
Vol. 30 ECCB 2014, pages i587–i593
BIOINFORMATICS doi:10.1093/bioinformatics/btu469

Large-scale automated identification of mouse brain cells in

confocal light sheet microscopy images
Paolo Frasconi1,*, Ludovico Silvestri2, Paolo Soda3, Roberto Cortini1, Francesco S. Pavone2

and Giulio Iannello3

1Department of Information Engineering (DINFO), Universit�a di Firenze, 50139 Firenze, Italy, 2European Laboratory for
Nonlinear Spectroscopy (LENS), Universit�a di Firenze, 50019 Sesto Fiorentino, Italy and 3Integrated Research Centre,
Universit�a Campus Bio-Medico di Roma, 00128 Rome, Italy

ABSTRACT

Motivation: Recently, confocal light sheet microscopy has enabled

high-throughput acquisition of whole mouse brain 3D images at the

micron scale resolution. This poses the unprecedented challenge of

creating accurate digital maps of the whole set of cells in a brain.

Results: We introduce a fast and scalable algorithm for fully auto-

mated cell identification. We obtained the whole digital map of

Purkinje cells in mouse cerebellum consisting of a set of 3D cell

center coordinates. The method is accurate and we estimated an F1

measure of 0.96 using 56 representative volumes, totaling 1.09 GVoxel

and containing 4138 manually annotated soma centers.

Availability and implementation: Source code and its documentation

are available at http://bcfind.dinfo.unifi.it/. The whole pipeline of meth-

ods is implemented in Python and makes use of Pylearn2 and mod-

ified parts of Scikit-learn. Brain images are available on request.

Contact: paolo.frasconi@unifi.it

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Understanding the cytoarchitecture of the mammalian central

nervous system on a brain-wide scale is becoming a compelling

need in neuroscience (Kasthuri and Lichtman, 2007; Sporns

et al., 2005). In fact, single-neuron projections often span

through the whole encephalon (Lichtman and Denk, 2011), sup-

porting functional connection between anatomically distant re-

gions. Therefore, charting cellular localizations and projections

throughout the whole brain is a mandatory step to afford a

comprehensive view of brain function. Many efforts are thus

devoted to build cellular-resolution, brain-wide neuroanatomical

atlases of the mouse brain (Bohland et al., 2009; Kleinfeld et al.,

2011; Oh et al., 2014). Such maps would eventually allow char-

acterizing on a structural basis the physiology and pathology of
the central nervous system at various stages, ranging from devel-

opment to neurodegeneration.

To map the structure of the mouse brain, in the past years

several high-throughput imaging techniques have been de-

veloped. Electron microscopy coupled with automatic tissue sec-

tioning has been exploited to reconstruct neuronal wiring with

nanometric resolution (Briggman et al., 2011; Knott et al., 2008);

however, its use is still limited to small brain regions because the
slow imaging rates makes whole-brain measurements impossible

at the moment (Briggman and Bock, 2011). On the other hand,

optical methods have coarser resolution, but can be used to

image the entirety of mouse brain (Osten and Margrie, 2013).

The three main optical approaches used to map mouse brain

anatomy are micro-optical sectioning tomography (MOST) (Li

et al., 2010; Mayerich et al., 2008), serial two-photon tomog-

raphy (STP) (Ragan et al., 2012) and light sheet microscopy

(LSM) (Keller and Dodt, 2012). The former technique allows

mouse brain reconstruction with high contrast and resolution

in 3D, but imaging time can reach even 1 month for a single

brain (Gong et al., 2013). STP shows the excellent contrast and

resolution characteristic of multiphoton microscopy, but it oper-

ates with rough axial sampling [1�m section every 50�m
(Ragan et al., 2012)] and to our knowledge no full sampling

reconstruction of a whole mouse brain has been demonstrated

with this technique. LSM, coupled with chemical clearing pro-

cedures to render the brain transparent (Becker et al., 2012;

Chung et al., 2013), permits reconstruction of the whole mouse

brain with micron-scale resolution in a timescale ranging from

hours to a few days (Dodt et al., 2007). The contrast affordable

with this latter method is usually lower than the one of MOST

and STP, because of residual light scattering inside the cleared

tissue. However, LSM currently is the only method allowing

acquiring a significant number of samples with full 3D reso-

lution. Furthermore, an implementation called confocal light

sheet microscopy (CLSM) shows 100% contrast increase with

respect to conventional LSM, allowing to distinguish neuronal

somata in whole-brain tomographies (Silvestri et al., 2012). In

this technique, however, different fixation efficiencies within the

whole organ and inhomogeneous optical clearing give rise to a

large variability in contrast throughout the entire volume (as an

example, three regions are shown at the top of Fig. 3). Because of

this heterogeneity, na€ıve segmentation or localization methods

(e.g. thresholding) cannot be applied to analyze whole-brain

datasets obtained with CLSM.
The availability of advanced imaging techniques for whole

brain mapping introduces the new challenge of extracting quan-

titative human-readable information from the data

(Helmstaedter et al., 2011). There exist several proposals for

automatic localization or segmentation of cell bodies in 2D

(Buggenthin et al., 2013; Navlakha et al., 2013) and 3D micros-

copy (Forero et al., 2010; LaTorre et al., 2013; Quan et al., 2013).

Forero et al. (2010) presented a method based on image filtering

and object morphology analysis that automatically counts the

number of dying cells in images of Drosophila embryos collected

at the confocal microscope. The method was tested on small

stacks of 130MVoxels and it attained a recall, precision and F1*To whom correspondence should be addressed.
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of 0.98, 0.97 and 0.97, respectively (see Section 3.1.2 for defin-

itions). LaTorre et al. (2013) propose an algorithm for segment-

ing neuronal mouse cells in 3D images of somatosensory cortex

of 14 day old rats collected using a confocal laser scanner. The

method, which needs information obtained in a 2D segmentation

stage, was tested on a volume containing, in total, 600–700 neu-

rons belonging to three different cortical layers (15.4 MVoxels).

This method achieved a recall, precision and F1 ranging in (0.95,

0.99), (0.94, 0.95) and (0.95, 0.97), respectively. Quan et al. (2013)

presented a neuron soma localization method, based on a mini-

mization problem, which was tested on an image dataset of brain

coronal profile of transgenic fluorescence mice (2–10 weeks old)

collected using a fluorescence MOST system. The size of tested

stack was 1300� 1850 voxels (361 MVoxels) and the algorithm

localized �2500 neurons with a recall of 0.88.
In this article, we address the two major challenges that arise

when attempting to perform information extraction from CLSM

images: large datasets, and significant contrast heterogeneity. A

mouse brain has a volume of the order of 1 cm3, yielding image

sizes in the TeraByte scale at the micron-resolution. In these

cases, the only alternative to the massive use of manwork [as

in (Briggman et al., 2011)] is the development of fully automatic

tools. To achieve this goal, the inherent contrast variability in

CLSM requires sufficient robustness with respect to the param-

eters of the extraction algorithms: fine-tuning of parameters on

different regions [as suggested e.g. by Quan et al. (2013)] may be

practically unfeasible with images containing hundreds of thou-

sands of neurons.

The method presented in this article is based on three core

algorithmic ideas: mean shift clustering to detect soma centers

(Section 2.2), supervised semantic deconvolution by means of

neural networks for image enhancement (Section 2.3) and mani-

fold learning for filtering false positives (FPs) (Section 2.4). The

implementation makes use of Pylearn2 (Goodfellow et al., 2013)

and modified parts of Scikit-learn (Pedregosa et al., 2011). To

demonstrate its capabilities, we applied the algorithm to localize

and count the Purkinje cells in the cerebellum of an L7-GFP

mouse (Tomomura et al., 2001), a transgenic animal in which

this neuronal population is labeled with enhanced green fluores-

cent protein (EGFP). We obtained an F1-measure of 0.96 and an

area under the recall–precision curve of 0.97. To our knowledge,

this is the first complete map of a selected neuronal population in

a large area of the mouse brain.

2 MATERIALS AND METHODS

2.1 Materials

The images used for this study were obtained with CLSM, a method that

combines the advantages of light sheet illumination with a confocal de-

tection scheme. The protocol to obtain the images is described in detail in

(Silvestri et al., 2012). Briefly, brain tissue is fixed with paraformaldehyde

and subsequently cleared by substitution of water with a refractive-index-

matching liquid (Becker et al., 2012; Dodt et al., 2007). The clearing

procedure leads to isotropic tissue shrinkage of �20% in each direction,

corresponding to a reduction of �50% in volume. Transparent brains are

then imaged with the CLSM apparatus, which produces single-channel 8-

bit TIFF files. The voxel size of the dataset presented here is

0.8� 0.8� 1�m3. To collect the whole volume, many parallel adjacent

image stacks are acquired by the apparatus. The stacks partially overlap

with the neighbors, allowing subsequent alignment and fusion via a soft-

ware tool designed to work with large dataset (TeraStitcher) (Bria and

Iannello, 2012). Final data are saved as a non-redundant collection of

non-overlapping stacks; copies of the dataset at lower resolutions are also

saved, facilitating the visualization and 3D navigation of the whole image

(Peng et al., 2014).

The main dataset analyzed is the whole cerebellum of a 10 day old L7-

GFP mouse (Tomomura et al., 2001). In this transgenic animal, all

Purkinje cells express EGFP, allowing visualization and mapping of

this neuronal population.

2.2 Mean shift clustering

2.2.1 Substacking. We begin by splitting the whole 3D image into a

set of relatively small substacks of size W�H�D. Partitioning the

image has a number of advantages. First, it allows us to approximate a

local-thresholding procedure (see Section 2.2.3) without incurring in the

computational cost of fully fledged local thresholding algorithms (Sahoo

et al., 1988). Second, dividing a large image in several substacks enables

an immediate multi-core parallel implementation where each substack is

processed separately in a different thread. Third, it is convenient to work

on substacks during the manual annotation process (see Section 3.1.1),

which is necessary to create the ground truth data used to estimate the

quality of the predictions.

Substacks need to overlap to avoid border effects in the subsequent

clustering procedure (see Section 2.2.2). The overlap length M was de-

signed to ensure that every cell with a center detected inside the substack

of size ðW�MÞ � ðH�MÞ � ðD�MÞ falls entirely within the substack

of sizeW�H�D (Fig. 1). In our images, the visible region of a Purkinje

soma ranges between 11 and 18 voxels in diameter, corresponding to 13�

22�m in the tissue (taking into account the shrinkage introduced by the

clearing procedure). We therefore used M=20 in our experiments. Also,

whenW,H, D range in 100–150, substacks are small enough to obtain an

approximately local binarization threshold and, at the same time, large

enough to keep the overhead due to the processing of overlapping regions

within acceptable limits. All the algorithms described below operate in-

dependently on single substacks.

2.2.2 Cell identification Clustering is an extremely common segmen-

tation approach in low-level computer vision and image processing.

Typically in these applications the goal is to group together pixels sharing

similar features or colors. Here we propose a different strategy aiming at

grouping together voxels belonging to the same soma. Our algorithm

outputs cluster centroids that (ideally) correspond to soma centers.

M

H

W

Fig. 1. Overlapping of substacks (depicted in 2D for simplicity).

Processing is carried out in the region of size W�H but detected cells

are only accepted if their centers fall within the region of size ðW�MÞ

� ðH�MÞ (delimited by dashed lines). Sample accepted and rejected cells

after processing the central substack are shown as light and dark circles,

respectively
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Because the number of clusters is clearly unknown in our case (because it

corresponds to the number of cells), we take a non-parametric approach

with a variant of mean shift (Comaniciu and Meer, 2002). The algorithm

takes as input two sets of points, L and S, where each point is represented

by a triplet p
!
=ðx; y; zÞ of 3D coordinates. L is the set of voxels whose

intensity exceeds the background threshold as explained in Section 2.2.3.

The classic mean shift algorithm would start from all available data

points, place a kernel on each of them and shift each point toward the

mean value computed as the kernel-weighted average of the data. In our

variant, we improve both its running time and its statistical precision by

starting from a carefully chosen set of seeds S (see Section 2.2.4). Pseudo-

code of our variant is listed below.

ClusterðS;L;m;KÞ

1 C=;

2 for each p
!
2 S

3 c
!
=p
!

4 repeat

5 c
!
= 1

Z

X
q
!
2L

mðq
!
Þ q
!
Kð c
!
� q
!
Þ

6 until converged

7 C=C [ f c
!
g

8 return UniqðCÞ

In the above code, m is a function returning the intensity of a voxel and K

the kernel function. In practice we use a spherical kernel:

Kða
!
Þ=

1 if ka
!
k5R

0 otherwise

(

whereR is a parameter that should be smaller than the expected radius of a

cell. The normalization factor Z in line 5 is defined as Z=
X

p
!
2L

mðp
!
Þ

Kð c
!
� p
!
Þ so that c

!
gets assigned to the ‘center of mass’ of points falling

within the sphere defined by the kernel function. We use KD-trees

(Bentley, 1975) to retrieve this set of points. The function Uniq in line

8 removes near-duplicates from C.

2.2.3 Thresholding The overall running time of the clustering algo-

rithm presented in Section 2.2.2 is dominated by time required to answer

ball queries to the KD-tree, which grows at least asOðjSjlog jLjÞ. For this

reason, the image is thresholded to get rid of dark voxels, which are

unlikely to be part of a soma. Thresholding also helps to limit the

number of false-positive detections.

We used a multi-threshold version of the maximum entropy approach

of (Kapur et al., 1985). We set three ranges of voxel intensities and

computed by maximum entropy the two delimiting thresholds �1 and

�2. The first range ½0; �1� was regarded as background, i.e. dark areas,

which we assumed to contain no detectable soma. The two other ranges

were retained as foreground.

2.2.4 Seeding The set of seeds S is determined as follows. First, we

extract all local maxima of the image using a 3D max-filter. Second, we

perform a 3D convolution of the image with a normalized spherical filter

of size r. Seeds are then all local maxima such that the corresponding

value in the convolved image is above the binarization threshold �1 deter-

mined in Section 2.2.3. In other words, we require that the average voxel

intensity in the ball or radius r centered on a local maximum be above �1.

2.3 Supervised semantic deconvolution

The clustering procedure described above yields good results (details in

Section 3.2) on image regions where cell somata have high and uniform

intensity and the contrast on dendritic trunks is modest. Other regions are

more problematic: if the thresholding and seed selection is too strict,

faintly visible somata disappear during the preparation of sets S and L,

leading to false-negative detections; if too loose, then many non-soma

regions (such as dendritic arbors or axonal bundles) are retained and FPs

arise. To improve over this intrinsic difficulty, we carried out a prepro-

cessing stage by applying a non-linear filter trained to boost weak somata

and decrease the voxel intensities in non-soma regions. This step was

carried out in a supervised fashion because we believe that the FPs versus

false negatives (FNs) trade-off can only be properly addressed by intro-

ducing human knowledge. The goal of semantic deconvolution is not to

undo the blurring or degradation effects associated with the image acqui-

sition process (as in classic deconvolution) but rather to enhance and

standardize the visibility of specific entities of interest in the image

(somata in our case). We trained a neural network to map the original

image into an ‘ideal’ image, which is entirely black except for small white

spheres positioned at the locations of the true cell somata. In Figure 2 we

illustrate the concept on a small image portion. In order to smooth the

neural network targets far away from the somata centers, we actually

generated the ideal image by first setting the intensity of the central

voxel to the maximum value and then applying a (non-normalized) 3D

Gaussian filter with �=3:5, truncated at 1:5�.
We reserved 10 labeled substacks to build a training set. Note that our

approach does not require us to perform a precise segmentation of cell

somata: markers at the locations of the true centers (see Section 3.1.1 for

details of the ground-truth preparation procedure) are sufficient. As a

consequence, the human effort required to carefully annotate in this way

the 10 training substacks (0.11% of a whole cerebellum image, 1770 cells

in total) was modest (�3h of work).

The use of neural networks as non-linear convolutional filters for 3D

images has been proposed before in (Jain et al., 2007) where the goal was

to recover human drawn cell boundaries in electron microscopy images at

much higher (20 nm) resolution. In our case, the 10 training substacks

would total 194 MVoxel, �400 times the training set used in (Jain et al.,

2007). Additionally, the resulting training set would be highly unbalanced

because, in our images, the vast majority of voxels fall in dark regions.

Therefore, rather than performing a full convolution, we sampled �2

million training patches ensuring that half of them (‘positive’ patches)

overlapped with locations of cell centers and the remaining half (‘nega-

tive’ patches) were at least 30 voxels away from the centers and had an

average gray level above 10. The neural network was trained on small

cubic patches of size ð2s+1Þ � ð2s+1Þ � ð2s+1Þ. In our experiments we

used s=6, yielding patches of 2197 voxels. The goal is to predict, for

each voxel, the conditional probability that it falls in a white area of the

original image. A naive approach would be to use a neural network with

ð2s+1Þ3 inputs and one single output (corresponding to the central

voxel). However, this approach would have at least two disadvantages.

First, nearby output voxels are correlated, and predicting them independ-

ently is not the best choice from a statistical point of view. Second, fil-

tering a whole volume of size n (assumed to be cubic for simplicity) would

require time Oðn3s3Þ. Instead, we used a neural network with ð2s+1Þ3

outputs. In this way, several adjacent voxels are predicted simultaneously,

sharing the same feature maps as in a multi-task learning problem

Fig. 2. Illustration of semantic deconvolution: a portion of the original

image (left), the associated ideal image (middle), image filtered by the

trained neural network (right). Best viewed by zooming in a computer

screen

i589

Large-scale automated identification of mouse brain cells

Since 
&sect;
,
s
&sect;
``
''
&emsp;
. 
&sect;
in order 
very 
very 
&emsp;
. 
&sect; 
&sect; 
false positive
In order 
since 
false positive
.
``
''
ten 
&sect; 
ten 
approximately 
three 
ours
ten 
about 
since
very 
about two
``
''
``
''


(Caruana, 1997). The semantically deconvolved image R is then obtained

as

Rðx; y; zÞ=
1

Z

Xs
i;j;k=�s

Fi+1�x;j+1�y;k+1�zðx� i; y� j; z� kÞ ð1Þ

where (x, y, z) is the generic output voxel, Z is a normalization factor and

Fða; b; cÞ denotes the 3D patch produced in output by the neural network

when the input is the 3D patch of the original image centered at coord-

inates (a, b, c). In this formulation, each output voxel is actually obtained

by averaging several predictions, which helps to reduce the variance com-

ponent of the generalization error. Using 3D output patches is also ad-

vantageous from a computational point of view. First, note that the

running time of a network with ð2s+1Þ3 output is still Oðs3Þ (in facts it

just takes twice the time of a network with a single output). Second,

rather than moving the patch by one voxel, we may move the patch by

skipping d voxels along each dimension. In this way, the overall running

time is reduced to Oðn3s3=d3Þ. In our experiments, we used d=4 with a

speedup of �32 with respect to the naive approach. This is significant

because filtering 120GVoxels takes over a day on a Xeon E5-2665 com-

puter with 16 physical cores, and using the naive approach would require

more than a month. Note that when using a stride of length d, the nor-

malization factor Z in Equation 1 actually depends on the test point (x, y,

z) because not all output voxels are obtained by averaging the same

number of predictions.

We used a network with two fully connected hidden layers: 2197

inputs, 500 and 200, units in the hidden layers, and 2197 outputs (�1.6

million parameters in total). Preliminary experiments with a third layer

did not yield appreciable improvements. We used sigmoidal output units,

which allow us to interpret each output as the conditional probability that

a certain voxel belongs to a cell soma given the original image patch as

input. Similarly to (Hinton et al., 2006), we pretrained the first two layers

in an unsupervised fashion (as Gaussian–binary and binary–binary re-

stricted Boltzmann machines, respectively). Some of the filters learned by

the first layer of the network are shown in Supplementary Figure S4.

Fine-tuning of the overall network was finally performed by backpropa-

gation, training for �100 epochs of stochastic gradient descent with mo-

mentum and with a minibatch size of 10. Altogether, training took

slightly 52 days on 16 cores. Semantic deconvolution was performed

on substacks of size ðW+2sÞ � ðH+2sÞ � ðD+2sÞ to ensure that the

cell identification subroutines (see Section 2.2) receive data with no

border effects.

2.4 Manifold modeling

The procedure described in this section takes advantage of specific ana-

tomical background knowledge. In several brain regions, such as in the

cerebellum, cells are not scattered randomly in the 3D space but are laid

out in manifolds. For example, the cerebellum cortex folds into folia or

leaves that can be naturally modeled as manifolds. As it turns out, iso-

lated or off-manifold centers predicted by the algorithms described above

are almost invariably false-positive detections. Hence, an effective false-

positive filter may be designed by estimating the distance of each pre-

dicted center from the manifold formed by other predicted centers. Our

approach exploits manifold learning [specifically, the Isomap algorithm

(Tenenbaum et al., 2000)] and locally weighted regression (Cleveland,

1979) to obtain such an estimate.

Because Isomap needs to compute the eigendecomposition of the esti-

mated geodesic distance matrix from the nearest-neighbors graph, it

cannot be applied to large set of points. Thus, we begin by partitioning

predicted centers into smaller subsets. The approach is inspired by a

computer graphics technique known as chartification (Zhou et al.,

2004). Chartification algorithms, however, are typically designed to

work on meshes rather than point clouds and they are not robust

enough to handle the noisy detections that occur in our application.

We used instead the following procedure. First, we obtained a set of

seeds by computing the centroid of detections within each substack in

which the overall image was divided (see Section 2.2.1). Second, starting

from each seed, we formed a chart by running a uniform cost search on

the nearest neighbors graph with edges weighted by Euclidean distances,

proceeding until a predefined geodesic distance from the seed was

reached. Charts obtained in this way may overlap but this is fine because

our goal is ultimately to detect FPs. Manifold distances on each chart are

estimated using the following algorithm:

Manifold�FilterðCÞ

//C=fðxðiÞ; yðiÞ; zðiÞÞ; i=1; . . . ; ng is a set of predicted centers

1 H=IsomapðCÞ

2 for i=1; . . . ; n

3 Let fni=Lowess ðHnfðuðiÞ; vðiÞÞg;CnfðxðiÞ; yðiÞ; zðiÞÞgÞ

4 dðiÞ=kfniðuðiÞ; vðiÞÞ � ðxðiÞ; yðiÞ; zðiÞÞk

5 return fdð1Þ; . . . ; dðnÞg

In the above code, the procedure Isomap takes as input the predicted

centers and returns their 2D embeddings H=fðuðiÞ; vðiÞÞ; i=1; . . . ; ng ob-

tained by first computing the nearest neighbors graph to obtain estimated

geodesic distances and then performing multidimensional scaling

[see (Tenenbaum et al., 2000) for details]. The procedure Lowess learns

a locally weighted regression model from the 2D coordinates (u, v)

back to the 3D coordinates (x, y, z). Lowess is a lazy learner, which simply

stores the training data and at prediction time performs weighted linear re-

gression. For the sake of completeness we briefly summarize the method

here. Given the left-out test point ðuðiÞ; vðiÞÞ, we first form the matrix

V 2 R
n�1�2, whose j-th row is wðjÞðuðjÞ; vðjÞÞ and where the real-valued

weights wðjÞ are given by the Gaussian kernel

wðjÞ=exp �
kðuðiÞ; vðiÞÞ � ðuðjÞ; vðjÞÞk2

�2

� �
: ð2Þ

We then form the matrix X 2 R
n�1�3 whose j-th row is wðjÞðxðjÞ; yðjÞ; zðjÞÞ.

Lowess computes its prediction as

fniðuðiÞ; vðiÞÞ=ðuðiÞ; vðiÞÞ> V>V
� ��1

V>X: ð3Þ

To reduce the influence of outliers, we finally used the iterative reweight-

ing approach described in (Cleveland, 1979). Intuitively, fniðuðiÞ; vðiÞÞ

reconstructs the 3D coordinates of the i-th center given the other

centers in the chart. If the i-th center is far from the manifold, then we

expect the Euclidean distance dðiÞ (see Line 4 in the above algorithm)

between the true and reconstructed coordinates to be high, yielding a

sensible criterion for filtering out false-positive detections. As noted

above, our charts may overlap, meaning that multiple distance values

dðiÞ are estimated whenever a center appears in multiple charts. In these

cases, we eventually retained the minimum estimated manifold distance.

The quality of Isomap embeddings is sensitive to outliers; we thus found

it beneficial to run the manifold filter iteratively, first with a high dis-

tance threshold of 40 voxels, to get rid of gross false-positive detections,

and a second time with a smaller threshold to perform a finer grained

filtering.

3 RESULTS AND DISCUSSION

3.1 Performance evaluation

3.1.1 Ground truth To estimate the accuracy of the cell detec-
tion algorithm we annotated soma centers in 56 substacks of a

cerebellum image, each of size 280� 282� 246, for 4,138 mar-

kers and 1.09 GVoxel (10 additional disjoint substacks were

marked for training the semantic deconvolution network
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described in Section 2.3). Each ground truth substack included

exactly eight adjacent processing substacks. The set of ground

truth substacks was chosen to cover different cerebellum regions

and to ensure that the contrast variability in the whole image was

well represented. Some nearly empty regions were also included

to better estimate the false-positive rate. Cell centers were located

with the help of a modified version of the Vaa3D software pack-

age (Peng et al., 2010). In our version, the one-right-click pin-

pointing procedure takes advantage of the 3D mean shift

algorithm described in Section 2.2 but applies it to a cylinder

whose main axis is defined by the line connecting the observer

point and the clicked point. Using a fairly small cylinder radius

(�6–8 voxels) and rotating the 3D view of the image to avoid

overlaps, the cylinder will almost always contain just one soma

and a reliable marker can be assigned in just a few seconds. The

3D mean shift algorithm also ensures that the marker identifies

the soma center with good accuracy. Still, the high variability in

image quality makes hand labeling non-trivial. We found that

two independent human labelings on nine substacks disagree on

40 markers of 957.

3.1.2 Measuring performance For each substack, we compare
the set of cluster centers C returned by the clustering procedure,

and the set of ground truth centers G. To properly compare

predictions against the ground truth we need to ensure that

each predicted soma center is uniquely associated with at most
one ground truth center. For this purpose, we first construct an

undirected bipartite graph with vertex set C [ G. For each pair

c
!
2 C and g

!
2 G we add an edge with weight wcg=

1

�+k c
!
�g
!
k

if

k c
!
� g
!
k5D, being D the expected diameter of a Purkinje soma

(we set D=16 in our experiments) and � a small constant pre-

venting numerical overflows. We then compute the maximum

weight bipartite matching. A predicted center c
!

is considered

to be a true positive (TP) if it is matched to a ground truth

center g
!

such that k c
!
� g
!
k5D=2. Unmatched predictions are

counted as FPs and unmatched ground truth centers are counted

as FNs. We finally compute precision, recall and F1 measure as

P=TP=ðTP+FPÞ; R=TP=ðTP+FNÞ and F1=
2PR
P+R. To avoid

the bias due to border effects, we take advantage of the over-

lapping between substacks (Fig. 1) and exclude from the TP, FP
or FN counts all points (either predictions or ground truth) fall-

ing in the outer region of thickness M=2.

3.2 Mean shift clustering on the raw image

We ran the algorithm of Section 2.2 on the raw image, with

different values of the parameters r (radius of the seed ball)
and R (radius of the kernel). As expected, the algorithm achieves

its best performance when both parameters are set to a value that
roughly corresponds to the radius of the smallest somata in the

image (Fig. 4). Too low values for r generate too many seeds,
increasing the chances of false-positive detections. Precision is

also sensitive to the kernel radius because small values of R
tend to generate multiple detections within the same true soma.

The slight increase of FNs when increasing R can be explained as
follows: when two somata are close to each other and almost

touch, a large kernel drives the algorithm to converge near the
border between the two somas. When setting r=6 and R=5.5,

the cell detector on raw images attains a precision of 0.76 and a
recall of 0.71, corresponding to 920 FPs and 1213 FNs.

3.3 Using semantic deconvolution

The performance of the mean shift algorithm increases dramat-
ically when applied to the image cleaned by the semantic decon-

volution technique described in Section 2.3. Setting r=6 and
R=5.5 yields 493 FPs and just 120 FNs, corresponding to a

precision of 0.89, a recall of 0.97 and an F1-measure of 0.93. As
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Fig. 4. Comparing performance of the mean shift algorithm before and after semantic deconvolution and varying the parameters r (seed radius ball) and
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Fig. 3. More examples of semantic deconvolution (substacks not

included in the training set). Top: original images. Bottom: results of

semantic deconvolution. Best viewed by zooming in a computer screen
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shown in Figure 4, the algorithm is also much less sensitive to the

choice of R. If r is too small with respect to the expected soma

radius, many FPs arise. This is because the neural network may

hallucinate small non-soma light regions as soma (one example

occurs in the leftmost region of the central substack shown in

Fig. 3). Increasing r beyond six continues to improve precision at

the expense of recall, but keeping the F1-measure almost

constant.

3.4 Using the manifold filter

We finally evaluated the effect of the manifold modeling tech-

nique described in Section 2.4. We first computed the estimated

manifold distances and filtered all predictions with dðiÞ440. This

step removed some FPs without losing any significant recall. We

then applied reestimated manifold distances on the remaining

predictions and computed a recall–precision curve when varying

the manifold distance threshold. Starting from the set of cells

detected with r=6 and R=5.5, we obtained the curve shown

in Figure 5. The area under this curve is 0.97. As expected, pre-

cision decreases with the distance threshold, while recall in-

creases. Still, it is possible to reduce significantly the number of

FPs without sacrificing recall. Any threshold between 11 and 27

voxels keeps the F1-measure40.96. The sensitivity of the overall

method with respect to r and R is further reduced after the mani-

fold filter: any value of r and R between 5 and 7 yields an

F1-measure40.95 if using a distance threshold of 20. With the

application of the manifold filter (with threshold 20), the algo-

rithm detected 224 222 Purkinje cells in the whole cerebellum

image (Fig. 6). This number is consistent with previous estimates

based on stereology (Biamonte et al., 2009; Woodruff-Pak,

2006).

3.5 Discussion

Quantitative histological measurements are typically restricted to

small portions of tissue. In fact, on the one hand, conventional

microscopy techniques are unable to generate large-scale volu-

metric datasets (Osten and Margrie, 2013). On the other hand,

currently available algorithms for cell segmentation or localiza-

tion usually require carefully tuned parameters and therefore

cannot cope with the image variability that may be present in

large-scale datasets. The only well-established quantitative

method to investigate cytoarchitecture on a brain-wide scale is

stereology (Schmitz and Hof, 2005), which, however, provides

only estimates of the number of cells, without a precise map of

their spatial distribution. Furthermore, stereological estimates

rely on a priori assumptions about the imaged tissue, which

make the final result dependent on the starting hypothesis

(Schmitz and Hof, 2005).
Here, we presented an algorithm for fully automatic detection

of neuronal soma in CLSM fluorescence images, in which human

supervision is needed only for the initial training of a neural

network. After training on a small sample of substacks, the

neural network is able to generalize well on different brain re-

gions. This suggests that the network trained on one cell type and

one brain will be able to perform semantic deconvolution equally

well for the same cell type of other brains within a uniform

population of animals. The robustness of the method when

applied to heterogeneous samples should be further investigated.

In particular, it might be necessary to collect larger and more

representative datasets if one wants to detect cells with different

sizes/shapes or in comparative studies involving animals with

anatomical variations or disease models. In our experience, the

overall work devoted to labeling was modest compared with the

work devoted to sample preparation and image acquisition.
The capabilities of this algorithm have been demonstrated by

localizing all the Purkinje neurons in a whole mouse cerebellum.

The algorithm is robust against the contrast variability in differ-

ent image regions. The sensitivity of performance with respect to

the mean shift kernel radius and the manifold filter distance is

modest (Figs 4 and 5) and the seed selection parameter r can

be chosen according to the expected size of visible soma.

One possible future extension to improve our quantitative results

is to associate a confidence score or a probability to each

detection.

Our method obtains the best results when the manifold filter is

used. This can be a limitation, as the cellular subset under inves-

tigation might be scattered in all the three dimensions, without

any apparent uniformity in the spatial distribution. Further, even

if neurons lie on a manifold in physiological conditions, this re-

gularity might disappear (at least partly) in presence of a path-

ology. Thus, if one wants to compare healthy and unhealthy

subjects, a manifold-independent localization pipeline could pro-

vide more reliable results. Anyhow, the modeling of the manifold

can be useful also in this case, allowing a quantitative description

of the spatial scattering of neurons.

The combination of the method presented here with genetically

targeted expression of fluorescent proteins, or with whole-brain

immunohistochemistry (Chung et al., 2013), will allow precisely

localizing and counting selected neuronal populations throughout
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the entire encephalon, eventually leading to a set of brain-wide

cytoarchitectonic maps of the various cell types.

4 CONCLUSION

We presented an automated pipeline for the localization of neur-

onal soma in large-scale images obtained with CLSM. The

method has been validated on images of the cerebellum of an

L7-GFP mouse. We found that semantic deconvolution signifi-

cantly boosted performance at a modest cost in terms of hand

labeling. We obtained an F1 value of 0.96. While some margin

for improvement may remain, human labeling disagreement sug-

gests that F1 values40.98 are unlikely to be attainable. We fur-

ther demonstrate the algorithm by producing the full map of

Purkinje cells in the whole mouse cerebellum.
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