed to build on promising

approaches.
Similarly, we believe that SMASH could help accelerate

progress in the field of genomic variant calling. We have

compiled a rich collection of datasets and developed a principled

set of evaluation metrics that together allows for quantitative

evaluation of variant calling algorithms in terms of accuracy,

computational efficiency and robustness/ease-of-use (via ability

to run on AWS). Moreover, although SMASH currently focuses

on benchmarking variant calling algorithms for normal human

genomes, we believe that the motivating ideas behind SMASH,

along with the tools developed as part of SMASH, will be useful

in devising analogous variant calling benchmarking toolkits

for human cancer genomes and for the genomes of other

organisms.

Finally, we view SMASH as a work in progress, as the contents

of SMASH reflect (and are limited by) existing technologies.

SMASH currently has limited ground truth data for human gen-

omes, and the validation data across datasets are enriched in

‘easier’ non-repetitive regions owing to underlying sequencing

and chip biases. Like any benchmarking suite, SMASH must

evolve over time to stay relevant. As new sources of validation

data become available, e.g. the NA12878 knowledge base

(M.DePristo, 2013, personal communication) or curated variants

from Illumina’s Platinum Genome, these datasets should be

incorporated into SMASH. Existing datasets should also be

updated to keep them fresh and prevent algorithms from ‘over-

fitting’ to stale benchmarks, and benchmarking datasets should

be deprecated as new data sources obviate their utility.
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