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Abstract

Motivation: Genome-wide association studies (GWASs) are effective for describing genetic com-

plexities of common diseases. Phenome-wide association studies (PheWASs) offer an alternative

and complementary approach to GWAS using data embedded in the electronic health record (EHR)

to define the phenome. International Classification of Disease version 9 (ICD9) codes are used

frequently to define the phenome, but using ICD9 codes alone misses other clinically relevant infor-

mation from the EHR that can be used for PheWAS analyses and discovery.

Results: As an alternative to ICD9 coding, a text-based phenome was defined by 23 384 clinically

relevant terms extracted from Marshfield Clinic’s EHR. Five single nucleotide polymorphisms

(SNPs) with known phenotypic associations were genotyped in 4235 individuals and associated

across the text-based phenome. All five SNPs genotyped were associated with expected terms

(P< 0.02), most at or near the top of their respective PheWAS ranking. Raw association results indi-

cate that text data performed equivalently to ICD9 coding and demonstrate the utility of informa-

tion beyond ICD9 coding for application in PheWAS.

Contact: hebbring.scott@mcrf.mfldclin.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The genetic complexities of common diseases have been well-defined

by the use of the genome wide-association study (GWAS). Aside

from only a few examples, GWASs have failed to identify single nu-

cleotide polymorphisms (SNPs) that reach a threshold, where they

can be used to predict, prevent or even treat complex diseases. This

may be due in part to disease heterogeneity and the fact that most

SNPs genotyped during a GWAS represent tag SNPs for unknown

and ungenotyped causal variants (Goldstein 2009; Manolio et al.,

2009; McCarthy et al., 2008; Need and Goldstein, 2010; Visscher

et al., 2012). As a complementary or alternative strategy to GWAS,

phenome-wide association studies (PheWASs) have demonstrated

their effectiveness for rediscovering GWAS associations while

also identifying novel disease-SNP correlations (Hebbring, 2014).

Whereas GWAS is a phenotype-to-genotype strategy, PheWAS re-

verses this paradigm by exchanging the disease and genome in a

GWAS with a specific genetic variant and phenome in a PheWAS.

As such, PheWAS is a genotype-to-phenotype strategy.

The first PheWAS was published in 2010 by Denny et al. In this

first proof-of-principle study, five disease-associated SNPs previ-

ously identified by GWAS were genotyped in a cohort of 6005 pa-

tients from Vanderbilt University Medical Center. Each SNP was

associated with hundreds of International Classification of Disease

version 9 (ICD9) codes that defined the ICD9-based phenome. Of

the five SNPs, four demonstrated that the PheWAS technique was

able to rediscover the expected associations (Denny et al., 2010).

The advantage of PheWAS over GWAS is that PheWAS has the cap-

acity to identify multiple diseases that share a common genetic
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etiology. For example, one of the SNPs genotyped in the original

proof-of-principle study was a SNP that tags for the HLA-

DRB1*1501 allele (rs3135388). This SNP is known to be associated

with multiple sclerosis (MS) (Hindorff, 2012). As expected,

rs3135388 was associated with the ICD9 code for MS, but was also

associated with other conditions, including erythematous conditions

(Denny et al., 2010). This association was subsequently validated in

an independent PheWAS (Hebbring et al., 2013). Importantly, if

multiple diseases share a common genetic etiology, then it may be

hypothesized that drugs used to treat one disease may be repurposed

to treat another. As such, PheWAS has the capacity to direct novel

drug repositioning studies (Rastegar-MoJarad et al., 2015).

A prerequisite of the PheWAS strategy is the availability of in-

depth phenotypic information. Not surprisingly, the majority of

PheWASs conducted to date have been applied to cohorts of clinic

patients linked to electronic health record (EHR) systems. An EHR

system can contain longitudinal health data, including prescription

records, laboratory results, physician notes and diagnostic codes,

specifically ICD9 coding. The advantage of ICD9 codes is that they

offer a spectrum of phenotypic information that is intuitively struc-

tured by clinical disease classifications. The first proof-of-principle

PheWAS study described previously used ICD9 codes to define the

phenome (Denny et al., 2010). The majority of the PheWASs con-

ducted thereafter have also leveraged ICD9 coding (Carroll et al.,

2014; Denny et al., 2011, 2013; Hebbring et al., 2013; Neuraz

et al., 2013; Ritchie et al., 2013; Shameer et al., 2013); although

some have applied ICD10 coding (Neuraz et al., 2013) while others

have applied epidemiologic data (Pendergrass et al., 2011, 2012,

2013). In the United States, ICD9 codes are predominantly used ad-

ministratively for billing. Although ICD9 coding is rooted to clinical

manifestations, its reliability is known to be variable (Leone et al.,

2006; Hennessy et al., 2010) and ICD9 codes may not provide ad-

equate phenotypic information for many conditions. This is particu-

larly relevant as many ICD9 codes define diseases as ‘other’ or ‘not

elsewhere classified’. To address these limitations, other data types

beyond ICD9 coding may be used as an alternative approach to de-

fine the phenome for PheWAS. Such data could include clinical

documentations.

Clinical documentations are often maintained in an EHR system

as text data for easy reference during clinical care and can be a

powerful source of clinical information for research. Clinical docu-

mentation can provide insights into a patient’s past clinical history,

current condition, prognosis and treatment. Clinical text data often

contains information regarding drugs prescribed and has been mined

to identify drug-drug interactions (Iyer et al., 2014), adverse drug

events (Liu et al., 2012) and off-label drug use (Jung et al., 2014).

Of relevance, clinical text data has also been applied to the identifi-

cation of specific diseases and may be used to predict ICD9 codes

(Kavuluru et al., 2013; Marafino et al., 2014).

In this study, we test the hypothesis that clinical text data can be

used to extract extensive phenotypic data to create a text-based

phenome. Importantly, we demonstrate that a text-based phenome

can be used for a PheWAS, so that EHR systems may be more

widely applied to advance genetics and precision medicine.

2 Methods

2.1 Population and genotyping
All patients genotyped come from Marshfield Clinic’s Personalized

Medicine Research Project (PMRP), has been described previously

(McCarty et al., 2005, 2008). In short, PMRP is a cohort of

approximately 20 000 Marshfield Clinic patients over 18 years of

age that reside within a 19 zip code region surrounding Marshfield,

Wisconsin, USA. PMRP is 98% white/non-Hispanic with 77%

claiming German ancestry. Importantly, all PMRP participants are

linked to Marshfield Clinic’s extensive EHR system with most par-

ticipants having over 30 years of continuous care captured in

Marshfield Clinic’s EHR system. Samples genotyped include 4235

PMRP patients all over 50 years of age (mean¼74, median¼75)

initially selected as a cohort for the study of high-density lipoprotein

levels or cataract disease (Turner et al., 2011). The 4235 samples

were previously genotyped on Illumina’s 660W BeadChip (Illumina,

San Diego, CA) and previously applied to PheWAS analysis (Denny

et al., 2011, 2013; Hebbring et al., 2013; Ye et al., 2014).

We analyzed five SNPs for association by text-based PheWAS.

These five SNPs were selected based on reported associations by

GWAS (Hindorff, 2012) and previously use as control SNPs for an

ICD9-based PheWAS (Ye et al., 2014). The five SNPs include

rs3135388, rs9501572, rs12678919, rs220073 and rs1061170,

which are known to be associated with MS, ankylosing spondylitis,

triglyceride levels, atrial fibrillation and age-related macular degen-

eration (AMD), respectively. Rs9501572 and rs12678919 were

genotyped on the Illumina 660W BeadChip as mentioned earlier.

SNPs rs3135388, rs2200733 and rs1061170 were genotyped by a

Sequenom assay (Sequenom, San Diego, CA), as described previ-

ously (Hebbring et al., 2013; Ye et al., 2014).

2.2 Text-based phenome
Marshfield Clinic’s EHR system dates back to 1984, with electronic

maintenance of clinical documentation since 1991. A total of

1 564 831 clinical notes were extracted from the 4235 patients

described earlier representing 423 537 905 unique words. On aver-

age, each patient had approximately 372 clinical notes. For each pa-

tient, all clinical notes were concatenated and scrubbed of personal

identifiers using the de-identification software package ‘de-id’

(Goldberger et al., 2000; Neamatullah et al., 2008). All words were

then broken down into four possible combinations. They include

unigrams (one word), bigrams (two adjacent words), trigrams (three

adjacent words) and 4-grams (four adjacent words). An example of

these word structures can be seen in Figure 1 for a physician note

indicating ‘ . . . Patient has evidence of macular degeneration . . . .’

There were a total of 270 885 unigrams, 7 507 412 bigrams,

40 568 628 trigrams and 92 755 315 4-grams totaling 141 102 240

individual word strings in this sample set (Fig. 2). It is expected that

these word strings can be used to identify and define clinically rele-

vant phenotypes.

Fig. 1. An example of unigrams, bigrams, trigrams and 4-grams extracted

from the clinical phrase ‘Patient has evidence of macular degeneration’
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To simplify the clinical text data and reduce the search space to

clinically relevant terms, word strings were cross referenced with the

National Library of Medicine’s Unified Medical Language System

(UMLS) medical dictionary (Bodenreider, 2004; Lindberg, 1990,

1993) of disease terms (239 227 terms) and drugs (DrugBank;

34 346 terms). The UMLS medical dictionaries were developed in

part to standardize biomedical vocabularies. All unigrams, bigrams,

trigrams and 4-grams were extracted from these dictionaries repre-

senting over 60% of the possible terms. It was noted that only 3%

of the 4-grams within the data dictionaries could be cross referenced

with clinical notes. As such, word strings greater than 4-grams were

not included as they did not add significant clinical information. As

with the clinical text data, all extracted strings from the UMLS med-

ical dictionaries were also broken down into their respected unig-

rams, bigrams, trigrams and 4-grams totaling 567 213 possible word

strings. A total of 92 338 word strings were observed in both the

UMLS medical dictionaries and clinical text data. A total of 23 384

strings were observed in at least 50 unique patients in the population

(Fig. 2). It is these 23 384 word strings that defined the text-based

phenome that consists of 97% disease terms and 3% drug terms.

Individuals with a given word string were considered cases for that

word string, whereas all others were considered controls. No add-

itional word processing was conducted, such as negation analysis.

Bigrams represented the largest proportion of the text-based phe-

nome (Fig. 3). The mean and median case size was 533 and 221, re-

spectively. All word strings extracted that define the text-based

phenome are available in Supplementary Table S1.

2.3 PheWAS analysis
All distinct word strings were translated into corresponding case-

control groupings. For each SNP, genotypes were associated across

all 23 384 word strings that defined the text-based phenome. As a

comparison, ICD9 codes defining expected phenotypes, as defined

by a previous PheWAS (Ye et al., 2014), were also extracted from

Marshfield Clinic’s EHR system and associated with SNP genotype.

Associations were measured by v2 analysis. Phi correlation coeffi-

cients were calculated to measure correlations between cases and

controls identified by clinical text data and ICD9 coding. Systematic

confounding in the SNP-phenotype associations was assessed by a

Q-Q plot for each SNP; none was observed (Supplementary Fig. S2).

All analyses were conducted using the R statistical package.

3 Results

3.1 Text-based PheWAS results
For all five SNPs, the expected word strings were associated with

the SNP genotype (P<0.02) (Table 1). SNPs rs9501572 and

rs3135388 had expected word strings nominally associated with

SNP genotype including ‘spondylitis’ (P¼0.018) (Fig. 4A) and ‘MS’

Fig. 2. Flow diagram of the process taken to identify the 23 384 word strings used to define the text-based phenome

Fig. 3. Chart describing the number of unigrams, bigrams, trigrams and

4-grams in the text-based phenome separated by disease terms (white bars)

and drug terms (black bars). Indicated are the numbers in each category
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Table 1. Results and cases identified by a text-based phenome of 23 384 word strings and an ICD9-based phenome of 4841 unique codes

Description Cases OR (95% CI) Raw P-value Unique cases (%) Phi correlation

SNP: rs1061170—AMD

Text Word string: ‘macular degeneration’ 1128 1.33 (1.20 to 1.46) 1.80E-08 255 (23) 0.71

ICD9 ICD9 code: 362.51 (nonexudative senile

macular degeneration)

1086 1.37 (1.24 to 1.51) 5.20E-10 213 (20)

SNP: rs9501572—ankylosing spondylitis

Text Word string: ‘spondylitis’ 94 1.47 (1.08 to 2.00) 1.80E-02 88 (94) 0.19

ICD9 ICD9 code: 720.8 (other inflammatory

spondylopathies)

10 4.56 (1.86 to 11.2) 7.10E-04 4 (40)

SNP: rs3135388—MS

Text Word string: ‘MS’ 255 1.41 (1.12 to 1.77) 4.50E-03 238 (93) 0.23

ICD9 ICD9 code: 340 (MS) 20 2.55 (1.29 to 5.04) 9.90E-03 3 (15)

SNP: rs2200733—atrial fibrillation

Text Word string: ‘of atrial’ 1102 1.33 (1.15 to 1.53) 9.50E-05 249 (23) 0.75

ICD9 ICD9 code: 427.31 (atrial fibrillation) 1001 1.31 (1.14 to 1.52) 2.60E-04 148 (15)

SNP: rs12678919—triglyceride metabolism

Text Word string: ‘elevated triglycerides’ 208 0.59 (0.46 to 0.76) 4.20E-05 341 (67) 0.35

ICD9 ICD9 code: 272.1 (pure hyperglyceridemia) 322 0.51 (0.36 to 0.72) 1.10E-04 155 (38)

Fig. 4. Manhattan plot graphing �log(P-values) across the text-based phenome for the SNPs known to be associated with (A) ankylosing spondylitis, (B) MS, (C)

atrial fibrillation, (D) triglyceride metabolism and (E) age-related macular degeneration. Highlighted are the relevant word strings associated with SNP genotype.

See Supplementary Table S2 for all phenotypes with P-values less than 0.001
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(P¼0.0045) (Fig. 4B), respectively. Rs2200733, rs12678919 and

rs1061170 had multiple expected word strings that were associated

with SNP genotype at or near the top of their respective PheWAS

(Supplementary Table S2). Rs2200733, known to be associated

with atrial fibrillation, was associated with multiple word strings

related to atrial fibrillation (Fig. 4C) and rs12678919, known to be

associated with triglyceride levels and in strong disequilibrium with

a nonsense SNP in the gene lipoprotein lipase (rs328), was

associated with word strings ‘elevated triglycerides’ and

‘hypertriglyceridemia’ (Fig. 4D). Rs1061170, an AMD-associated

SNP, had the strongest PheWAS results. Rs1061170 was strongly

associated with the word string ‘macular degeneration’ (P¼1.8E-8)

followed by the terms ‘non-exudative’ (P¼2.3E-7) and ‘exudative’

(P¼1.4E-6), which describe AMD subtypes. In addition, the term

‘visudyne’, a drug commonly prescribed to treat AMD, was also

strongly associated with the rs1061170 genotype (P¼3.9E-7) sug-

gesting that drug data may provide additional evidence when inter-

preting PheWAS results (Fig. 4E). Assuming independence, these

associations pass a conservative SNP-dependent Bonferroni correc-

tion threshold (P<2.1E-6 assuming a<0.05 and 23 384 tests/

phenotypes). All associations with P<0.001 are reported in

Supplementary Table S2.

3.2 Text-based versus ICD9-based associations
The top expected association results generated using text data were

compared with the top expected ICD9 codes previously identified

by an ICD9-based PheWAS (Ye et al., 2014). For all expected

phenotypes, there were more cases identified by clinical text data

than by ICD9 coding. For example, ICD9 coding identified 20 MS

cases compared with 255 cases that were identified by the word

string ‘MS’ observed in clinical notes. For three of the five SNPs, top

association results were stronger using clinical text data. Not sur-

prisingly, cases and controls identified by text data were variably

correlated with cases and controls identified by ICD9 coding. AMD

and atrial fibrillation had the strongest correlations. For all ex-

amples, text data identified more unique cases that did not overlap

ICD9 coding (Table 1). Because the text-based phenome was ini-

tially filtered by word strings observed at least 50 times in the popu-

lation, which may result in missed findings for rare conditions (i.e.

MS and ankylosing spondylitis), rs3135388 and rs9501572 were

reanalyzed without any frequency filter. No additional expected

word strings were identified (data not shown).

4 Discussion

PheWASs are quickly proving effective at rediscovering and dis-

covering new gene-disease associations. Thus far, most PheWASs

have focused on genetic variants with predetermined SNP-disease

associations (Hebbring, 2014), the largest of which was conducted

on 3144 SNPs previously identified by GWAS (Denny et al., 2013).

PheWAS exhibits the power to identify novel associations and link

multiple conditions to a shared genetic etiology (Carroll et al., 2014;

Denny et al., 2011, 2013; Hebbring et al., 2013; Neuraz et al.,

2013; Pendergrass et al., 2013; Ritchie et al., 2013; Shameer et al.,

2013). A commonality for the majority of PheWASs published to

date is the use of ICD9 coding to define the phenome.

An advantage of ICD9-based phenomes is the logical architec-

ture of the codes such that similar conditions have similar codes. For

example, ICD9 codes 390–459 define diseases of the circulatory sys-

tem, ICD9 codes 410–414 define different sub-types of ischemic

heart disease, ICD9 codes 410.0–410.9 define acute myocardial

infarctions and at the highest phenotypic resolution, ICD9 codes

410.00–410.02 define acute myocardial infarctions of anterolateral

wall. It is not surprising that ICD9-based PheWASs have utilized a

collapsing strategy to define cases and controls at varying levels of

phenotypic resolution (Hebbring, 2014). The current text-based

phenome was arranged alphabetically, and as such, lacks intuitive

structure. Another challenge of a text-based phenome is the inter-

pretation of the word strings. Cases and controls in an ICD9-based

phenome are defined by the existence of a given ICD9 code.

Although errors exist in the coding, it is assumed that ICD9 coding

is assigned based on clinical manifestations. In comparison, pheno-

types described by text data may be less clear. Cases and controls

may be incompletely assigned because of misspellings or alternative

word usage, such as abbreviations. Furthermore, words defining a

text-based phenome may capture a term, yet context beyond the

term may be lacking. For example, non-specific terms such as ‘pos-

itional’ (Supplementary Table S2) are captured in the text-based

phenome. Further curation of the text-based phenome to remove

such terms may improve the effectiveness of a text-based PheWAS.

Using biomedical named entity recognition tools may be one ap-

proach (Leaman et al, 2008).

In addition to non-specific terms, it is conceivable that associ-

ation results from clinically meaningful terms may still be difficult

to interpret. Some clinical notes may indicate that a ‘patient has

atrial fibrillation’, ‘patient does not have atrial fibrillation’ and/or

‘patient has a family history of atrial fibrillation’. Under these cir-

cumstances, all individuals with the word string ‘atrial fibrillation’

will be lumped together independent of meaning. This may explain

why ‘atrial fibrillation’ was not the top word string for rs2200733,

although it was still in the top 20 (P¼7.1E-4). The application of

natural language processing techniques, such as negation analysis

(Agarwal et al., 2011) and ontology-driven concept extraction

(Osborne et al., 2007), may be effective when addressing these chal-

lenges. Regardless, raw association results indicate that text data

performed equivalently to ICD9 coding, and in some instances, clin-

ical text data outperformed ICD9 coding (Fig. 4 and Table 1).

Like GWAS, PheWAS is challenged by multiple comparison

testing. The current standard for adjusting multiple comparison test-

ing has been the application of a Bonferroni correction (Hebbring,

2014). Unique to PheWAS is the correlative structure in the pheno-

typic data. As described earlier, in an ICD9-based PheWAS, similar

ICD9 codes may be correlated, especially in phenomes that use a

collapsing strategy to define cases and controls at different pheno-

typic resolutions. Furthermore, correlations may also exist across

codes (Hebbring, 2014). This text-based PheWAS is no different. A

good example of the correlative structure in the text data may in-

clude the atrial fibrillation SNP rs2200733 where the bigram ‘fibril-

lation with’, is rooted in the trigram ‘atrial fibrillation with’, with

both showing similar associations (Fig. 4C). Of all SNPs tested, the

AMD SNP rs1061170 not only passed a SNP-dependent Bonferroni

correction (P<2.1E-6) but also passed an experiment-wise correc-

tion [P<4.3E-7 assuming a<0.05 and 116 920 total tests (total

tests¼5 SNP�23 384 phenotypes)] (Fig. 4E).

Like ICD9 codes, clinical text data can be efficiently extracted

from an EHR system and can be effectively applied to a PheWAS

(Fig. 4). With all of the words in a text-based phenome rooted to

standard terms from a medical dictionary (Fig. 2), this approach

may be easily translatable to other EHR systems. Clinical text data

has the capacity to describe phenotypic information at a high reso-

lution, while also allowing the use of drug information that may

provide additional insights into the interpretation of the PheWAS re-

sult, as demonstrated by the AMD-associated SNP and its
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association with the AMD drug Visudyne (Fig. 4E). Because ICD9

codes are used primarily for billing, only those conditions that arise

during a clinical visit are recorded. For patients who come in and

out of a service area, or for conditions that predate an EHR system,

ICD9 coding may not provide a comprehensive assessment of a pa-

tient’s disease history. In comparison, clinical notes may capture

both current and in-depth historical health information. This may

explain in part the larger case sizes for clinical text data compared

with ICD9 coding. Of interest, text data and ICD9 coding demon-

strated similar associations, yet both datasets had incomplete correl-

ations between the cases and controls identified by either text data

or ICD9 coding (Table 1). In general, a larger percentage of cases

are unique to text data compared with cases identified by ICD9

coding. For example, cases of ankylosing spondylitis and MS were

dramatically different in the text-based approached compared with

the ICD9-based approach suggesting the potential for increased false

positives in a text-based phenome. Conversely, SNP rs12678919,

known to be associated with triglyceride metabolism, was associated

with 508 patients with the word string ‘elevated triglycerides’

(P¼4.2E-5), whereas rs12678919 genotype was associated with

322 patients diagnosed with pure hyperglyceridemia (P¼1.4E-4).

The correlation between cases and controls for this example was

0.35 with 67% of cases unique only to text data and 48% of cases

unique only to ICD9 data (Table 1). This result may suggest that

neither text data, nor ICD9 coding, can comprehensively identify all

cases. Improvement in a text-based phenome may be achieved by

implementing concept identification approaches, such as negation

analysis, word sense disambiguation, and abbreviation expansion.

Furthermore, further improvement may be achieved by combining

different data types.

In conclusion, this study demonstrates for the first time that raw

text data from clinical notes in an EHR system can be used effect-

ively to define a phenome. This study also validates that clinical text

data, including drug data, can be applied to PheWAS as a comple-

mentary approach to a GWAS and ICD9-based PheWAS. The future

of the PheWAS strategy may not be limited to either clinical text

data or ICD9 coding. A potential name for this approach might be

called a text-wide association study (TextWAS). The future of the

PheWAS strategy may rely on multiple structured and unstructured

data types. This is particularly relevant as EHR systems become

standardized, bio-repositories continue to grow and genomic medi-

cine becomes widely applied.
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