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ABSTRACT

Motivation: Abundance profiling (also called ‘phylogenetic profiling’) is

a crucial step in understanding the diversity of a metagenomic sample,

and one of the basic techniques used for this is taxonomic identifica-

tion of the metagenomic reads.

Results: We present taxon identification and phylogenetic profiling

(TIPP), a new marker-based taxon identification and abundance profiling

method. TIPP combines SAT\’e-enabled phylogenetic placement a

phylogenetic placement method, with statistical techniques to control

the classification precision and recall, and results in improved abundance

profiles. TIPP is highly accurate even in the presence of high indel errors

and novel genomes, and matches or improves on previous approaches,

including NBC, mOTU, PhymmBL, MetaPhyler and MetaPhlAn.

Availability and implementation: Software and supplementary ma-

terials are available at http://www.cs.utexas.edu/users/phylo/software/

sepp/tipp-submission/.

Contact: warnow@illinois.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Metagenomicstudiesofmicrobialcommunitiescommonlygenerate

millionstohundredsofmillionsofsequencingreads.Theassignment
of accurate taxonomic labels to these sequences is a critical compo-

nentinmanyanalyses,butiscomplicatedbythefactthatthemajority
oftheorganismsfoundinenvironmentalorhost-associatedcommu-

nities cannotbe easily cultured ina laboratory, andof theorganisms

that can be cultured, an even smaller number have been sequenced,
even partially. Thus, these commonly encountered organisms are

largely absent from existing databases of known genomes and
genes. Providing taxonomic labels to metagenomic sequences re-

quiresextrapolatingtheknowledgecontained insequencedatabases
to previously unseen deoxyribonucleic acid (DNA) strings. Simple

similarity-basedapproaches (e.g. picking thebestdatabasehit as the
best ‘guess’ at the taxonomic label) have been shown to be insuffi-

ciently accurate (Koski and Golding, 2001), leading to the devel-
opment of new andmore sophisticatedmethods.

Recently developed methods improving on the simple similar-
ity-based approaches include (a) composition-based approaches

that rely on various machine learning techniques (Support

Vector Machines in PhyloPythia and PhyloPythiaS (McHardy

et al., 2007; Patil et al., 2011), Interpolated Markov Models in

Phymm (Brady and Salzberg, 2011), Bayesian models in NBC

[Rosen et al., 2011), or neural networks (Abe et al., 2006)] to

classify sequences based on their DNA composition (usually

based on the frequency of short k-mers), (b) more sophisticated

analyses of similarity search results [e.g. using lowest common

ancestor aggregation in Megan (Huson et al., 2007), or classifiers

built from similarity search results as done in MetaPhyler (Liu

et al., 2010, 2011), MetaPhlAn (Segata et al., 2012) and mOTU

(Sunagawa et al., 2013) or protein profiles in Carma (Gerlach

and Stoye, 2011)], and (c) combinations of multiple approaches

(e.g., composition and similarity based approaches in PhymmBL

(Brady and Salzberg, 2009)). Some of these approaches (e.g.

most of the composition-based approaches) can be applied to

any DNA sequence. However, others are specific to a reference

collection of carefully selected genes (e.g. MetaPhyler,

MetaPhlAn and mOTU use a collection of universal or clade-

specific marker genes), and so are called ‘marker-based’ methods.

Abundance profiling, also called ‘phylogenetic profiling’, seeks

to estimate the relative abundance of the species (or genera, or

families, etc.) within a sequence dataset. While many methods

produce these estimates by characterizing most (or all) of the

sequences in the dataset, marker-based methods produce these

estimates by characterizing only those sequences that match the

marker genes they rely on. The marker genes used by some of

these methods (e.g. MetaPhyler and mOTU) are supposed to be

single copy and universal; thus, the estimates produced using

such markers can be used for profiling without needing to correct

for copy number or missing data.
We present taxon identification and phylogenetic profiling

(TIPP), a new marker-based method for taxon identification

and abundance profiling. We explore TIPP for abundance pro-

filing using MetaPhyler’s collection of 30 marker genes, but TIPP

can be used with any single-copy gene for which a dense enough

sample of full-length sequences is available. TIPP is implemented

in Python and can be run on Unix and Mac.

2 APPROACH

2.1 Overview

TIPP has three phases: pre-processing (Phase 1), taxon identifi-

cation for reads mapped to its marker genes (Phase 2) and abun-

dance profiling based on these taxon identifications (Phase 3).*To whom correspondence should be addressed.
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Phase 1 involves a sequence of preprocessing steps, based on its

set S of reference sequences for its set of marker genes, and its

input set Q of uncharacterized reads (the ‘query sequences’).

TIPP uses SAT�e (Liu et al., 2009, 2012) to compute an alignment

A and tree T for full-length sequences for each of its marker

genes, using its reference set S; these are called the ‘backbone

alignment’ and ‘backbone tree’. Since the NCBI taxonomy is not

fully resolved (i.e., bifurcating), TIPP uses the backbone align-

ment and RAxML (Stamatakis, 2006) to refine the NCBI tax-

onomy (restricted to the sequences in the backbone alignment)

into a fully resolved tree, T�. Thus, each marker gene has its own

refinement of the taxonomy that is used in subsequent analyses.

TIPP then uses BLAST (Altschul et al., 1990) to determine which

reads in Q map to its marker genes. At the end of this pre-

processing, the set Q is partitioned into sets, with one set for

each of its marker genes, and a final set for the reads that are

not mapped to any marker gene
Phase 2, where reads that are mapped to marker genes

are taxonomically characterized, is the most involved, and is

described below (and also in Fig. 1).

Phase 3, which estimates the abundance profile, is quite

simple. We pool all the reads that mapped to any marker gene

and have been characterized at any taxonomic level into a single

set. We compute the abundance profile as the relative distribu-

tion of the clades present in the pooled set. As the pooled reads

are only required to be characterized at the phylum level, the

abundance profiles can include a category of unclassified

sequences. Sequences can be labeled as unclassified due to two

reasons: there may not be sufficient support to classify a se-

quence at a given taxonomic level, and the taxonomy may not

have a classification for a clade at a particular taxonomic level.

For example, a species that does not have a family label would be

unclassified at the family level, even if it was classified at a lower

level; see Section S7 for an example.

2.2 Phase 2: taxonomic characterizations of reads

We describe how TIPP performs its taxonomic characterization

of a single read mapped to a single marker gene; see Figure 1.

The input to TIPP includes the maximum alignment subset size

(m) and the statistical support thresholds (sa and sp) for align-

ment and placement support, respectively, which can be set by

the user. We set default values as follows: m=100 and

sa=sp=95%.
Step 1: Decomposition. TIPP decomposes the set of leaves in

the backbone tree T into subsets using the decomposition tech-

nique in SEPP. TIPP finds a centroid edge in T (one that separ-

ates the leaf set into two sets of approximately equal size), breaks

the tree accordingly into two subtrees, and recurses on each

subtree that contains more than m leaves. This produces a par-

tition of the leaves of T into alignment subsets S1;S2; . . . ;Sk,

each of size at most m.
Step 2: Compute Extended Alignment(s). We define the align-

ment Ai by restricting the alignment A to Si, for every 1 � i � k;

these are the ‘subset alignments’. TIPP uses the HMMER soft-

ware suite (Eddy, 1998) to compute an HMM Hi on each Ai.

Thus, TIPP represents the backbone alignment with a set of

HMMs, a technique we call an ‘HMM Family’. HMMER pro-

duces bit scores (discussed below), which are measures of the fit

between each Hi and each query sequence q 2 Q. Then, for the

query sequence q, one or more subset alignments are selected so

that the total statistical support for the alignments is at least sa
(see below for how TIPP computes statistical support). TIPP

uses HMMER to align q to each of the selected subset align-

ments, and thus, produces extensions of each subset alignment Ai

that include q (called an ‘extended alignment’). Thus, each query

sequence q gives rise to at least one and potentially many ex-

tended alignments of the reference dataset, each with jSj+1

sequences.
Step 3: Placement. For each query sequence q and each ex-

tended alignment containing q, we use pplacer (Matsen et al.,

2010), a maximum likelihood phylogenetic placement method, to

insert q into T�. The output of pplacer provides multiple place-

ments and their likelihood weight ratios (the maximum likeli-

hood values for all placement locations, normalized to sum to

1) for each extended alignment. We combine all placements re-

sulting from the extended alignments into a single collection of

placements, re-normalize their likelihood weight ratios to sum up

to 1 (weighting each placement by the corresponding alignment

support), and treat the normalized likelihood weight ratios as

probabilities; see Section S8 for an example.
Step 4: Classification. For each query sequence, we assign stat-

istical support to each node in the taxonomy by adding the

probabilities of all placements at or below the edge above the

node; thus, the statistical support monotonically increases as one

traverses the tree from any leaf to the root, and this allows us to

classify the query sequence at all taxonomic levels for which it

has support of at least sp. The query sequence is left unclassified

at levels where the support of sp is not reached. A unique taxon

identification is produced whenever sp40:5; otherwise, TIPP

outputs all identifications that meet the support threshold of

sp, along with their support values. Because our default setting

has sp=0:95, TIPP produces a unique taxon identification for

each query sequence.

Fig. 1. TIPP’s algorithm to taxonomically characterize the query se-

quence q that is already mapped to a marker gene. The backbone align-

ment and tree are for the marker gene, and an HMMFamily is computed

for the backbone alignment. The HMM Family is then used to compute

one or more ‘extended alignments’ including q. The phylogenetic place-

ment method pplacer produces a probability distribution for the place-

ments of q into the reference taxonomy. Each node in the taxonomy is

labeled with the sum of the probabilities of any placements at or below

the edge above the node. TIPP classifies the query sequence at any node

with sufficient statistical support
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2.3 Alignment support calculation

To take alignment uncertainty into account, we take a large

enough number of extended alignments to reach the alignment

support threshold sa. To determine the number of extended

alignments we need, we use HMMER’s output to define the

probability that a given query sequence is generated by a given

HMM from the set of HMMs computed for the different subset

alignments. These calculations are based on the assumptions that

(1) the subsets are disjoint, so that at most one HMM generates

the query sequence and (2) the query sequence is generated by

some HMM.
For a given HMMER model H and query sequence q,

HMMER calculates a bit-score (which we denote BS(H)),

defined by:

BSðHÞ=log 2
PðqjHÞ

PðqjRÞ
ð1Þ

where PðqjHÞ is the probability of model H generating query

sequence q, and PðqjRÞ is the probability of a random model

R generating query sequence q. Assuming that the query se-

quence q is generated by exactly one of the HMMs (H1 to Hn,

each corresponding to a different subset alignment), the prob-

ability that Hi generated q is:

PðHijqÞ=
PðqjHiÞPðHiÞXn

j=1
PðqjHjÞPðHjÞ

: ð2Þ

Since our subsets all have roughly equal size, we make the sim-

plifying assumption that the a priori probabilities of any two

HMMs generating any given query sequence are equal. We can

rewrite Equation (2) as:

PðHijqÞ=
1

Xn

j=1

PðqjHjÞ

PðqjHiÞ

ð3Þ

By Equation (1),

BSðHjÞ � BSðHiÞ=log 2
PðqjHjÞ

PðqjRÞ
� log 2

PðqjHiÞ

PðqjRÞ
ð4Þ

=log 2
PðqjHjÞ

PðqjHiÞ
ð5Þ

Hence, the probability of Hi using bit-scores is given by:

PðHijqÞ=
1Xn

j=1
2BSðHjÞ�BSðHiÞ

ð6Þ

Thus, assuming that the bit-scores are sorted such that BSðHiÞ

� BSðHi+1Þ (i=1; 2; . . . ; n� 1), to reach a specified threshold sa,

we find the smallest m such that
Pm

k=1 PðHkjqÞ � sa.

3 EXPERIMENTAL DESIGN

3.1 Overview

We evaluated TIPP in comparison to other phylogenetic profil-

ing methods under three different conditions. Experiment 1 com-

pared performance under easy conditions, where the genomes

are known and the reads (i.e. query sequences) have low rates

of sequencing errors. Experiment 2 examined datasets with high
rates of insertion and deletion errors (collectively known as
‘indels’). Experiment 3 examined performance where the query

sequences come from ‘novel’ genomes (defined below).

3.1.1 Methods studied We compared TIPP, MetaPhyler,
MetaPhlAn, PhymmBL, mOTU and NBC. Three of these meth-

ods (TIPP, mOTU and Metaphyler) are marker-based methods,
and use universal housekeeping genes that are unlikely to
undergo duplication or horizontal gene transfer. Both TIPP

and MetaPhyler use the same collection of 30 marker genes,
and mOTU uses a reduced set of 10 marker genes selected

from Mende et al. (2013). MetaPhlAn, conversely, selects mar-
kers that uniquely identify specific taxonomic groups. Assigning
query sequences to genes (i.e. binning) is performed internally by

each of the marker-based methods; see Section S4 for the
BLAST settings used within TIPP for binning.
Phred quality scores (Ewing and Green, 1998) are needed for

each read, in order for mOTU to run. Since the datasets used in
our study do not have the quality scores, we assigned Phred

quality scores of 33 to all the bases of all the reads (99.95%
probability that the base is correct). MetaPhyler allows the
user to input a confidence threshold, and query sequences are

only classified at a given level if this confidence threshold is met.
We use the confidence level of 90% suggested by the authors of

MetaPhyler. For PhymmBL, we classify a query sequence at the
most specific classification yielding a confidence score of 95% or
higher; however, PhymmBL does not give confidence scores at

the species level, and thus, cannot be used to perform abundance
profiling at the species level. Finally, NBC gives a confidence

score of the query sequence matching a taxon. We accept the
classification if the confidence score is above the species thresh-
old formula given by the NBC authors (which is a function of

read-length; see Section S4); thus, a query sequence will either be
classified at the species level or be completely unclassified. See

Section S4 for version numbers and commands used.

3.1.2 Reference marker datasets TIPP uses the reference se-
quence dataset obtained from Liu et al. (2010, 2011), consisting
of 30 phylogenetic marker genes that span the Bacteria and

Archaea domains. The marker genes selected were believed to
be single copy genes, universally present across the Bacteria

domain, and resistant to horizontal gene transfer. Only species
whose genomes have been sequenced were present in the refer-
ence dataset. The number of sequenced representatives for each

marker gene ranges from 65 to 1555 sequences, with an average
of 1312 sequences per marker gene. See Section S2 for the list

of marker genes and the empirical statistics of the reference align-
ments on these datasets.

3.1.3 Training MetaPhyler, MetaPhlAn and mOTU come pre-
trained, but their reference datasets depend on which version is

used. NBC and PhymmBL require the user to manually train
their software, and their reference datasets are dependent on

when the genomes were downloaded for training. The versions
of MetaPhyler, MetaPhlAn and mOTU used in our article are
based on reference datasets downloaded from NCBI in 2010,

2011 and 2012, respectively. TIPP is trained on the same refer-
ence dataset as MetaPhyler, and thus is trained on sequences

downloaded from NCBI in 2010. NBC and PhymmBL were
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trained on the same set of genomes downloaded from NCBI on

May 2013. Thus, NBC and PhymmBL are based on training

datasets from 2013, mOTU is based on a training dataset from

2012, MetaPhlAn is based on a training dataset from 2011, and

MetaPhyler and TIPP are based on a training dataset from 2010.

These differences favour methods (such as NBC and PhymmBL)

that are trained on more recent datasets than those based on

older datasets (such as MetaPhyler and TIPP). See Section S6

for additional information on how TIPP was trained.

3.1.4 Simulated abundance profiling datasets The datasets we
used have different properties, including the average read

length (short versus long), complexity of the profiles (uniform

versus non-uniform), the rate of sequencing errors (low versus

high), and whether the datasets contained ‘novel’ or ‘known’

genomes (defined shortly). The complexity of the profile is

labeled as low complexity (LC; staggered distribution of species),

high complexity (HC; uniform distribution of species) and

medium complexity (MC; distribution of species in between

LC and HC). A dataset is labeled as ‘novel’ if none of the

marker-based methods have been trained on any of the genomes

in that dataset (see below for more detail). A dataset is labeled as

‘known’ if it contains any genome that was previously used to

train at least one of the marker-based methods. We provide a

brief overview of the datasets, separated out into experimental

conditions (Table 1); a more in-depth description of the individ-

ual datasets (including their Shannon Entropy) can be found in

Section S3.

3.1.5 Experimental condition 1: easy datasets The first group
of datasets contained query sequences from known genomes

(all the genomes were present in the training sets of at least

one of the marker-based methods) and had low rates of sequen-

cing error (insertions, deletions and substitutions).

The easy datasets are separated into two different conditions:

long read datasets (average length of 200 to 1000 nucleotides)

and short read datasets (average length of 100 nucleotides or

shorter). The long read datasets include the FACS HC simulated

dataset (Stranneheim et al., 2010), the FAMeS LC, MC and

HC datasets (Mavromatis et al., 2007), and the WebCarma

HC-simulated dataset (Gerlach and Stoye, 2011). Both the

WebCarma and FACS dataset contained simulated 454 reads

and had an average indel rate of 3% per base. The FAMeS

dataset contained reads taken from Sanger sequencing projects,

and thus, is expected to have very low rates of sequencing error

[typically51% error per base (Shendure and Ji, 2008)]. The ori-

ginal FACS HC dataset contained viral, bacterial, and human

sequences, and we removed the viral and human sequences so

that profiles were estimated only on bacterial reads. The short

read datasets include the MetaPhlAn HC and LC-simulated

datasets (Segata et al., 2012), the TIPP FACS HC Illumina-

simulated dataset, and the TIPP WebCarma HC Illumina-

simulated dataset; the last two datasets were generated using

MetaSim (Richter et al., 2008) to simulate Illumina reads from

the metagenomes used in the original FACS HC and WebCarma

HC datasets. The short read datasets contain simulated Illumina

reads with at most 0.2% substitutions per base.

3.1.6 Experimental condition 2: datasets with high rates of indel
errors The second group of datasets was modified versions
of the easy datasets with additional indels to make analyses

more difficult. The easy datasets contained reads with less than

0.2% substitution errors per base or less than 3% indel errors

per base. We inserted additional indel sequencing errors to the

query sequences in the easy datasets, using indel rates typical

of PACBio reads (12% insertion and 2% deletion error rate

per base (Carneiro et al., 2012)). Details can be found in

Section S3.6.

Table 1. Properties of the simulated datasets

Dataset Experiment # Genomes Complexity # Reads Length

MetaPhlAn HC 1&2 100 High 1000000 88 (s)

MetaPhlAn LC 1&2 25 Low 240000 88 (s)

FAMeS HC 1&2 113 High 116771 949 (l)

FAMeS MC 1&2 113 Medium 114457 969 (l)

FAMeS LC 1&2 113 Low 97495 951 (l)

FACS HC-454 1&2 19 High 26984 268 (l)

TIPP FACS HC-Illum 1&2 19 High 300000 100 (s)

WebCarma-454 1&2 25 High 25000 265 (l)

TIPP WebCarma-Illum 1&2 25 High 300000 100 (s)

TIPP HC novel-Illum 3 100 High 1000000 100 (s)

TIPP LC novel-Illum 3 100 Low 1000000 100 (s)

TIPP HC novel-454 3 100 High 1000000 269 (l)

TIPP LC novel-454 3 100 Low 1000000 269 (l)

Eleven basic datasets were used in this study, but each dataset has two versions – a low error model (with mostly substitutions and few or no

indels) and a high error model (where the indel rate is high); see text for details about the error models for all datasets. Datasets labelled

‘TIPP’ were generated for this study; the rest are datasets previously studied in the literature. ‘Experiment’ specifies the experiments where

each dataset is used. The low indel versions are studied in Experiments 1 and 3, and the high indel versions are studied in Experiments 2

and 3. The number of genomes in the dataset is given in the column labelled ‘# Genomes’. The complexity of the dataset is given in the

column labelled ‘Complexity’. The number of reads in the dataset is given in the column labelled ‘# Reads’. ‘Length’ refers to the average

length of the reads for the low indel version of the dataset (‘s’ and ‘l’ refer to short and long).
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3.1.7 Experimental condition 3: datasets with novel genomes We
generated datasets that contained ‘novel’ genomes, which are

genomes that were not in the training sets of the marker-based

methods. As the marker-based methods use older versions of the

NCBI genomes compared to the composition-based methods,

some of the selected genomes were present in the training set

of the composition-based methods. To make the genomes

novel to all methods, we modified the training sets of the com-

position-based methods to exclude the selected genomes. This

modification was only applied to Experiment 3, where we ana-

lyzed the novel genome datasets.

We downloaded all genomes from NCBI in July 2014 and

selected any genome whose genus was found in the training

sets of all methods, but the species was not found in any of the

training sets of the marker-based methods. We then excluded

the species of the selected genomes from the training sets

of the composition-based methods. This resulted in a set of gen-

omes that were novel to all methods at the species level, but not

novel to any of the methods at the genus level. In total, 100

genomes met this criterion.
We used MetaSim to generate four datasets containing all

100 genomes, each dataset varying the complexity of the profile

(LC versus HC) and the sequencing model used to generate the

reads (short Illumina reads versus long 454 reads). We categorize

these datasets as ‘easy’ novel genome datasets as they contained

no indels (datasets with short Illumina reads) or low amounts of

indels (5% indel error per base for the datasets with long 454

reads). In addition, we generated ‘hard’ novel genome datasets

by modifying the ‘easy’ novel genome datasets to include

additional indel errors (12% insertion and 2% deletion error

rate per base).

3.1.8 Computing profiles MetaPhlAn, mOTU, MetaPhyler and
TIPP output an abundance profile from a set of query sequences.

NBC and PhymmBL output the classification of the query

sequences; abundance profiles for NBC and PhymmBL were

estimated using the relative abundance of the query sequence

classification results.

3.1.9 Performance evaluation We compute the Hellinger dis-
tance (Rao, 1995) between the estimated abundance profile

and the true abundance profile. Let Cl be the set of clades

found in the true profile and the estimated profile for the taxo-

nomic level l, Rx be the abundance of clade x for the true profile,

and Ex be the abundance of clade x for the estimated profile.

Then Hl (the Hellinger distance for taxonomic level l) is:

Hl=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x2Cl
ð
ffiffiffiffiffiffi
Rx

p
�

ffiffiffiffiffiffi
Ex

p
Þ
2

q
ffiffiffi
2
p ð7Þ

Hl ranges from 0 (if the profiles match exactly) to 1 (if the pro-

files share no taxa in common and the profiles have no unclas-

sified clades). Note that if a method estimates a portion of the

clade as unclassified, that portion is not included in the Hl

calculation (i.e. Eunclassified is omitted from the formula).

Finally, the MetaPhlAn HC and LC datasets consist of two

and eight replicates; for these datasets, we report the average

Hl of the replicates.

3.1.10 Computational resources The majority of experiments
were run on the homogeneous Stampede cluster at the Texas
Advanced Computing Center (TACC). Each method was run

on a dedicated node with 16 cores with 32 GB of memory and
given 48 h to complete on TACC (maximum allotted time that

a job can run on Stampede). Methods that could not complete
within the 48-h limit were also run on a heterogeneous Condor

computing cluster and homogeneous Lonestar cluster.

4 RESULTS

Experiment 1: Easy datasets. Our first experiment explored data-
sets with low error rates coming from known genomes. On the

long read easy datasets, mOTU had generally poor performance
(Supplementary Table S2), and also failed to run on some

of these datasets (terminated with an error message, see
Supplementary Section S1.6); we, therefore, omit mOTU from

the long read results.
Figure 2a shows the average Hellinger distances on the easy

datasets; figures and tables for individual datasets can be found
in Supplementary Section S1.1. Results on the long read datasets

(left subfigure) show that TIPP had the best overall accuracy,
followed by NBC. MetaPhlAn was in third place in terms of

overall performance (though Metaphyler was more accurate
than MetaPhlAn at the class level). Finally, PhymmBL was the

(a)

(b)
All easy datasets

Easy short read datasets excluding MetaPhlan datasets

Fig. 2. Experiment 1: Errors in abundance profile estimates on easy

datasets. We show average Hellinger distance for different methods on

simulated metagenome datasets containing known genomes and query

sequences with low rates of sequencing error (see Table 1 for list of

datasets). We omit mOTU from the long read results because it failed

to complete on the FACS HC and WebCarma datasets. Results are

shown for (a) all datasets, and (b) easy short read datasets after excluding

the MetaPhlan datasets (thus on WebCarma Illumina and FACS HC

Illumina datasets). See Section S1.1 for results on individual datasets
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least accurate on these data. On the short read datasets (right

subfigure), results were somewhat different. First, while mOTU

had poor performance on the long read datasets, mOTU had the

best overall accuracy of all methods on the short read datasets.

At the species level, MetaPhlAn tied with mOTU for first place,

followed by TIPP and then NBC. At the genus level, mOTU had

the best accuracy, but TIPP and MetaPhlAn were very close

seconds. Results at the family through class levels showed

TIPP and mOTU tying for first, with MetaPhlAn in third

place. Finally, at the phylum level, TIPP, MetaPhlAn,

Metaphyler and mOTU tied for first, with much better accuracy

than NBC or PhymmBL.

Because MetaPhlAn was trained on its datasets, we removed

MetaPhlAn’s datasets and re-evaluated performance (Fig. 2b).

On this reduced set, MetaPhlAn tied for first at the species level

(slightly less accurate than mOTU, but equal to TIPP), but was

much less accurate than TIPP at all other levels. TIPP had the

best overall performance on these data, though it tied for first

with mOTU at the genus level, and tied for first with PhymmBL

at the phylum level.
Experiment 2: Datasets with known genomes and high rates of

indel errors. Figure 3 shows the average performance of different

methods on datasets with known genomes and simulated with

high rates of indel errors. We omit results for mOTU because

it terminated with error messages on all these datasets (see

Supplementary Section S1.6). We also omit results for

MetaPhlAn, MetaPhyler and NBC on the long read datasets

as they estimated taxonomic profiles that were completely un-

classified on some of the long read datasets.

On the long read datasets (left subfigure), only TIPP and

PhymmBL successfully ran on all the datasets. Other methods

either terminated early or could not classify fragments on some

of the datasets. TIPP had the best accuracy of all methods at

all taxonomic levels. PhymmBL was the next best method.
On the short read datasets (right subfigure), MetaPhlAn and

TIPP had the best results, with MetaPhlAn more accurate than

TIPP at the species level but the two methods generally having

indistinguishable performance at the other levels. PhymmBL had

the least accurate results of all methods, followed by NBC.

MetaPhyler’s performance was interesting: least accurate at the

species level, but improving rapidly with the higher taxonomic

groups, so that it matched the best at the class level, and was

slightly more accurate than both TIPP and MetaPhlAn at the

phylum level. Finally, when the MetaPhlAn datasets were

removed from the experiment, TIPP had the best overall per-

formance, followed closely by MetaPhlAn (see Supplementary

Fig. S3); the relative performance of the remaining methods

was largely similar to the average results on the high indel

short read datasets.
Experiment 3: Datasets containing novel genomes. Figure 4

shows the average Hellinger distance for the ‘easy’ and ‘hard’

novel metagenome datasets, with the long read datasets in the

left column and the short read datasets in the right column

(figures and tables for individual datasets can be found in

Supplementary Section S1.3). Because all genomes are novel

(none of the species are in the training datasets), the lowest

error results at the species level would have 100% of the species

unclassified, and such a profile would have a Hellinger distance

of 1ffiffi
2
p � 0:71.
On the easy long read novel genome datasets (top left), TIPP

had the best accuracy at all but the species level (where

MetaPhyler was the best). The next best method was

MetaPhyler, and the remaining methods had comparable per-

formances to each other (though NBC was slightly less accurate

than the others at all levels). On the high indel long read novel

genome datasets (bottom left), TIPP again had the best accuracy

at all but the species level, where Metaphyler was best. But on

these more difficult long read datasets, Metaphyler had very

poor results at the remaining levels, largely because it

Fig. 4. Experiment 3: Error in abundance profiles on datasets with novel

genomes. We show average Hellinger distance for different methods on

simulated metagenome datasets containing novel genomes. The top row

shows results for datasets with little to no indel errors, and the bottom

row shows results for datasets with high rates of indel errors (12% inser-

tion and 2% deletion errors per base). The left column shows results

for datasets containing long reads, and the right column shows results

for datasets containing short reads. See Section S1.3 for results on indi-

vidual datasets

Fig. 3. Experiment 2: Error in abundance profiles for datasets with

known genomes and high indel error rates. We show average Hellinger

distance for different methods on simulated metagenome datasets with

known genomes and simulated with indel errors. We omit mOTU from

the results because it failed to complete on any of these datasets. We omit

MetaPhlAn, MetaPhyler, and NBC from the long read datasets as they

could not classify any reads from at least one of the following datasets:

WebCarma (MetaPhlan), FACs HC (NBC and MetaPhyler), and

FAMeS LC (MetaPhyler). See Section S1.2 for results on individual

datasets
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characterized very few reads (see Supplementary Table S8).

Finally, PhymmBL was clearly more accurate than

MetaPhlAn, which was more accurate then NBC.
On the short read novel genome datasets (right column), TIPP

and MetaPhyler were distinctly more accurate than all other

methods for both easy datasets and high indel datasets

(with TIPP slightly more accurate in the presence of high

indels, and MetaPhyler slightly more accurate on the easy data-

sets). The performance of mOTU was interesting: on the easy

short read novel genome datasets, mOTU was very close to

PhymmBL but slightly less accurate; however, mOTU failed to

complete on the high indel short read datasets (terminated with

an error message, see Supplementary Section S1.6). The other

methods were largely indistinguishable from each other, but

much less accurate than both TIPP and MetaPhyler.

4.1 Running time

We generated five replicates from the easy TIPP HC datasets,

varying the total number of fragments from 500,000 to 2,000,000

fragments. PhymmBL and NBC failed to complete within 48 h

on any of these datasets (see Supplementary Section S1.4), but

the other methods completed all analyses, most within an hour.

The fastest method was mOTU, which completed in57 min on

2,000,000 fragments for both short and long reads. TIPP finished

in under an hour on both short and long fragments. MetaPhlAn

required 525 min on short fragments, but used 90 min on

long fragments. MetaPhyler completed in513 min for short frag-

ments, but used 29 h for long fragments.

5 DISCUSSION

The study compared four marker-based methods (mOTU, TIPP,

MetaPhyler and MetaPhlAn) and two composition-based meth-

ods (PhymmBL and NBC) on a collection of datasets. On the

easy datasets with only known genomes (Experiment 1), many

methods produced highly accurate abundance profiles, although

which method was the best depended on the read length. On the

easy short read datasets the most accurate methods were mOTU,

MetaPhlAn and TIPP, while the most accurate methods on the

easy long read datasets were TIPP and NBC, with MetaPhlAn a

close third.
However, when datasets had novel genomes or high indel error

rates, the performance of most methods degraded significantly.

For example, while NBC had excellent accuracy on the easy long

read datasets, it had poor accuracy in the presence of high indel

rates. Similarly, although mOTU had excellent accuracy on easy

short read datasets with known genomes, it had poor perform-

ance on short read datasets with novel genomes and terminated

with an error message on the datasets with high indel rates.

We also saw that MetaPhyler had difficulties on datasets with

long sequences and high indels (Experiments 2 and 3).
TIPP did well on the easy datasets (known genomes with low

sequencing error rates), where it tied for first with other methods.

However, TIPP was the only method that was robust to all the

tested model conditions (short versus long reads, novel versus

known genomes, low indel versus high indel error rates), so

that it was either first or tied for first under even very difficult

conditions (novel genomes with high indel rates). Consequently,

TIPP dominated the other methods in terms of overall
performance.
Thus, one of the main features of TIPP is its relative robust-

ness to sequencing errors (both substitutions and indels) and its

ability to perform well on novel genomes. We conjecture that the
HMM Family technique within TIPP provides this robustness,

which uses HMMs in a divide-and-conquer framework, and also
benefits from the use of local alignment techniques.

Therefore, the high error rates commonly encountered in
single-molecule sequencing technologies [up to 14% indel rate

for Pacific Biosciences technologies (Carneiro et al., 2012)] that
are likely to be increasingly used in the context of metagenomic

data may not be particularly problematic for TIPP, even when

the data contain novel genomes. Instead, our results indicate
that TIPP may well continue to have good accuracy with new

sequencing technologies that result in reduced data quality.
One of the interesting observations in this study is that

the marker-based methods (TIPP, MetaPhlAn, mOTU and
MetaPhyler) often gave more accurate abundance profiles than

the composition-based methods (NBC and PhymmBL), even
though marker-based methods estimate abundance profiles by

characterizing only those reads that map to their selected
marker genes. These results show that accurate profiles can be

obtained by taxonomic characterization of only a fraction of the

query sequences. However, the choice of marker genes, and the
technique used to bin the reads to the markers, has an impact on

the resultant abundance profile. Thus, future research should
investigate whether improved performance can be obtained

using a different set of marker genes and different techniques

to map reads to the marker genes. Also, our abundance profile
estimates were based on combining all reads for all markers into

one set, and using the distribution estimated for that set; more
sophisticated techniques could be used to combine distributions

estimated for each marker.
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