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ABSTRACT

Motivation: Individuals in each family are genetically more homoge-

neous than unrelated individuals, and family-based designs are often

recommended for the analysis of rare variants. However, despite the

importance of family-based samples analysis, few statistical methods

for rare variant association analysis are available.

Results: In this report, we propose a FAmily-based Rare Variant

Association Test (FARVAT). FARVAT is based on the quasi-likelihood

of whole families, and is statistically and computationally efficient for

the extended families. FARVAT assumed that families were ascer-

tained with the disease status of family members, and incorporation

of the estimated genetic relationship matrix to the proposed method

provided robustness under the presence of the population substruc-

ture. Depending on the choice of working matrix, our method could be

a burden test or a variance component test, and could be extended to

the SKAT-O-type statistic. FARVAT was implemented in C++, and

application of the proposed method to schizophrenia data and simu-

lated data for GAW17 illustrated its practical importance.

Availability: The software calculates various statistics for the ana-

lysis of related samples, and it is freely downloadable from http://

healthstats.snu.ac.kr/software/farvat.
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Supplementary information: supplementary data are available at
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1 INTRODUCTION

Advances in genotyping technology have enabled researchers to

conduct large-scale genetic analyses, and during the last decade,
genome-wide association studies have identified41000 common

genetic loci associated with many phenotypes. However, herit-
abilities for most phenotypes are only partially explained by

these significant findings (Manolio et al., 2009), and relatively
small proportions of variance explained by common variants

have revealed the importance of association analyses with rare

variants (Yang et al., 2011).
Contrary to the analysis of common variants, single genetic

association analysis with rare variants is often associated with

large false-negative results unless sample sizes or effect sizes are

very large. Thus, association analysis with the collapsed genotype

scores for a set of rare variants has been suggested (Li and Leal,

2008). For instance, minor alleles for all rare variants in a gene or

a region are counted, and the disease status is regressed on minor

allele counts (MAC). Alternatively, the collapsed amount of vari-

ance inflation for rare variants can be compared between affected

and unaffected individuals (Neale et al., 2011; Wu et al., 2011).

The former is often called a burden test, while the latter is a

variance component test. The burden test is statistically more

efficient than variance component methods such as C-alpha

(Neale et al., 2011) and SKAT (Wu et al., 2011) if most of

the rare alleles have similar effects on the disease. However, if

rare variants with deleterious and protective effects are

combined, the collapsed genotype scores for affected and un-

affected individuals are similar, and genetic association analysis

with a burden test becomes inefficient, whereas the variance

component method become more robust. Both methods can be

combined into robust statistical strategies such as the SKAT-O

approach (Lee et al., 2012a), which is statistically efficient in both

situations.

However, despite these improvements in statistical methods,

the high cost of sequencing still prevents large-scale genome-wide

rare variant association studies. The common disease rare vari-

ant hypothesis assumes genetic heterogeneity between affected

individuals, and selecting genetically homogeneous subjects ob-

viously increases the rate of true-positive findings. In particular,

family members are genetically more homogeneous than random

samples, and rare variant analysis with extended families can

lead to identification of more disease-susceptibility variants

(Dering et al., 2011; Manolio et al., 2009). For instance, it has

been shown that the enrichment of rare alleles in 100 affected sib

pairs can be equal to that of 200 cases–control pairs (Shi and

Rao, 2011). Therefore, rare variant association analysis with*To whom correspondence should be addressed
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carefully ascertained families seems to be an efficient strategy,

and the development of statistical methods for family-based sam-

ples is necessary.
Recently, Family Based Association Tests (FBAT) statistics

(Laird et al., 2000) have been extended for application in rare

variant association analysis: the burden test (De et al., 2013) and

the variance component test (Ionita-Laza et al., 2013) have been

proposed. According to the nature of FBAT, these tests are

robust against the population substructure and can be combined

with rank-based P-values (Van Steen et al., 2005; Won et al.,

2009) based on the between-family component (Lange et al.,

2003). He et al. (2014) proposed Rare Variant Extensions of

the Transmission Disequilibrium Test (RV-TDT) methods,

which were extensions of the TDT (Spielman et al., 1993).

FBAT and RV-TDT methods were shown to be robust and

powerful for exploration of rare variant association in the popu-

lation substructure. However, even though robustness against

the population substructure can be provided, those approaches

do not take into account the parental phenotypes, and power

loss can be substantial for extended family designs. Alternatively,

studies have proposed the functional principal component ana-

lysis (FPCA) and pedigree-based combined multivariate and col-

lapsing statistic (PedCMC) tests (Zhu and Xiong, 2012), which

are extended Cochran–Armitage tests for family-based samples.

These tests use data from the whole family for rare variant as-

sociation analysis and are expected to be more efficient than

FBAT/TDT-type statistics. However, if the effects of rare vari-

ants are proportional to MAC or the protective and deleterious

variants are mixed in a gene, these approaches can be less

efficient.

In this report, we propose a FAmily-based Rare Variant

Association Test (FARVAT). We provide a burden test and a

variance component test for extended families, and these

approaches are extended to the SKAT-O-type statistic. The pro-

posed method assumes that families are ascertained based on the

disease status of family members, and minor allele frequencies

(MAFs) between affected and unaffected individuals are com-

pared. MAFs for each rare variant are estimated with the best

linear unbiased estimators (McPeek et al., 2004). FARVAT is

implemented with C++ and is computationally efficient for

the analysis of rare variants with extended families. With exten-

sive simulations, we compared the proposed methods with exist-

ing methods (He et al., 2014; Zhu and Xiong, 2012), and results

showed that the proposed methods were the most efficient in the

considered scenarios. Application of the proposed method to

schizophrenia and GAW17 illustrated its practical value in real

analyses.

2 METHODS

2.1 Notations and the disease model

We assumed that there are n families and ni individuals in family i, and

the total sample size was denoted by N =
Pn

i=1ni. We assumed that

genotype data for m rare variant loci were available. We let yij and x
k

ij

be the phenotype and genotype count of an individual j in a family i for

rare variant k. If we denoted the disease prevalence by q, yij was coded as

1 for affected individuals, q for individuals with missing phenotype and 0

for unaffected individuals. If genotype frequencies of affected and

unaffected individuals are compared to detect genetic associations, the

statistical efficiency can be improved by modifying the phenotype (Lange

and Laird, 2002; Thornton and McPeek, 2007), and we therefore intro-

duced the so-called offset �ij to set tij= yij – �ij. The disease prevalence q

has often been used as an offset, and if the disease prevalences in males

and females are different, the offset should be chosen separately

(Thornton et al., 2012). For randomly selected families, the best linear

unbiased predictor (BLUP) from the linear mixed model is known to be

an efficient choice for �ij (Won and Lange, 2013). With this choice of

offset, the effects of covariates can properly be adjusted. Then, if we set

the column vectors that comprise x
k

ij and tij for individuals in a family i by

Xk
i
and Ti, respectively, we denoted

Xk=

Xk
1

�

Xk
n

0
BB@

1
CCA; X= X1 � � � Xm

� �
; and T=

T1

�

Tn

0
BB@

1
CCA: ð1Þ

The variance-covariance matrix of Xk for extended families could be

calculated based on the kinship coefficient. If we let �ij,i’j0 be the kinship

coefficient between individuals j in a family i and j0 in a family i0, and let

dij be the inbreeding coefficient for an individual j in family i, (i was

denoted by

1+di1 2�i1;i2 � � � 2�i1;ini

2�i2;i1 1+di2
. .

.
�

� . .
. . .

.
2�iðni�1Þ;ini

2�ini;i1 � � � 2�ini;iðni�1Þ 1+dini

0
BBBBBBB@

1
CCCCCCCA
; ð2Þ

and we let

U=

U1 0 � � � 0

0 U2
. .

.
�

� . .
. . .

.
0

0 � � � 0 Un

0
BBBBBB@

1
CCCCCCA
: ð3Þ

If we denote the covariance between x
k

ij and x
k0

ij by �kk0, we have cov(X
k,

X
k0)= �kk0(, and �kk0 is estimated with the empirical covariance.

In the presence of population substructure, ( should be empirically

estimated with common variants available at the genome-wide level in-

stead of using the kinship coefficient between individuals (Thornton and

McPeek, 2010). We assume that there are A common variants, and the

coded genotype for common variant is denoted by x
0a
ij for individual j in

family i at common variant a. If we let pa be the MAF of common variant

a, �ij,i0 j0 for ( (Thornton and McPeek, 2010) can be estimated by

�ij;i0 j0=

1

A

XA

a=1

ðx0aij � 2paÞðx
0a
i0 j0 � 2paÞ

2pað1� paÞ
; i 6¼ i0 and j 6¼ j0

1+
1

A

XA

a=1

x0aij � ð1+2paÞx
0a
ij+2p2a

2pað1� paÞ
; ow:

8>>><
>>>:

ð4Þ

2.2 FAmily-based Rare Variant Association Test

For ascertained samples, the disease status can be assumed to be fixed,

and the genotype frequencies between affected and unaffected individuals

are usually compared. We let 1w be the w� 1 column vector that consisted

of 1 and Iw be the w�w identity matrix. If we denoted an MAF of rare

variant k in unaffected individuals by pk, we assumed (Thornton and

McPeek, 2007) that for a constant �k,

EðXkjYÞ=2pk1N+�kY; var ðXkjYÞ=�kkU; ð5Þ
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where 052pk+ �k51. If we let V be the working variance-covariance

matrix, the score for the quasi-likelihood (Thornton and McPeek, 2007)

became

TtV�1ðX� EðXÞÞ: ð6Þ

Recently, we showed that the approximate optimal efficiency for the

analysis of common variants is achieved with V= IN (Won and Lange,

2013). For the choice of the offset in T, BLUP and q have been suggested

for randomly selected samples and ascertained samples, respectively

(Thornton and McPeek, 2007; Won and Elston, 2008). E(X) can be

estimated with the following best linear unbiased estimator (McPeek

et al., 2004):

ÊðXÞ=1Nð1
t
NU�11NÞ

�11tNU�1X: ð7Þ

Therefore, our score based on the quasi-likelihood became

TtðIN � 1Nð1
t
NU�11NÞ

�11tNU�1ÞX: ð8Þ

If we let

H=U� 1Nð1
t
NU�11NÞ

�11tN and S=

�11 � � � �1m

� . .
.

�

�m1 � � � �mm

0
BBB@

1
CCCA; ð9Þ

we have

var Tt IN � 1Nð1
t
NU�11NÞ

�11tNU�1
� �

Xk
� �

=�kkT
tHT; ð10Þ

and thus the variance-covariance matrix of the score was

var Tt X1 � ÊðX1Þ

� �
� � � Tt Xm � ÊðXmÞ

� �� �
= TtHT
� �

S: ð11Þ

Therefore, we have

1ffiffiffiffiffiffiffiffiffiffiffiffi
TtHT
p TtðIN � 1Nð1

t
NU�11NÞ

�1
1tNU�1ÞXS

�1=2
�MVNð0; ImÞ under H0:

ð12Þ

For rare variant association analysis, the collapsed amount of either rare

alleles or variance inflation between affected and unaffected individuals

has been compared (Li and Leal, 2008; Neale et al., 2011; Price et al.,

2010; Wu et al., 2011). If we let the weight for variant k be wk, the null

hypothesis for the former was

H1
0 : w1�1+. . .+wm�m=0; ð13Þ

and that for the latter was

H2
0 : w2

1�
2
1+. . .+w2

m�
2
m=0: ð14Þ

For the choice of wk, wk=1 or [pk(1 – pk)]
–1/2 are often used. If we

denoted the m�m diagonal matrix, which consists of wk, by W, the

score test for the burden-type test was

1

TtHT
TtðX� ÊðXÞÞW1m1

t
mWðX� ÊðXÞÞtT; ð15Þ

and the score test for the C-alpha-type test was

1

TtHT
TtðX� ÊðXÞÞWImWðX� ÊðXÞÞtT: ð16Þ

Both score tests for rare variant analysis could be generalized to

1

TtHT
TtðX� ÊðXÞÞWRWðX� ÊðXÞÞtT; ð17Þ

and for a given constant c2 [0,1], Sc was denoted by

1

TtHT
TtðX� ÊðXÞÞW ð1� cÞIm+c1m1

t
m

� �
WðX� ÊðXÞÞtT: ð18Þ

We denoted eigenvalues for S1/2
WWS1/2 by �k. If we let �2k’s be

independent chi-square distributions with a single degree of freedom,

we have

S1�ð1
t
mWSW1mÞ�

2
1 under H1

0; ð19Þ

and

S0�
Xm
k=1

�k�
2
k under H2

0: ð20Þ

The P-values for S1 and S0 were, respectively, denoted by FARVATb and

FARVATc, and in particular, FARVATc can be calculated with the

Davies method (Davies, 1980) or the method described by Liu et al.

(Lee et al., 2012b; Liu et al., 2009).

2.3 Extension of S1 and S0 to the SKAT-O-type statistic

The burden test is known to be efficient if all rare variants have either

deleterious or protective effects on disease; otherwise, the C-alpha test is

more efficient (Neale et al., 2011). A balanced approach for both scen-

arios can be achieved by the SKAT-O-type statistic (Lee et al., 2012). For

c0=05c15. . .5cL=1, we denoted the observed value for Scl by scl , and

their corresponding P-values were denoted by pcl . Furthermore, we

denoted the (1 – p)th quantile for Scl by Qcl ðpÞ. If we let

pmin =min pc0 ; pc1 ; . . . ; pcL
� �

; ð21Þ

our final P-value was obtained by

1� PðSc0 � Qc0 ðpminÞ; . . .;ScL � QcL ðpminÞÞ: ð22Þ

The numerical calculation of the final P-value for the independent samples

was derived by Lee et al. (2012), and our final P-values, denoted by

FARVATo,werecalculatedbasedontheirapproachwithsomemodification.

If we let Z=S1/2
W and Z=Z1mð1

t
m1mÞ

–1, the projection matrix onto

a space spanned by Z becomes P=ZðZ
t

ZÞ–1Z
t

. If we let

u=
1ffiffiffiffiffiffiffiffiffiffiffiffi

TtHT
p TtðIN � 1Nð1

t
NU�11NÞ

�11tNU�1ÞXS
�1=2; ð23Þ

u� MVN(0, Im), and Scl becomes

Scl=utS
1=2

WRWS
1=2

u=utZRZtu

=ð1� clÞu
tZZtu+clm

2utZZ
t
u:

ð24Þ

As was shown by Lee et al. (2012), if we let

�ðclÞ=
1� cl

Z
t
Z

Z
t
ZZtZ+clm

2Z
t
Z; ð25Þ

we have

Scl=ð1� clÞu
tðIm �PÞZZtðIm �PÞu

+2ð1� clÞu
tðIm �PÞZZtPu+�ðclÞu

tPu;
ð26Þ

where utðIm �PÞZZtðIm �PÞu, utðIm �PÞZZtPu and utPu are mutu-

ally independent. Therefore,

PðSc0 � Qc0 ðpminÞ; . . .;ScL � QcL ðpminÞÞ

=E P Sc0 � Qc0 ðpminÞ; . . .;ScL � QcL ðpminÞÞju
tPu=	

� �� �
;

ð27Þ

and the following conditional probability can be numerically calculated,

as was suggested by Lee et al. (2012):

P Sc0 � Qc0 ðpminÞ; . . .;ScL � QcL ðpminÞÞju
tPu=	

� �
: ð28Þ

2.4 The simulation model

In our simulation studies, we considered extended families that consisted

of 10 individuals, and extended over three generations (see Supplemen-

tary Fig. S1). To generate the genotypes for extended families, haplotypes
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were simulated with COSI software (Schaffner et al., 2005), based on the

coalescent model, and obtained haplotypes were used for founders’ geno-

types. In the coalescent model for COSI, we assumed that the mutation

rate was 1.5� 10–8, and 5000 haplotypes with 50 000bp were generated.

m rare variants in a region or all rare variants for which MAFs were

50.01 were randomly selected, and pairs of haplotypes were randomly

chosen with replacement to derive the founders’ genotypes. Under the

assumption of no recombination, a haplotype from each founder was

randomly selected to construct non-founders’ genotypes under the as-

sumption of Mendelian transmission.

The disease status for each individual was generated with the liability

threshold model. The underlying liabilities were defined by summing the

phenotypic mean, polygenic effect, common environmental effect, main

genetic effect and random error. The phenotypic mean 
0 was assumed to

be 0, and the polygenic effect, common environmental effect and random

errors were generated from the normal distribution with mean 0.

Variances for the polygenic effect, common environmental effect and

random errors were denoted by �2g, �
2
c and �

2

e, respectively, and were

assumed to be 1. In this setting, the heritability was 1/3. The polygenic

effect was independently generated from N(0, �2g) for founders, and the

average of maternal and paternal polygenic effects was combined with

values independently sampled from N(0, 0.5�2g) for the polygenic effects

of offspring. Common environmental effects were assumed to be the

same for all individuals in each family. We assumed there were m rare

variants, and their main genetic effects for each individual were the prod-

uct of 
k and the number of disease alleles. If we let h
2

a
be the relative

proportion of variance explained by rare variants, 
k were sampled from

U(1.0, v), and v was calculated by

v=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2g+�

2
c+�2e Þh

2
a

1� h2a
� �Xm

k=1


2k2pkð1� pkÞ

vuuuut
: ð29Þ

Under the null hypothesis, h
2

a
was set to 0, and 
k became 0. Once the

underlying liabilities of main genetic effects, polygenic effects, common

environmental effects and random errors were generated, they were trans-

formed to being affected if they were larger than the threshold; otherwise,

they were considered as unaffected. The threshold was chosen to preserve

the assumed prevalence, and the disease prevalence was assumed to be

0.12. Families with more than two affected grandchildren were used for

simulation studies, and sampling was repeated until the given numbers of

these families were obtained.

Furthermore, the robustness of the proposed statistic under the presence

of the population substructure was evaluated with simulated data. We

assumed that there were two subpopulations, and each founder was as-

signed to the one of the two subpopulations with 50% probability. Means

of liabilities for phenotypes in both populations differed by 0.2. The allele

frequencies for each marker in the two subpopulations were generated by

the Balding–Nichols model (Balding and Nichols, 1995). That is, for

marker k, the allele frequency, pk, in an ancestral populationwas generated

from U(0.0001, 0.01), and the marker allele frequencies for the two sub-

populations were independently sampled from the beta distributions (pk(1

– FST)/FST, (1 – pk)(1 – FST)/FST). A survey reported FST estimates with a

median of 0.008 and a 90th percentile of 0.028 among Europeans; the

corresponding values were 0.027 and 0.14, respectively, among Africans,

and 0.043 and 0.12, respectively, among Asian (Cavalli-Sforza and Piazza,

1993). The values forWright’sFSTwere assumed tobe 0.005, 0.01 and0.05.

3 RESULTS

3.1 Simulation studies

3.1.1 Evaluation with simulated data under the absence of popula-

tion substructure The statistical validity of FARVATb,

FARVATc and FARVATo was evaluated under the absence of

population substructure, and the results were compared with

PedCMC, FPCA (Zhu and Xiong, 2012) and RV-TDT meth-

ods (He et al., 2014). RV-TDT methods consist of BRV.T01,

BRV.Hapo.T01, CMC.T01, CMC.Hapo.T01, VT.BRV.Hapo,

VT.CMC.Hapo and WSS.Hapo. We generated 50 and 100 ex-

tended families in each replicate, and empirical type 1 error

estimates at the 0.05, 0.01 and 0.001 significance levels were

calculated with 50 000 replicates. For the proposed methods,

1 and [pk(1 – pk)]
–1/2 were considered for wk, and the kinship

coefficients were used to build the correlation matrix (. Rare

variants for which MAFs were50.01 were considered for all

statistics. In Supplementary Tables S1 and S2, 30 and 100 rare

variants were randomly selected, and in Supplementary Table

S3, all rare variants in the 30 kb genetic region were considered.

These results showed that the empirical type 1 error estimates

for FARVATb, FARVATc and FARVATo preserved the nom-

inal significance levels. However, CMC.T01, BRV.Hapo.T01,

CMC.Hapo.T01, VT.BRV.Hapo, VT.CMC.Hapo, WSS.Hapo

and FPCA were usually conservative, and BRV.T01 and

PedCMC seemed to be liberal. For PedCMC, genotype scores

of individuals with more than or equal to a single rare allele

were considered as 1; otherwise, they were 0. If the large

number of rare variants is collapsed, its convergence to the

chi-square distribution requires very large sample sizes, and

genotype scores for all individuals can be 1 in extreme scen-

arios. Therefore, we could conclude that PedCMC may not be a

good choice when the number of rare variants in a gene is very

large.

The statistical efficiency of FARVATb, FARVATc and

FARVATo was evaluated with the simulated data, and results

were compared with results from PedCMC, FPCA and RV-

TDT methods (He et al., 2014; Zhu and Xiong, 2012). We

assumed that the relative proportion of variances explained by

rare variants h
2

a was 0.05. In each replicate, we assumed that all

rare variants had either deleterious or protective effects on dis-

ease, and the proportions of rare variants with deleterious effects

were assumed to be 1, 0.8, 0.6 and 0.5. The numbers of extended

families were assumed to be 50 and 100. MAFs for all rare vari-

ants were assumed to be50.01. Thirty rare variants in Figure 1

and 100 rare variants in Figure 2 were selected, and in Figure 3,

all rare variants within 30kb from the generated 1Mb chromo-

somes were selected. For the proposed methods, each rare

variant was weighed by [pk(1 – pk)]
–1/2 for W. The results in

Figures 1, 2 and 3 showed that FARVATb was the most efficient

if all rare variants had deleterious effects, but the gap between

FARVATb and the second efficient method FARVATo was small.

However, the power loss of FARVATb was substantial when rare

variants with deleterious and protective variants were present in

a gene.

If the proportion of rare variants with deleterious effects was

0.5, FARVATc was the most efficient, followed by FARVATo.

PedCMC and FPCA were usually more efficient than RV-TDT

methods, but these approaches were not efficient compared with

FARVATo in the considered scenarios. Therefore, even though

the most powerful statistic depended on the disease model, we

concluded that FARVATo was generally efficient choice under

the various disease models.
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3.1.2 Evaluation with simulated data under the presence of popula-
tion substructure We assumed that there were two subpopula-

tions, and founders in each family were randomly selected from

two different population substructures. Two subpopulations

were simulated with the Balding–Nichols model (Balding and

Nichols, 1995), and FST values were assumed to be 0.005, 0.01

and 0.05. To provide robustness against the population substruc-

ture, ( was estimated by 20000 common variants for which

MAFs were40.05 (Thornton and McPeek, 2010), and this was

incorporated to the proposed methods. It should be noted that

the proposed method was an extension of the MQLS statistic

(Thornton and McPeek, 2007) to rare variant association ana-

lysis, and thatMQLS becomes robust under the presence of popu-

lation substructure if ( was estimated with large-scale genomic

data (Thornton and McPeek, 2010).
In Supplementary Table S4, we calculated empirical type 1

error estimates from 50 000 replicates at the 0.01, 0.005 and

0.001 significance levels. Our results showed that the empirical

type 1 error estimates for FARVATb and FARVATo preserved

the nominal significance levels for the considered FST values.

However, FPCA, PedCMC and RV-TDT methods were usually

conservative, and the level of conservativeness was proportional

to the amount of FST. FARVATc was also conservative, but was

less sensitive than FPCA, PedCMC and RV-TDT methods.

Furthermore, we evaluated the statistical efficiency under the

presence of population substructure with the simulated data.

We assumed that h
2

a was 0.05, and the empirical power estimates

were calculated with 5000 replicates at the 0.001 significance

level. As shown in Figure 4, the most efficient approach differed

depending on the disease model. For instance, FARVATb was
the most efficient when all rare variants had deleterious effects,
and FARVATc was the most efficient when half of the rare vari-

ants had deleterious effects. FARVATo was usually the second
most efficient; however, the power gap between FARVATo and

the most efficient method was always small. As a result, we
concluded that FARVATo was generally a robust and efficient
choice for various disease models under the presence of popula-

tion substructure.

3.2 Analysis of GAW17 simulated data

The statistical efficiency of the proposed methods was evaluated
with the binary trait in GAW17 simulated data (Almasy et al.,

2011). There were 200 replicates in GAW17 simulated data, and
each replicate consisted of 209 affected and 488 unaffected indi-
viduals distributed in eight extended pedigrees. In 1714 genes,

there were 13784 variants, and MAFs for 10 710 variants were
50.05. In each gene, rare variants for which MAFs were50.05

were considered for analysis with the proposed methods, and
genes in which the number of rare variants was less than or
equal to two were excluded from the analysis. To provide the

robustness of the proposed methods under the presence of popu-
lation substructure, the empirical genetic relationship matrix be-

tween individuals was estimated with the common variants. The
disease status was decided by the underlying liability, and the top
30% of the underlying liability distribution was declared as being

affected. In particular, some covariates were related to the

Fig. 1. Empirical power estimates when the number of rare variants in a

gene is 30. h
2

a
was assumed to be 0.05, and the empirical power estimates

were calculated with 5000 replicates at the 0.001 significance levels. MAFs

for all variants were assumed to be 50.01, and 30 rare variants were

randomly selected. Each rare variant had either deleterious or protective

effect on disease, and proportions of rare variants with deleterious effect

were 1, 0.8, 0.6 and 0.5. The numbers of families were assumed to be 50

and 100

Fig. 2. Empirical power estimates when the number of rare variants in a

gene is 100. h
2

a
was assumed to be 0.05 and the empirical power estimates

were calculated with 5000 replicates at the 0.001 significance levels. MAFs

for all variants were assumed to be50.01, and 100 rare variants were

randomly selected. Each rare variant had either deleterious or protective

effect on disease, and proportions of rare variants with deleterious effect

were 1, 0.8, 0.6 and 0.5. The numbers of families were assumed to be 50

and 100
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underlying liability, and the disease prevalence (Thornton and

McPeek, 2010) and BLUP from the linear mixed model (Won

and Lange, 2013) were used as offsets. For the linear mixed

model, we included sex, age, smoking status and 10 principal

component scores calculated from the estimated ( (Thornton

and McPeek, 2010). Among 36 genes related to binary traits,

20 genes consisted of more than one rare variant, and their em-

pirical powers were determined by counting the number of rep-

licates for which P-values of causal genes were50.05, 0.01 and

0.001. As shown in Supplementary Tables S5 and S6, most

causal genes were not detectable with the proposed methods;

however, KDR, VEGFA, SIRT1 and VLDLR had relatively

high rates of detection. By using RV-TDT methods, we could

not find any causal genes. In Supplementary Figures S2 and S3,

we provided the qq-plots and Manhattan plots of RV-TDT

methods, PedCMC, FARVATb, FARVATc and FARVATo with

the first replicate of GAW17 simulated data. While PedCMC

was not conservative, results from the other methods seemed

to be valid. As shown in Supplementary Figure S3, we found

that VEGFA was the most significant for FARVATo.

3.3 Real data analysis

The proposed methods were applied to the genetic association

analysis of rare variants in schizophrenia. Thirty-six trios were

collected from Germany for which offspring were affected,

whereas parents were unaffected. The whole genomes for all in-

dividuals were sequenced. There were 10829 265 bi-allelic

variants, and MAFs of 31860 among them were 50.05.

Markers with high missing call rates (45%) or significant devi-

ation from Hardy–Weinberg equilibrium (P51� 10–5) were

excluded, and trios were filtered out if 10% of variants had

Mendelian transmission errors. As a result, 9 216 373 common

variants and 31 046 rare variants for 105 trios were analyzed with

the proposed methods.

Each rare variant was annotated by the SnpEff program

(Cingolani et al., 2012) with the UCSC HG19 database.

SnpEff 3.2a categorized each variant to four groups: HIGH,

MODERATE, LOW and MODIFIER. In our analysis, rare

variants assigned to LOW and MODIFIER categories may

have little or no effect on protein function, and they were not

considered in our analysis. For each gene, the rare variants with

HIGH and MODERATE effects were separately analyzed with

the proposed methods. In addition, if MAC of all rare variants in

each gene were �5, the asymptotic convergence of the proposed

method to chi-square distribution may not be provided, and P-

values were calculated for genes for which the MAC was �5. In

total, P-values were calculated for 13 053 genes. For the pro-

posed methods, the prevalence of schizophrenia was assumed

to be 0.0063, and each rare variant was weighted by [pk(1 –

pk)]
–1/2 forW. To provide robustness under the presence of popu-

lation substructure, the genetic relationship matrix was estimated

with common variants, and these data were incorporated into the

Fig. 4. Empirical power estimates under the presence of population sub-

structure. h2a was assumed to be 0.05, and the empirical power estimates

were calculated with 5000 replicates at the 0.001 significance levels under

the presence of population substructure. FST was assumed to be 0.005,

0.01 and 0.05. MAFs for all variants are assumed to be50.01, and 30 rare

variants are randomly selected. Each rare variant had either deleterious

or protective effect on disease, and proportions of rare variants with

deleterious effect were 1, 0.8, 0.6 and 0.5. The numbers of families were

assumed to be 100

Fig. 3. Empirical power estimates when all rare variants in a gene are

considered. h
2

a
was assumed to be 0.05, and the empirical power estimates

were calculated with 5000 replicates at the 0.001 significance levels. All

rare variants of which MAFs are50.01 are used to calculate each stat-

istic. Each rare variant had either deleterious or protective effect on dis-

ease, and proportions of rare variants with deleterious effect were 1, 0.8,

0.6 and 0.5. The numbers of families were assumed to be 50 and 100
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proposed methods. We provided the qq-plots of RV-TDT meth-

ods, PedCMC, FARVATb, FARVATc and FARVATo. As pre-

sented in Figure 5, although RV-TDT methods, PedCMC and

FARVATc methods were conservative and FARVATb showed

some violations, FARVATo uniquely seems valid. Figure 6

shows the Manhattan plots for the all methods, and the gen-

ome-wide significant results from RV-TDT, FARVATb

and FARVATo are summarized in Table 1. We found two

genome-wide significant genes with WSS.Hapo, FARVATb and

FARVATo, and these genome-wide significant genes will be fur-

ther investigated with replication studies.

4 DISCUSSION

In this article, we proposed burden-type, C-alpha-type and

SKAT-O-type statistics for the association analysis of rare vari-

ants for binary traits with extended families. The proposed meth-

ods were compared with results of PedCMC, FPCA and RV-

TDT methods (He et al., 2014; Zhu and Xiong, 2012), and with

extensive simulations, we showed that the proposed method was

more efficient than existing approaches. In particular, we found

that the most efficient statistic among the proposed statistics

differed according to the disease model. However, they were usu-

ally followed by the SKAT-O-type statistic in such scenarios, and

the power differences between the most efficient statistic and the

SKAT-O-type statistic were small. Therefore, FARVATo seemed

to be a robust choice for the analysis of rare variants in extended

families.
Furthermore, the proposed method was very rapid computa-

tionally, and the FARVAT software for the proposed methods

was implemented with C++ to enhance computational effi-

ciency. The time complexity for the proposed method was

O(m3+N2m+N3), and we found that analysis of the whole

genome sequence data for 1000 individuals in the extended

Fig. 5. QQ-plot of the rare variant association analysis for schizophrenia.

The qq-plots are provided for BRV.T05, BRV.Hapo.T05, CMC.T05,

CMC.Hapo.T05, VT.BRV.Hapo, VT.CMC.Hapo, WSS.Hapo,

PedCMC, FARVATb, FARVATc and FARVATo. The 95% confidence

interval is provided

Fig. 6. Manhattan plot of the rare variant association analysis for schizo-

phrenia. TheManhattan plots are provided for BRV.T05, BRV.Hapo.T05,

CMC.T05, CMC.Hapo.T05, VT.BRV.Hapo, VT.CMC.Hapo,

WSS.Hapo, PedCMC, FARVATb, FARVATc and FARVATo. The x-axis

indicates the genome in physical position, and y-axis does –log10(P-value)

for all genes. The horizontal line means the threshold for 0.05 genome-wide

significance level by Bonferroni correction is 1.74E-05

Table 1. Significant results from the rare variant association analysis with

schizophrenia data

Statistics Weight CHR GENE m MAC P-value q-value

Aff Unaff

WSS.Hapo 1 11 Gene1 5 0 11 5.00E-06 0.01

FARVATb [pk(1–pk)]
–1/2 8 Gene2 25 4 27 1.67E-05 0.05

FARVATo [pk(1–pk)]
–1/2 8 Gene2 25 4 27 1.30E-05 0.04

Notes. The significant results for each method are provided. The numbers of vari-

ants for each significant region are provided, and MAC for affected and unaffected

individuals is provided. The 0.05 genome-wide significant level adjusted by

Bonferroni correction is 1.74E-05, and q-values (Benjamini and Hochberg, 1995)

are provided.
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family design could be conducted within a few hours. FARVAT

can handle various input file formats, such as the ped, bed and

vcf files, and multithreaded genome-wide association analyses

can be conducted. The software calculates various statistics for

the analysis of extended families, and it is freely downloadable

from http://biostat.cau.ac.kr/farvat/.
However, despite the analytical flexibility of the proposed

method, it has some limitations. First, the proposed method

could be less efficient if some covariates associated with dis-

ease status or phenotypes of interest were continuous. Our

recent investigation found that the power improvement of

the analysis with phenotypes adjusted by BLUP could be sub-

stantial if each family was randomly selected (Won and Lange,

2013). Under certain scenarios, however, power loss may be

expected, and the further investigation is necessary. Second, we

showed that incorporation of the estimated correlation matrix

to the proposed statistics provided sufficient robustness for the

proposed method against the presence of population substruc-

ture. However, if large-scale common variants were not avail-

able or the level of population substructure depended on the

genomic location, the proposed adjustment with the estimated

correlation matrix did not perform appropriately (Price et al.,

2006; Won et al., 2009), and different strategies would be ne-

cessary according to the level of population substructure. If

large-scale common variants are not available, the FBAT or

TDT statistics, based on so-called within-family components,

is uniquely robust to population substructure, and the burden-

type test for the FBAT statistic or RV-TDT methods can be

used (De et al., 2013; He et al., 2014). If the genomic ancestry

for each individual differs for some genomic locations, the so-

called hybrid-analysis strategy (Won et al., 2009) can be a

suitable alternative. The proposed method can simply be ex-

tended to the statistic based on the between-family component

(Won and Lange, 2013), and its rank-based P-value can be

combined with the FBAT burden-type test or SKAT-O-type

test.
Advances in genotyping technology will lead to substantial

cost reductions for genome sequencing, and it is expected that

whole genome sequencing may be feasible for less than a few

hundred U.S. dollars in the near future. Importantly, most of

human genome consists of rare variants, and thus, we expect that

the genetic background for ‘missing heritability’ can be deter-

mined by rare variant association analysis (Manolio et al.,

2009). However, rare variant association analysis is disrupted

by genetic heterogeneity, and in this context, the importance of

rare variant analysis with extended families has often been raised

(Ionita-Laza et al., 2011). The proposed method enables the ana-

lysis of rare variants within extended families, and its application

to extended families may provide a breakthrough for the success

of genetic association analysis.
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