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Abstract

Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need

to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent

activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a

potential substitute for conventional antibiotics. Designing new AMPs using current in-silico

approaches is, however, challenging due to the absence of suitable models, large number of de-

sign parameters, testing cycles, production time and cost. To date, AMPs have merely been catego-

rized into families according to their primary sequences, structures and functions. The ability to

computationally determine the properties that discriminate AMP families from each other could

help in exploring the key characteristics of these families and facilitate the in-silico design of syn-

thetic AMPs.

Results: Here we studied 14 AMP families and sub-families. We selected a specific description of

AMP amino acid sequence and identified compositional and physicochemical properties of amino

acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity,

specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified dis-

criminative properties have been shown to be compositional or functional characteristics of the

corresponding AMP family in literature. We suggest that these properties could serve as guides for

in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic

and has a potential to be applied for characterization of any protein family.

Contact: vladimir.bajic@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Escalating deaths due to increased exposure of living organisms to

infectious diseases and the rapid evolution of multi-drug resistant

(MDR) microbes spurred interest in alternative remedies that can

treat the MDR microbes causing these diseases (Saxena and

Gomber, 2010). Antimicrobial peptides (AMPs) have been pin-

pointed as one such remedy (Gordon et al., 2005; Hancock and

Diamond, 2000; Sundararajan et al., 2012), owing to their broad-

spectrum potent activity against Gram-positive and Gram-negative

bacteria, fungi, protozoa, parasites, cancer cells and different kinds

of enveloped viruses (Hancock and Scott, 2000; Zasloff, 2002;

Thomas et al., 2010). Their effective defense action against a broad

spectrum of microbes and their ability to kill rapidly have rendered

them highly effective substitute for conventional antibiotics

(Hancock and Lehrer, 1998; Brahmachary et al., 2004; Hancock

and Sahl, 2006; Peters et al., 2010; Thomas et al., 2010). Moreover,

designed AMPs have been reported to kill MDR microbes (Yeaman

and Yount, 2003). AMPs interact with target microbes by mem-

brane permeation and penetration (Andreu and Rivas, 1998;

Brogden, 2005; Radek and Gallo, 2007), subsequently affecting
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cytoplasmic membrane septum formation (additional complemen-

tary mechanisms involve disruption of cell wall, nucleic acids and

proteins biosynthesis processes), thereby ultimately killing the tar-

geted microbe (Frecer et al., 2004; Peters et al., 2010; Chen et al.,

2012; Fjell et al., 2012). Differences in the membrane structure of

higher eukaryotes and microbes cause the later to be easily recog-

nized and targeted (Thomas et al., 2010).

AMPs are typically short molecules of less than 100 amino acids

(Jenssen et al., 2006; Sang and Blecha, 2008; Peters et al., 2010;

Pasupuleti et al., 2012), most of which are cationic and amphipathic

(Epand and Vogel, 1999; Lehrer and Ganz, 1999). They exist in all

classes of life and are evolutionarily conserved (Yeaman and Yount,

2003; Hancock and Sahl, 2006). Thus, AMPs have been classified

into families and sub-families based on their primary sequences and

structures (Kaiser and Diamond, 2000; Yeaman and Yount, 2003).

However, there is substantial experimental evidence that even minor

variations in peptide structures can lead to significant differences in

AMP activities (Ganz, 2003; Thomas et al., 2010).

Hundreds of natural AMPs have been identified and characterized,

with information in public databases, e.g. DAMPD (Sundararajan

et al., 2012), CAMP (Thomas et al., 2010; Waghu et al., 2014), APD2

(Wang et al., 2009), APD (Wang and Wang, 2004) and ANTIMIC

(Brahmachary et al., 2004). However, increased demand for AMPs fos-

tered more interest in in-vitro design of AMPs (Nusslein et al., 2006;

Marcos et al., 2008). The design of novel synthetic AMPs is challenging

due to the wide variety of properties that characterize them (Guralp

et al., 2013). Thus, developing computational models that identify these

essential properties and pinpoint candidate AMPs have gained interest

(Fjell et al., 2012; Maccari et al., 2013). An effective and efficient in-sil-

ico approach is needed to identify candidate properties that may guide

the design of new AMPs (Juretic et al., 2011).

A number of methods have been proposed to identify and char-

acterize AMPs using compositional characteristics of their amino

acid sequences and information extracted from sequence alignment

(Lata et al., 2007, 2010; Wang et al., 2011). However, the activities

and interaction mechanisms of AMPs cannot be fully characterized

exclusively using their amino acid composition. Rather, their struc-

tural and physicochemical properties could help in better under-

standing the determinants underlying these activities (Fjell et al.,

2012). Efforts have been made to study physicochemical properties

of AMPs (Langham et al., 2008; Porto et al., 2010; Torrent et al.,

2011; Maccari et al., 2013). However, a comprehensive and system-

atic analysis of these properties, their colocation within different

AMP regions and characterization of different AMP families by

them to the best of our knowledge are not yet available.

In this study, we developed a novel computational model to rep-

resent AMP sequences and a method to identify physicochemical

and compositional properties of AMPs that are capable to distin-

guish different AMP families from each other. The methodology we

developed to represent AMP families and identify their properties is

generic, with a potential to be used in characterizing arbitrary pro-

tein family. The differences we identified in characterizing various

AMP families by these features are so pronounced that, in a ma-

chine-learning framework, they enable for most of the AMP families

100% specificity in separation of peptides of an AMP family from

other AMPs, providing sensitivity that ranges from approximately

62% to 100%. Many of our identified discriminative properties

have been shown to be compositional or functional characteristics

of the corresponding AMP family in literature. These results suggest

that the identified AMP properties make them potential design

guides for development of synthetic AMPs with characteristics of

specific families.

2 Methods

2.1 Datasets
Sequences of all 753 non-redundant natural mature peptides known

to belong to specific AMP families and sub-families (in our case 128

families/sub-families) were obtained from the DAMPD database

(Sundararajan et al., 2012). All AMPs in DAMPD database were

manually curated and experimentally validated to possess antimicro-

bial activity. The AMPs in the database were classified into families/

sub-families according to their annotation provided by UniProt

(2014). We examined the AMP families/sub-families that contain

more than 10 peptides that we denote as ‘target AMP families’.

Consequently, we studied 14 target AMP families that all together

have 465 peptides. The 288 peptides that belong to the remaining

114 families/sub-families of AMPs were used as a part of the ‘nega-

tive dataset’. The negative dataset is specific for each target AMP

family and contains the 288 peptides mentioned above, as well as all

peptides from the remaining 13 target AMP families (excluding pep-

tides from the target AMP family). Such negative datasets are used

during the identification of properties that characterize each of the

14 target AMP families. That is, the peptides of a particular target

AMP family are contrasted to all other AMP peptides in the negative

dataset (Supplementary Table S1) shows the distribution of the pep-

tides among the obtained families/sub-families. Comparison of the

amino acid composition of the selected families/sub-families is pro-

vided in Supplementary Materials S7. In order to compare AMP ver-

sus non-AMPs, we also compiled as set of non-AMPs as follows:

1. We used from Uniprot all protein sequences of length 10–212

(same length distribution as the AMP sequences) whose ontology

annotation does not contain any keyword related to antimicro-

bial activity (e.g. Antimicrobial, Antibacterial, Antifungal,

Fungicide, Defensin, Antiviral, etc.). This provided 18 082 non-

AMP sequences.

2. Then, to reduce redundancy among these sequences, three clus-

tering steps using the h-cd-hit (Li and Godzik, 2006) program

were made at three identity thresholds (�90%, �60% and

�30%). The purpose of this was to remove identical sequences

and obtain a non-redundant dataset of non-AMP sequences. As

a result, we obtained 7066 non-AMP sequences.

3. Finally, we retained those sequences that were composed only of

uniquely defined canonical 20 amino acids (excluding all those

with nonstandard letters B, Z, J, X, U and O). This produced

6740 non-AMP sequences.

2.2 Models of peptide/protein sequences
The methodology we developed to represent different peptides/pro-

teins can be summarized as follows. Our method complements an

earlier introduced method to computationally model in the same

manner proteins of different lengths and families for analysis of their

cellular localization (Matsuda et al., 2005). This model by Matsuda

et al. enabled that every protein sequence, irrespective of its length

and family, is described in the same manner enabling their computa-

tional comparison and equal treatment. Under this model, different

proteins will have different parameters of the model derived from

compositional properties of different protein regions. Our extension

of this model was in adding to such protein description a part with

physicochemical characteristics in a way that is not dependent on

the protein/peptide length (as this aspect has already been resolved

by the Matsuda et al. model). Essentially, each of the regions defined

by the Matsuda et al. model we associated with the restrictive physi-

cochemical properties of that region and the GA optimization we
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applied selected the features from that set. Consequently, the model-

ing methodology we developed as explained above caters for pro-

tein/peptides of different length and their variable characteristics.

We explain this methodology as in the following. AMP se-

quences are divided into three regions. This is motivated by the fact

that N and C terminals of the peptide sequences are enriched with

properties that discriminate peptide families from each other (Hayes

et al., 2006; Lata et al., 2010; Minervini et al., 2003). Then, each

peptide is encoded by a feature vector composed of two parts. The

first part consists of features that represent mainly the peptide amino

acid composition. The second part involves the representation of the

restrictive physicochemical properties (those that show high invari-

ance values within peptides of the same family) within the predeter-

mined regions in the peptide sequence. These two parts of the

feature vector are explained in what follows.

2.2.1 Basic representation of peptide features

We represent peptides from all families using the same number of

features. We followed the protein representation method proposed

in Matsuda et al. (2005). In this representation, the peptide sequence

is divided into three regions, N-terminal (N), middle region (M) and

C-terminal (C). The N-terminal is further divided into four sub-

regions: n1, n2, n3 and n4. The size of each region is determined

depending on the sequence length L. That is, long sequences will

have longer N and C termini, whereas short sequences will have

shorter termini. For the reason that AMP peptides are of shorter

length when compared with most other proteins and because pep-

tides among AMP families differ between each other in the length of

their sequences, we tested the performance of the developed model

using different values of dN (length of one of the four sub-regions

within the N-terminal) and dC (length of C-terminal) parameters for

each family. We selected the dN and dC values (Table 1 and

Supplementary Materials S2.3) that we found through experimenta-

tion to be the most suitable for our intended analysis. Then, the se-

quence of a peptide is represented by a 184-feature vector as

follows: 140 features represent the composition of amino acids in all

the regions n1, n2, n3, n4, M, C and the entire sequence (20 features

in 7 regions); 20 features for the composition of twin amino acids

(two successive same amino acids, e.g. AA, LL) in the M-region; 6

features for the distance frequencies of basic amino acids (R, K and

H) in each of N and M regions giving in total 12 features; another 6

features for the distance frequencies of hydrophobic amino acids (I,

V, L, F, M, A, G, W and P) in the M-region and the last 6 features

for the distance frequencies of other amino acids (D, N, E, Q, Y, S,

T and C) in the M-region. The six-values of distance frequencies are

calculated as follows. The distance (H) between two successive

amino acids in the specified class is assigned to one of six distance

categories (H¼1, 1<H�6, 6<H�11, 11<H�16, 16<H�21,

H>21). Then, the number of occurrences of the distances in these

categories represents the distance frequencies. For example, the dis-

tances between basic amino acids (R, K and H) in the sequence

(ARMRAASKAALLMAHKNAK) are 2, 4, 7, 1 and 3. The six fre-

quency values of these distance values are (1, 3, 1, 0, 0 and 0). The

motivation behind this representation (Matsuda et al., 2005) is that

dividing the peptide sequence into regions gives more flexibility to

capture the peptide signal sequences, and such signals might be dis-

tributed across different regions of the peptide sequence.

2.2.2 Adding family-specific features

AMP families differ among each other in the set of restrictive prop-

erties found in different regions of their peptide sequences. Different

regions may have different restrictive properties. To select these re-

strictive properties, we used 544 physicochemical properties of

amino acids available in the AAIndex database version 9.1

(Kawashima and Kanehisa, 2000). This set was further reduced to

294 properties by selecting a single (randomly selected) property

from those subsets of properties that have mutual Pearson correl-

ation coefficient of 0.9 or higher. This has eliminated the use of mul-

tiple highly correlated properties. To facilitate feature extraction,

we first aligned the peptide sequences of a family using progressive

multiple sequence alignment algorithm (Thompson et al., 1994).

Then, the restrictive physicochemical properties among the aligned

peptides were determined by excluding one peptide from the family

at a time. Then, we examined whether the property value of all

amino acids in each of the n1, n2, n3, n4, M and C regions of the

excluded peptide is within the min/max values for the same property

determined from the other peptides of the same family in that re-

gion. This test was repeated for all peptides (leave one out test).

Subsequently, physicochemical properties in each region that are

restricted for at least 90% of family peptides were selected to repre-

sent that region. Eventually, the median values of these properties

for individual amino acids in the region entered the feature vector.

This method to identify the restrictive physicochemical properties

is explained as in the algorithm available in Supplementary

Materials S1.1. This algorithm seeks to identify ‘restrictive’ physico-

chemical properties in each region of AMP peptides from a specific

family.

2.3 Data preparation
2.3.1 Normalization

To remove the bias that arises from different ranges of peptide fea-

ture values, we normalized each feature as follows:

x
0
i ¼

xi � li

ri
; (1)

where xi is the original feature value, and x0 i is the value after

Table 1. The number of features characterizing different AMP

sequence regions as selected using GA-based optimization of

unsupervised k-means clustering

AMP family/sub-family dn dc NP NF NSF NC NCF NPF

Alpha-defensin 10 10 34 299 14 14 12 2

Bacteriocin 14 10 24 225 9 12 7 2

Beta-defensin 10 10 41 261 36 14 29 7

Bombinin 16 10 31 1095 13 9 4 9

Cathelicidin 16 8 27 521 36 11 17 19

Cecropin 12 8 30 835 33 11 8 25

Cyclotide (Bracelet) 12 10 12 350 7 14 2 5

DEFL 12 8 37 252 26 14 20 6

FSAP (Brevinin sub-family) 14 10 143 1945 118 12 18 100

FSAP (Caerin sub-family) 14 10 11 1946 28 14 1 27

FSAP (Dermaseptin) 16 10 30 327 25 15 16 9

Invertebrate def. (Type 1) 10 10 21 402 14 14 8 6

Invertebrate def. (Type 2) 16 8 13 510 9 15 4 5

Type A lantibiotic 16 10 11 194 26 14 26 0

Total 9162 394 172 222

Notes: Annotations of columns are as follows: N-terminal length (dn),

C-terminal length (dc), number of peptides (NP), original number of features

(NF), number of selected features (NSF), number of clusters (NC), number

of compositional features (NCF) and number of physicochemical

features (NPF).
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normalization; li is the mean of the feature values xi across all AMP

peptides and ri is the standard deviation.

2.3.2 Data filtering

We removed from the feature vectors those that have constant val-

ues among peptides of all families.

2.3.3 Target and non-target classes

We performed unsupervised k-means clustering to identify discrim-

inant features of a particular AMP family. Here, the peptides of the

target AMP family under study represent the target class, whereas

peptides from all other families (i.e. those from the remaining 13 tar-

get AMP families and the 291 peptides of the other 114 AMP fami-

lies) represent the non-target class. This process is repeated

independently for each of the 14 target AMP families.

2.4 Selection of AMP family-specific features
To identify compositional and physicochemical properties that dis-

tinguish peptides of a particular target AMP family from all other

AMPs we performed global optimization to select a set of features

based on a genetic algorithm (GA) aimed at minimizing the follow-

ing fitness function:

F ¼ 1� FmeasureþRegularization; (2)

where

Fmeasure ¼
2 � ðprecision � recallÞ
ðprecisionþ recallÞ ¼

2 � TP

2 � TPþ FNþ FP
(3)

Regularization ¼ Number of Selected Feasures

Total Number of Feasures
: (4)

We ran the GA with a population size of 1000 to find global opti-

mum within 1000 generations. The crossover rate was set to 0.8 and

mutation rate to 0.01. In each generation, the fitness value of each

individual was evaluated. The F-measure was calculated by perform-

ing unsupervised clustering using the k-means clustering algorithm

with Euclidean distance. We used the known class label of each pep-

tide to evaluate the clustering performance by calculating the true

positives (TPs), true negatives (TNs), false positives (FPs) and false

negatives (FNs). These quantities are used later to calculate the

F-measure. To remove the bias caused by initial random selection of

cluster centroids, we initialized the centroids of clusters using the

means of points in the positive and negative classes. We performed

clustering using different number of clusters ranging from 2 to 15

and selected the number of clusters that gave the highest F-measure

value. For optimum clustering results, all peptides of the target AMP

family under study are grouped in a single cluster that represents the

target class, whereas peptides from all other AMP families may res-

ide in one or more non-target class clusters. The regularization con-

straint is added to encourage the optimization algorithm to select

the minimum number of features that yield the highest F-measure

value. We emphasize that we do not aim at building a predictive

model for the families of AMP peptides, but use this procedure to

identify features that allow for the accurate clustering of peptides

into AMP families.

2.5 Clustering AMPs into antimicrobial families
We examined the capability of the selected properties for each target

AMP family to group the family peptides together and discriminate

them from all other AMPs. For the purpose of testing a specific fam-

ily X, we represented peptides of all families using the set of features

selected for family X and successively performed clustering using

k-means clustering with Euclidean distance. In the optimal case, all

peptides of family X should be grouped in one cluster while peptides

of other families can be distributed in one or more clusters. Based on

this testing criterion, we measured the performance of clustering for

the set of identified properties.

2.6 Model evaluation
After clustering AMPs, the cluster containing the maximum number

of peptides of the target class was selected as the cluster of the target

class. The remaining non-target clusters may contain AMPs from ei-

ther non-target or target class. Therefore, the quality of clustering

was evaluated using accuracy, sensitivity, specificity, precision,

Jaccard index and F-measure. We used two more evaluation meas-

ures defined in Tan et al. (2006), the entropy and purity. All these

measures are defined as in Supplementary Materials S1.2. All

modules of this computational model were developed using

MATLAB (R2012b).

3 Results

3.1 Feature selection using global optimization of

unsupervised k-means clustering
Peptides of a particular AMP family are described by two sets of fea-

tures (see Section 2). The first set consists of 184 features that repre-

sent mainly the amino acid composition in different regions of the

peptide sequences. The second set is composed of restrictive physico-

chemical properties in different regions of the peptide sequences.

The entire set of features, used to represent peptides of a particular

family, contributes in different ways to distinguish one AMP family

from other AMP families. Consequently, we performed feature se-

lection using a GA for global optimization of unsupervised cluster-

ing. The GA is more suitable for optimization of discrete variables

and outperforms other methods such as Particle Swarm

Optimization (Kennedy, 2010) and differential evolution (DE)

(Chakraborty, 2008) as shown in Supplementary Materials S3.1.

Our analysis shows that k-means algorithm provided better cluster-

ing results when compared with other algorithms, e.g. Affinity

Propagation (AP) (Frey and Dueck, 2007) (Supplementary Materials

S3.2). Also, we compared the clustering results using different dis-

tance measures (Euclidean distance, correlation, cosine and city

block). K-means clustering with Euclidean distance yielded better

performance than other measures (Supplementary Materials S3.3)

because AMPs have varying lengths of their sequences, as shown in

Supplementary Figure S1, we performed feature selection for each

AMP family using different lengths of N and C terminals, i.e.

dn¼10, 12, 14, 16 and dc¼8, 10. Supplementary Materials S2.3

show the clustering performance using all combinations of terminal

length parameters. Furthermore, feature selection was performed

using different number of clusters (K) where K ¼ 2; 3; . . . ;15.

Columns 2–7 in Table 1 show the values of the parameters that pro-

duced the highest F-measure value.

As shown in Table 1, from the entire set of 9162 features used to

represent all peptides of the 14 target AMP families, a subset of 394

features was selected to distinguish peptides of each AMP family

from any other AMP.

3.2 Clustering AMPs using selected feature subsets
We used the subset of features by GA as characterizing each target

AMP family to perform clustering and test if the peptides of that

family will fall in one cluster while other AMPs would fall in other
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clusters. We measured the performance of the clustering using the

known labels of the peptides. Table 2 shows these clustering results

for each target AMP family. We notice the remarkable capability of

the selected features to produce correct clustering with 100% speci-

ficity for 9 of the 14 AMP families, whereas for the remaining five

families specificity values were between 99.17% and 99.86%. The

obtained average values of sensitivity, specificity and precision for

all 14 target AMP families were 92.88%, 99.86% and 95.96%, re-

spectively. Supplementary Figure S2 shows sensitivity versus preci-

sion for the clustering obtained with the selected features.

Results in Table 2 revealed the advantages of characterizing pep-

tide sequences using physicochemical properties. The long distance

interactions between residues in the peptide sequence and similarity

in function between distantly related proteins are likely captured at

least partly using physicochemical properties (Du and Li, 2006; Liu

et al., 2012). Consequently, using merely the information about

amino acid composition may be insufficient to distinguish AMPs,

determine their specificity toward target cells and characterize their

activities (Maccari et al., 2013; Pushpanathan et al., 2013). To test

the importance of physicochemical properties in characterizing

AMP peptide families, we represented AMP peptides using 184 fea-

tures (part1 of the feature vector only) that correspond to informa-

tion mainly about amino acid composition and show in

Supplementary Table S3 the results of clustering with this represen-

tation. The obtained average values of sensitivity, specificity and

precision for all 14 target AMP families were 73.08%, 94.50% and

40.65%, respectively. Sensitivity and precision are significantly

weaker than when using selected restrictive physicochemical and

compositional properties (Table 2).

We additionally demonstrated that clustering using both parts of

the feature vector (i.e. the restrictive features along with the compos-

itional features), but without feature subset selection, did not discern

well peptides of any AMP family, as shown in Supplementary Table

S4. The obtained average values of sensitivity, specificity and preci-

sion for all 14 target AMP families were 73.55%, 91.74% and

31.12%, respectively. Again, sensitivity and precision are signifi-

cantly weaker than when we used selected restrictive physicochemi-

cal and compositional properties (Table 2). These findings showed

the merit of feature subset selection to identify family-specific amino

acid composition and physicochemical properties that characterize

the peptides of the family and discriminate the AMP family from

other AMPs.

A characteristic of our representation of peptide sequences is the

identification of restrictive physicochemical properties in different

regions of the peptide sequence. To compare this representation

with the simple method of using all compositional and physicochem-

ical properties in different regions of the peptide sequence, we used

the entire set of 294 amino acids features in each of the six regions

(n1, n2, n3, n4, M and C), that has resulted into a total of

184þ (294�6)¼1948 features without making any further feature

selection. The results of clustering are shown in Supplementary

Table S5. The obtained average values of sensitivity, specificity and

precision for all 14 target AMP families were 63.91%, 93.54% and

32.51%, respectively. Once again, sensitivity and precision are sig-

nificantly lower than when features selected by our method are used

(Table 2), thereby affirming the importance of identifying the re-

strictive physicochemical properties in different regions of the pep-

tide sequence and, then, using feature selection from this subset of

restrictive properties. This is because the majority of properties do

not contribute to distinguishing the AMP families and using them af-

fects the values of the distance measure. Figure 1 and Supplementary

Figure S3 compare the precision and the sensitivity obtained by four

different methods used to represent the AMPs.

3.3 Testing the selected properties on non-AMPs and

other AMP databases
We checked whether the features determined for AMP families

would separate AMPs from non-AMPs. If this is not possible, then

the non-AMPs would have similar feature profiles as some classes of

AMPs. We found that this distinguishing of AMPs from non-AMPs

was possible with an average accuracy, sensitivity, specificity and

cluster purity of 96.72%, 67.62%, 96.85% and 99.56%, respect-

ively, confirming that features selected for AMP families are highly

specific to AMPs. One should note that our selection of features was

not made with the aim to distinguish AMP families from non-

AMPs. Rather, they were selected to distinguish different AMP fami-

lies from other AMPs.

Furthermore, we evaluated another database CAMP (Waghu

et al., 2014). We considered only experimentally validated mature

AMP peptide sequences with UNIPROT IDs from CAMP. We tested

if the selected features based on DAMPD database entries would

separate AMP families from CAMP and found that this is possible

with an average accuracy, sensitivity, specificity and cluster purity

of 94.03%, 76.91%, 94.58% and 97.96%, respectively. This

Table 2. The performance of the k-means clustering of 14 target AMP families using features selected by GA

Target AMP family Number of features Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-Measure (%)

Alpha-defensin 14 99.73 94.12 100.00 100.00 96.97

Bacteriocin 9 99.87 95.83 100.00 100.00 97.87

Beta-defensin 36 99.60 95.12 99.86 97.50 96.30

Bombinin 13 100.00 100.00 100.00 100.00 100.00

Cathelicidin 36 98.80 88.89 99.17 80.00 84.21

Cecropin 33 100.00 100.00 100.00 100.00 100.00

Cyclotide (Bracelet) 7 100.00 100.00 100.00 100.00 100.00

DEFL 26 99.47 89.19 100.00 100.00 94.29

FSAP (Brevinin) 118 95.88 79.02 99.84 99.12 87.94

FSAP (Caerin) 28 100.00 100.00 100.00 100.00 100.00

FSAP (Dermaseptin) 25 99.60 96.67 99.72 93.55 95.08

Invertebrate def. (Type 1) 14 100.00 100.00 100.00 100.00 100.00

Invertebrate def. (Type 2) 9 99.34 61.54 100.00 100.00 76.19

Type A lantibiotic 26 99.47 100.00 99.46 73.33 84.62

Average 99.41 92.88 99.86 95.96 93.82

Note: The values of other measures (Jaccard index, entropy and purity) are shown in the detailed table available in Supplementary Table S2.
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suggests that the features selected based on DAMPD entries discrim-

inate well between different AMP families in the CAMP database. It

should be mentioned, however, that the criteria for inclusion of

AMPs into CAMP and into DAMPD are not necessarily the same,

so very strict comparison is not possible.

3.4 Selected properties that discriminate AMP families
In total, 394 properties were identified to discriminate each of the

14 target AMP families from all other AMPs (Table 1, Column 6).

The entire set of the selected properties is provided in

Supplementary Materials S6. Different numbers of properties were

identified as being characteristic for different families. For example,

seven properties could discriminate cyclotides (bracelet subfamily)

from all other AMPs with an accuracy of 100%. However, more

properties were needed to discriminate some AMP families from

other AMPs, in particular sub-families of the same super family. For

example, sub-families of the frog skin active peptide (FSAP) family

such as brevinin, caerin and dermaseptin required 118, 28 and 25

properties, respectively.

The selected properties are region-specific within the peptide se-

quence. That is, the properties are identified from the N-terminal, M

region, C-terminal or the entire peptide sequence. Some of the se-

lected properties are related to amino acid sequence composition

features, whereas some others are related to physicochemical prop-

erties. The distribution of the selected properties between these two

categories of features is shown in Table 1, Columns 8 and 9. Amino

acid composition properties are capable of discerning highly differ-

ential AMP family from other families, such as in the case of type A

lantibiotic. However, other 13 families require a combination of

amino acid composition and physicochemical properties to discern

their peptides from other AMPs.

Some of the selected properties indicate the enrichment of a par-

ticular residue(s) or physicochemical property in a specific region,

these properties are called ‘enriched’. However, some other proper-

ties indicate the importance of the absence or depletion of a particu-

lar residue(s) or physicochemical property in a specific region,

which we call them ‘depleted’ properties. For example, among the

selected properties for alpha defensins, the enrichment of arginine

and the depletion of lysine in the C-terminal were identified as im-

portant properties for this family.

4 Discussion

In this work, we developed a novel computational model for selec-

tion of AMP characteristics that discern AMP families via physico-

chemical and compositional properties. The identified AMP

properties make them potential design guides for development of

synthetic AMPs. Also, these properties can be used as a starting

point to develop a classification model to determine the category of

a new candidate AMP. In the subsequent text, enrichment and de-

pletion are considered related to one target AMP family relative to

all other AMP families. Here we comment on the properties selected

for some of the AMP families. Discussion of properties of other fam-

ilies is in Supplementary Materials S5.

Alpha-defensins. We found enrichment of cysteine (C) in the n3

and n4 regions, arginine (R) in the M region and arginine and tyro-

sine (Y) in the C region, whereas glycine (G) was found depleted in

the n2 region as well as lysine (K) in the C region. Numerous studies

have demonstrated that bactericidal activity is independent of highly

conserved features, such as invariant disulfide array, Arg-Glu salt

bridge or Gly residue at CysIIIþ8 I, with exception to the high argin-

ine content relative to lysine (Lehrer, 2007; Rajabi et al., 2008;

Schmidt et al., 2012), which complies with our finding. Moreover,

Schmidt et al. (2012) demonstrated that the replacement of arginine

with lysine decreases the activity of these peptides (Schmidt et al.,

2012). Also, AMPs disrupt membranes through a combination of

electrostatic interactions between cationic amino acid side chains

and electronegative components of the microbial cell envelope,

followed by the insertion of hydrophobic patches into the nonpolar

interior of the membrane bilayer (Brogden, 2005). The mouse

alpha-defensin cryptdin-4 (Crp4) was demonstrated to induce bac-

tericidal activity via this mechanism (Satchell et al., 2003). NMR

structure of Crp4 demonstrated its cationic amino acids to be argin-

ine, lysine and histidine (H) and its hydrophobic patches to include

isoleucine (I), leucine (L), valine (V), phenylalanine (F) and tyrosine.

Similar to these findings, we found for alpha-defensins the enrich-

ment of cysteine in the N-region, which, taking into account their

hydropathy index, may suggest that it is a key component of the

hydrophobic patch. The enrichment of arginine and tyrosine likely

adds to the electrostatic interaction that contributes to membrane

disruption.

Beta-defensins. We found arginine, valine, phenylalanine, as-

paragine (N), cysteine and glycine enriched in the n1, n2, n3, n4, n4

and n4 regions, respectively. Also, for the properties extracted from

the n4 sub-region, an enrichment for the parameter of charge trans-

fer donor capacity was found (Charton and Charton, 1983). The M

region exhibited enrichment, of cysteine, whereas the C region had

enrichment of arginine and cysteine. It was proposed that the beta-

defensin N-terminal helix with many hydrophobic residues is in-

serted inside the micelle, whereas the C-terminal helix with one large

positive charge patch is located outside the micelle and interacts

with the charged head groups of the micelle (Chandrababu et al.,

2009). Of the array of amino acids, we identified valine, phenylalan-

ine and cysteine as key hydrophobic residues enriched in the

N-terminal that likely facilitate the insertion of the beta-defensins

N-terminal helix into the micelles, whereas for the C-terminal helix

arginine is the key amino acid forming the positive charge patch.

Finally, if we only consider amino acids that our study identified as

enriched, we observe cysteine, glycine and arginine most enriched.

Our findings are partly corroborated by the results of Midorikawa

et al. and Chandrababu et al. as they demonstrated that the

beta-defensins are characterized by the enrichment of cysteine. That

is the existence of six conserved cysteine residues (Midorikawa

et al., 2003) and that the arrangement of cysteine residues in the

three-dimensional space are important to the antimicrobial selectiv-

ity and salt-dependent activity by mutating all six cysteine residues

of human beta-defensin-3 (HBD-3) (Chandrababu et al., 2009).

Cathelicidins. We identified the enrichment of arginine in the n1

and n2 regions. Lysine was identified depleted in the C-region,
Fig. 1. Bar plots of the precision obtained from four different representations

of AMPs
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whereas proline (P) was enriched in the C-region. Also, for the prop-

erties extracted from the n3 sub-region enrichment for the linker

propensity from 1-linker dataset and normalized frequency of

beta-sheet with weights was found (Levitt, 1978; George and

Heringa, 2002). Our findings are supported by cathelicidins being

characterized as proline-rich and having a highly conserved

N-terminal preprosequences followed by variable C-terminal se-

quences that are biologically active effectors (Zanetti et al., 1995;

Chan et al., 2001). Moreover, the proline was proved to sustain the

antimicrobial activity of mammalian cathelicidins by resisting serine

proteases cleavage of the scissile bond (Shinnar et al., 2003).

Our findings are further supported by cathelicidins from hagfish

exhibiting four arginines positioned between the cathelin domain

and the antimicrobial sequences (Uzzell et al., 2002). The arginine

tetrads of these latent zymogens are believed to be specifically

processes by prohormone convertases such as furin proteases in

specific cells as an activity switch (Steiner, 1998; Rockwell et al.,

2002).

Cecropins. We identified enrichment of lysine and glutamic acid

(E) in the n3 and n4 regions, respectively, whereas alanine was en-

riched in the C-region. Andreu et al. (1983) produced synthetic

cecropin A that induces comparable antibacterial activity and is in-

distinguishable by chemical and physical criteria from the naturally

occurring cecropin A. In partial corroboration with our findings, it

has been demonstrated that cecropin analogs with an impaired

N-terminal helix, such as cecropin A-(3-37) with removed lysine

and tryptophan has reduced membrane disrupting abilities that cor-

relate with their lower antibacterial activity that was rationalized in

terms of reduced binding to bacteria (Andreu et al., 1983; Steiner

et al., 1988). Similarly, Fink et al. (1989) demonstrated via a chem-

ically synthesized cecropin D analog (9-37) that no activity is

observed without phenylalanine and glutamic acid in the N-ter-

minal. Moreover, Lee et al. (1989) demonstrated that lysine, glu-

tamic acid and arginine are conserved in cecropins and that alanine

is enriched.

Cyclotides. We only identified a few properties related to com-

position, such as enrichment of glutamic acid and glycine in the n4

and C-regions, respectively. For the properties extracted from the

C-region enrichment for normalized frequency of turn in alpha þ
beta class was found (Palau et al., 1982). Work by Hermann et al.

partially supports these finding as they demonstrated that methyla-

tion of charged glutamic acid residue of cyclotide cycloviolacin O2

decreased its potency 48-fold. They additionally showed conserved

cysteine residues and demonstrated that acetylation of the two lysine

residues also reduced the potency 3-fold (Herrmann et al., 2006).

Koehbach et al. elucidated the structure of kalata B7 to determine

its associated ligand–receptor interaction. They inferred an

interaction with the oxytocin receptor owing to loop 3 of kalata B7

(-CYTQGC-) being homologous to the six-residue ring sequence of

oxytocin. They further exhibited the crucial role of the tyrosine and

glutamine residues (loop 3) by generating mutated variants

(Y replaced by A, S or F; Q was replaced by A or E), all of which were

inactive or did not bind to the receptor (Koehbach et al., 2013).

Moreover, Rosengren et al. (2003) demonstrated that most cyclotides

have a glycine positioned before the cysteine residue to form the

f angle required for the type II b-turn needed for cyclization.

5 Conclusion

The increased demand of AMPs brought attention to in-silico meth-

ods to design novel AMPs. In this study, we identified properties

that strongly discriminate AMPs families from each other using

global optimization of unsupervised clustering by GA. Our results

suggest that the identified features can be used to filter out unlikely

synthetic candidate AMPs during the design process of novel AMPs.

The methodology developed here is generic and with a potential to

characterize arbitrary protein family.
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