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Abstract

Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard

for their analysis based on simultaneous alignment and folding suffers from extreme time com-

plexity of Oðn6Þ. Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested.

Commonly, the performance of such methods relies on sequence-based heuristics that restrict the

search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-

based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches

like LocARNA that do not require sequence-based heuristics, have been limited to high complexity

(� quartic time).

Results: Breaking this barrier, we introduce the novel Sankoff-style algorithm ‘sparsified prediction

and alignment of RNAs based on their structure ensembles (SPARSE)’, which runs in quadratic

time without sequence-based heuristics. To achieve this low complexity, on par with sequence

alignment algorithms, SPARSE features strong sparsification based on structural properties of the

RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy

computation. Although all existing lightweight Sankoff-style methods restrict Sankoff’s original

model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the

lightweight energy model completely for the first time. Compared with LocARNA, SPARSE

achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At

similar run-time, it aligns low sequence identity instances substantially more accurate than RAF,

which uses sequence-based heuristics.

Availability and implementation: SPARSE is freely available at http://www.bioinf.uni-freiburg.de/

Software/SPARSE.
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1 Introduction

The majority of transcripts are non-coding RNAs (ncRNAs), which

unlike mRNAs do not code for proteins. ncRNAs are associated

with a large range of important cellular functions; furthermore,

there is increasing evidence of pervasive transcription (e.g. Jacquier,

2009; Clark et al., 2011). Particularly, up to 450 000 ncRNAs have

been predicted in the human genome alone (Rederstorff et al.,

2010).

Analyzing the huge amount of RNA sequences poses major chal-

lenges for bioinformatics; particularly, since the sequence of related

ncRNAs is often conserved only weakly, while the RNAs can still

share a strongly conserved consensus structure. Therefore, taking se-

quence and structure similarity into account is indispensable for

ncRNA analysis (Will et al., 2007; Torarinsson et al., 2007; Shi

et al., 2009; Tseng et al., 2009; Saito et al., 2011; Parker et al.,

2011). However, accurate methods for this purpose have extreme

computational costs.

The gold standard for RNA alignment has been introduced by

Sankoff (1985). Because structure prediction and alignment of RNAs

depend on each other, Sankoff’s approach solves the alignment and

folding problem simultaneously. For two RNA sequences, it finds two

energetically favorable structures of the same shape together with a

good alignment that reflects the similarity of the structures. For this

purpose, Sankoff composes its objective function from a sequence

alignment score and the free energies of the two structures. Because of

the extreme Oðn6Þ time complexity of this algorithm, numerous

Sankoff-like strategies have been developed aiming to speed up

Sankoff’s task, while preserving accuracy as much as possible.

A major class of such methods utilizes information from sequence-

based alignment to reduce the search space for the computationally

much more expensive alignment and folding algorithm. This idea was

introduced in Holmes (2005), and later refined by Dowell and Eddy

(2006) and Harmanci et al. (2007). The latter restricts the alignment

space to an envelope around the base matches, whose sequence align-

ment probabilities exceed a fixed cutoff. Generally, such approaches

have to cope with the well-known fact that sequence alignment fails

for sequence identities below 60% (Gardner et al., 2005).

Consequently, sequence alignments can provide hints at the optimal

structure-based alignment, but are potentially far-off. Moreover, even

with such improvements Sankoff-like methods remain too expensive

for large analysis tasks like clustering putative ncRNAs in large data-

sets, e.g. the entire human transcriptome or even meta-genomics data.

PMcomp (Hofacker et al., 2004) suggested a fundamentally dif-

ferent route to faster RNA alignment. It introduced a new Sankoff-

like scoring model that enables lightweight computation. For this

purpose, it employs a base pair-based energy model instead of the

original loop-based energy model. Furthermore, PMcomp simplifies

Sankoff’s model by predicting only a single consensus structure.

Tools like LocARNA (Will et al., 2007), FoldAlignM (Torarinsson

et al., 2007) and LocARNA-P (Will et al., 2012) build on the

PMcomp model, but additionally sparsify the folding spaces of both

RNAs, resulting in Oðn4Þ time complexity. CARNA (Sorescu et al.,

2012) extends the PMcomp model to pseudoknot structures. RAF

(Do et al., 2008) combined the ideas of Harmanci et al. (2007) and

Hofacker et al. (2004), resulting in a lightweight Sankoff-variant

with sequence-based speed up.

1.1 Contributions
In this work, we introduce the novel lightweight Sankoff-style ap-

proach SPARSE (sparsified prediction and alignment of RNAs based

on their structure ensembles) with quadratic time complexity.

Achieving the same complexity as sequence alignment with SPARSE

is a breakthrough for RNA analysis, because this profound perform-

ance gain works without sequence-based heuristics. On the con-

trary, it is purely based on information from the RNAs’ structural

ensembles. Consequently, the technique is applicable without com-

promising the alignment quality in the low sequence identity zone.

Going beyond LocARNA, which sparsifies based on base pair

probabilities, SPARSE additionally sparsifies based on conditional

probabilities of bases and base pairs within loops (Otto et al., 2014).

The latter results in a quadratic time improvement over LocARNA,

which already improved by a quadratic factor over Sankoff’s algo-

rithm; this results in the quadratic time complexity of SPARSE, a

quartic speedup over the original Sankoff algorithm.

Concretely, SPARSE sparsifies the novel Sankoff-style algorithm

prediction and alignment of RNAs based on their structure ensem-

bles (PARSE), which—like PMcomp—supports lightweight compu-

tation. Going beyond PMcomp, it predicts two potentially different

structures for the two RNA sequences, supporting insertions and de-

letions of loops. The dependencies between these structures and the

alignment are exactly the same as in the original problem formula-

tion of Sankoff. Thus, the increased flexibility of PARSE over the

PMcomp-like previous RNA alignment approaches is an important

contribution by itself. We show that the novel problem can be effi-

ciently solved by dynamic programming. Moreover, we present a

model and algorithm for affine gap costs that distinguishes inser-

tions and deletions of single bases and entire loops.

Based on SPARSE, we furthermore develop a fast multiple RNA

alignment approach. In our benchmarks, compared with LocARNA,

the much faster SPARSE computes alignments of similar quality

with improved folding quality. Compared with RAF (Do et al.,

2008), SPARSE is similarly fast (speedup over LocARNA of 4.2 ver-

sus 3.7) and has the same time complexity, but provides superior

alignment quality in the hard case of low sequence identity.

2 Methods

Figure 1 illustrates the subsequent fundamental preliminaries.

RNAs

An RNA sequence A is a string over the alphabet fA;C;G;Ug with

length jAj. We denote the base at the i-th position of A by A½i�; the

substring from position i to j, by A½ij�; such substrings of RNA

sequences are subsequently called subsequences. A base pair a of A

is a pair ðaL; aRÞ ð1�aL < aR�jAjÞ. A non-crossing RNA structure S

Fig. 1. Example alignment A of two RNA sequences A and B together with

(non-crossing) structures S ¼ fa1; a2; a3; a4; a5g and T ¼ fb1;b2;b3;b4;b5g.
We highlight the positions in the loop closed by a1 and in the loop closed by

b2. The base pair a1 is the parent of the highlighted positions in A and of a2.

The base pair a1 closes a 2-loop; a2, a 1-loop and a3, a multiloop. The latter is

a 3-loop, since a3 has two inner base pairs (a4 and a5.) Note that the structure

alignment triple ðA;S;T Þ covers the external base pairs a1; a3;b1 and b2; as

well as the inner base pairs of the two multiloops. Finally, ðA;S;T Þ deletes

the entire 2-loop of a1 and inserts the entire 2-loop of b2
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of A, in the following called structure, is a set of base pairs, where

each two different base pairs (i, j) and ði0; j0Þ of S do not share any

end, i.e. i; j; i0; and j0 are pairwise different, and base pairs of S do

not cross, i.e. there are no ði; jÞ; ði0; j0Þ 2 S with i < i0 < j < j0. For

reasons of simplicity, we introduce a pseudo base pair

aw :¼ ð0; jAj þ 1Þ, which formally closes the external loop of

A. Although aw does not satisfy 1� aL
w < aR

w � jAj, it is otherwise

handled like a base pair of A. The position k of A is paired according

to S, iff there exists k0 such that ðk; k0Þ 2 S or ðk0;kÞ 2 S. Otherwise

k is unpaired.

Loops

For any position k of A, we define the parent of k in S, written

parentSðkÞ, as the ði; jÞ 2 S [ fawg with i < k < j such that there does

not exist any ði0; j0Þ 2 S with i < i0 < k < j0 < j. Analogously, the

parent of a base pair a in S, written parentSðaÞ, is the parent of aL

(or, equivalently, the parent of aR). A position k in A or base

pair ðk; jÞ 2 S is in the loop closed by a iff parentSðkÞ ¼ a, external

according to S iff parentSðkÞ ¼ aw, otherwise internal. Furthermore,

for a base pair a 2 S, the loop closed by a consists of the positions

loopSðaÞ :¼ fkjk 2 ½1::jAj�; parentSðkÞ ¼ ag. In a structure S, a k-

loop is a loop with closing base pair a and k�1 inner base pairs

a0 2 S, where parentSða0Þ ¼ a. A multiloop is a k-loop where k>2.

Alignments

An alignment A of RNA sequences A and B consists of a set of edges

written as pairs (i, k), where i is a position in A, and k a position in

B. Alignment edges do not cross, i.e. for all ði; jÞ; ði0; j0Þ 2 A : ði < i0

) j < j0 and i ¼ i0 , j ¼ j0Þ. Usually, we consider alignments A
together with structures S of A and T of B, forming the triple

ðS;T;AÞ.
The position i of A is called deleted by A, iff there is no k of B

s.t. ði;kÞ 2 A; k of B is inserted by A, iff there is no i of A s.t.

ði;kÞ 2 A. Positions that are neither deleted nor inserted by A are

covered by A. Analogously, we call a base pair a 2 S covered by

ðS;T;AÞ, iff there is a base pair b 2 T, s.t. ðaL;bLÞ; ðaR; bRÞ 2 A;

symmetrically, we define covered by ðS;T;AÞ for base pairs b 2 T.

A base pair (i, j) is called inserted (deleted), iff i and j are inserted

(deleted), respectively. A matches two positions i and k to each

other, iff ði;kÞ 2 A. Two base pairs are matched to each other by

ðS;T;AÞ, iff A matches their left and right ends to each other.

For 2-loops, we define the notion of insertion or deletion of

entire loops. ðS;T;AÞ deletes (inserts) the entire 2-loop closed by the

base pair a 2 S ðb 2 TÞ, iff it deletes (inserts) all bases in loopSðaÞ
ðloopTðbÞÞ, respectively.

2.1 Lightweight Sankoff-style alignment
Given two RNA sequences A and B (of respective sizes n and m),

Sankoff’s problem of simultaneous alignment and folding (Sankoff,

1985) asks for an alignment and RNA structures S and T for both

sequences that simultaneously optimize a score of the form ‘energy

of Sþ energy of Tþ sequence edit distance’ in a loop-based energy

model (Mathews et al., 1999). Importantly, the alignment A and the

structures S and T are not independent of each other: Sankoff

requires that all external base pairs and interior base pairs of multi-

loops of both RNAs are covered by ðS;T;AÞ. Moreover, Sankoff

(1985) requires that any k-loop (k>2) is ‘aligned with a single

k-loop in the other structure’, whereas 2-loops can be flexibly

‘inserted or deleted in toto’ to align stems of different length. Due to

these conditions, aligned multiloops are of the same degree, which

preserves the shape [called branching configuration in Sankoff

(1985)] of the RNA structures.

2.1.1 PMcomp—a lightweight and simplified Sankoff variant

PMcomp (Hofacker et al., 2004) transfers Sankoff’s idea to a light-

weight energy model based on base pairs, which allows much faster

computation. However, PMcomp simplifies the problem even more

by introducing a one-to-one dependency between the predicted

structures for S and T. In consequence, PMcomp predicts only a sin-

gle consensus structure, whereas Sankoff much more flexibly pre-

dicts two compatible structures of A and B. We are going to show

that PMcomp’s second simplification (namely, to predict only the

consensus structure) is not required for fast computation and even

more has adverse effects.

In the simplified energy model of PMcomp, the energy of a struc-

ture is the sum of energy-like weights Wij of the single base pairs in

each structure. Because PMcomp defines Wij as log odds of the base

pair probability pij (McCaskill, 1990), the model effectively multiplies

single base pair probabilities. Here, PMcomp follows the general idea

to simplify probability calculations by assuming independence.

Otherwise PMcomp, like the original Sankoff algorithm, optimizes a

score composed of the sequence similarity and energies.

We rephrase the alignment and folding score of PMcomp, which

is assigned to an alignment A and RNA structures S and T, as

scoreðS;T;AÞ :¼
X
ði;jÞ2S

WAij þ
X
ðk;lÞ2T

WB
kl

þ
X
ði;kÞ2A

rði; kÞ þNindelc;
(1)

where r is the base similarity, c is the gap penalty (c�0) and Nindel

is the number of insertion and deletions in A.

Due to its second simplification of Sankoff, PMcomp maximizes

this score only over the ðS;T;AÞ that cover all base pairs in S and T.

This is a strong restriction compared with the more expressive

Sankoff algorithm, which requires only that the interior base pairs

of multiloops and the external base pairs are covered by ðS;T;AÞ.
Thus, while Sankoff allows flexibly aligning stems of different

lengths due to insertion and deletion of 2-loops, PMcomp cannot

handle loop deletions and insertions at all.

2.1.2 PARSE—lightweight and flexible folding and alignment

In the novel algorithm PARSE, we overcome the limitations of

PMcomp, maximizing the score of Equation (1) with the full flexi-

bility of Sankoff’s specification in terms of dependencies between

alignment and predicted structures. Here, we paraphrase Sankoff’s

constraints using our notation and terminology.

DEFINITION 1 (Sankoff’s Dependencies Between Alignment and

Structures). Let A and B be sequences; S of A and T of B, structures;

and A, an alignment of A and B. ðS;T;AÞ is a structure alignment

triple of A and B (satisfying Sankoff’s dependencies), iff for each

base pair a 2 S and b 2 T

1. ðS;T;AÞ covers a or deletes the entire loop of parentSðaÞ;
2. ðS;T;AÞ covers b or inserts the entire loop of parentTðbÞ;

in (1) and (2), the deleted or inserted loops have to be 2-loops.

Figure 1 shows a structure alignment triple. The definition makes

explicit that base pairs are inserted or deleted only together with

their entire 2-loop. This enables predicting stems of different length

and align them to each other. At the same time, the two predicted

structures cannot differ arbitrarily, but must have the same shape.

Quadratic time simultaneous alignment and folding of RNAs 2491



2.1.3 Realistic gap cost

Because PARSE supports insertion and deletion (indel) of entire

loops, which—unlike base indels—correspond to elongation or

shortening of stems in the RNA structure, it is reasonable to distin-

guish the different evolutionary events of base indel and loop indel

in our scoring function. Technically, we introduce two different gap

penalties cbase for gaps due to base indels and cloop for gaps due to

loop indels. To produce biologically relevant alignments, we extend

the above score to support affine gap costs. The different nature of

loop indels and base indels suggests two different gap opening penal-

ties bloop�0 and bbase�0. Thus, in addition to the regular gap open-

ing costs for base indels, we penalize the change of structure by loop

indels with a specific loop gap opening cost.

3 Algorithms

In general, the structures S and T are selected from respective sets of

possible base pairs P and Q of sizes N and M. For example, P and Q

could consist of all canonical base pairs, but subsequently we are

going to sparsify those sets. In our context, we generally assume that

P and Q are sparse subsets of all possible base pairs. For example, in

LocARNA (Will et al., 2007), P and Q consist of—in the sequence

length—only linearly many base pairs due to filtering by a fixed

threshold probability.

3.1 A sparsification perspective on PMcomp
Originally, PMcomp was presented (Hofacker et al., 2004) without

sparsification in mind, defining dynamic programming matrices

indexed by the ends of the aligned subsequences A½i::j� and B½k::l�.
To make the correspondence to base pairs in P and Q explicit, we

define matrix entries D̂ða;bÞ that represent the scores of matching

the two base pairs a and b and aligning the two enclosed subsequen-

ces. Each D̂ða;bÞ is computed from entries M̂
abði;kÞ that store

the best score of any two structures and alignment of subsequences

A½aL þ 1::i� and B½bL þ 1::k�, where all base pairs in S and T are cov-

ered by ðS;T;AÞ; subsequence scores are defined in the appendix.

The PMcomp algorithm is defined by recurrences for all

a 2 P; b 2 Q, i (aL < i < aR), and k (bL < k < bR) (Recall that we

simplified the score; still, the original recursions are easily obtained

by adding the base pair match contribution sða;bÞ to D̂ða;bÞ.):

M̂
abði;kÞ ¼max

M̂
abði�1; k�1Þþrði;kÞ

M̂
abði; k�1Þþ c

M̂
abði�1; kÞþ c

max
a1 2 P;b1 2Q

s:t: aR
1 ¼ i; bR

1 ¼ k

M̂
abðaL

1 �1;bL
1 �1Þþ D̂ða1;b1Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

D̂ða;bÞ ¼ M̂
a;bðaR � 1; bR � 1Þ

þWAa þWB
b þ rðaL; bLÞ þ rðaR; bRÞ:

The score of the best pair of consensus structure and alignment of A

and B is M̂
awbw ðn;mÞ; recall that aw and bw denote the pseudo-base

pairs covering the entire sequences A and B. The alignment and

structures themselves are obtained by traceback.

Notably, these recursions can be evaluated in OðnmþNMÞ
space—i.e. space depends on the respective lengths of A and B and

sizes N and M of the sets P and Q of considered base pairs. This

space complexity is realized in the same way as in LocARNA: at

each time, only one M̂ matrix needs to be represented in space, since

one matrix M̂
a;b

recurses only to itself and D̂, but does not depend

on other M̂ matrices. Even the traceback does not require to store

all M̂ matrices, because recomputing the matrices on the trace is

comparably inexpensive.

The time complexity is dominated by computing the M̂ matrices.

Evaluating a single matrix M̂ takes OðnmþNMÞ time. Because, the

straightforward evaluation of PMcomp’s recursions computes NM

such matrices, this results in OðnmNMþN2M2Þ. Assuming a linear

number of base pairs in P and Q (as it holds for LocARNA), this

yields Oðn2m2Þ time.

However, this evaluation strategy would consider certain subse-

quences repeatedly, namely as prefixes of different loops, albeit their

scores are identical: by definition, the matrices M̂
a1b1

and M̂
a2b2

share common entries, if their base pairs share the same left ends,

i.e. aL
1 ¼ aL

2 and bL
1 ¼ bL

2 ; thus, LocARNA combines the computa-

tion of such matrices. Although (assuming N and M are linearly

bound) this does not change the complexity, it substantially speeds

up the computation in practice.

3.2 The PARSE core algorithm
Alignment and folding with the original structure and alignment

dependencies of Sankoff requires substantially different recursions.

However, we keep the presentation as uniform as possible to our pre-

sentation of the PMcomp algorithm. Most obviously, the deletion and

insertion of loops requires additional matrices (Iab
A and Iab

B ). More sub-

tly, but centrally, we change the definition of matrix entries for pairs of

base pairs. Where the PMcomp algorithm defines D̂ða;bÞ as the score

of a consensus structure and an alignment matching a and b, PARSE

requires optimum scores of structure alignment triples of the subsequen-

ces between (and excluding) the ends of a and b without assuming the

match of those base pairs; these scores are stored in entries D(a,b). We

recursively define entries for all a 2 P; b 2 Q, i ðaL < i < aRÞ and k

ðbL < k < bRÞ; Figure 2 visualizes these recursions.

Dða; bÞ ¼ max

MabðaR � 1; bR � 1Þ

Iab
A ðaR � 1Þ

Iab
B ðbR � 1Þ

8>><
>>:

Mabði; kÞ ¼ max

Mabði� 1; k� 1Þ þ rði; kÞ

Mabði; k� 1Þ þ c

Mabði� 1;kÞ þ c

max
a1 2 P; b1 2 Q

aR
1 ¼ i;bR

1 ¼ k

MabðaL
1 � 1; bL

1 � 1Þ
þDða1;b1Þ þ WAa1

þWB
b1

þrðaL; bLÞ þ rðaR;bRÞ

0
B@

1
CA

8>>>>>>>>>><
>>>>>>>>>>:

Iab
A ðiÞ ¼ max

Iab
A ði� 1Þ þ c

max
a12P;aR

1
¼i
ðaL

1 � aL þ 1ÞcþDða1;bÞ þWAa1

8><
>:

Iab
B ðkÞ ¼ max

Iab
B ðk� 1Þ þ c

max
b12Q;bR

1
¼k
ðbL

1 � bL þ 1ÞcþDða;b1Þ þWB
b1

8<
:

The Iab
A ðiÞ [resp. Iab

B ðiÞ] matrix correspond to the new case of a

loop insertion into A (resp. BÞ. The additional cases and matrices do
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not add to the time or space complexity over the PMcomp algo-

rithm; in particular, the space and time for the IA and IB matrices is

dominated by the M matrices. Therefore, analogous arguments let

us conclude that, assuming LocARNA-style ensemble-based sparsifi-

cation, the algorithm runs (like LocARNA) in quadratic space and

quartic time.

Affine gap cost

We add the affine gap costs of the previous section without increas-

ing the complexity; in parallel to distinguishing opening costs for

base and loop gaps, we apply different gap penalties. First, similar

to the algorithm of Gotoh (1982), we introduce matrices with

entries Eabði;kÞ and Fabði; kÞ; these contain best scores of structure

alignment triples like the entries Mabði;kÞ, however, constrain the

alignments to delete A½i� and insert B½k�, respectively. Thus, we

define

Eabði; kÞ ¼ max
Eabði� 1; kÞ þ cbase

Mabði� 1; kÞ þ bbase þ cbase

(

for deletion, define Fabði;kÞ analogously for insertion, and replace

the deletion and insertion cases of the M-recursion of PARSE by Eab

ði;kÞ and Fabði;kÞ, respectively. Second, we extend the recursions for

IA and IB. We show the case of IA, since IB is analogous. It suffices

to make explicit the case of recursing to Ia1b
A ðaR

1 � 1Þ, which extends

an already open gap, and add loop gap opening penalty bloop in the

general case of recursing to Dða1;bÞ.

Iab
A ðiÞ ¼ max

Iab
A ði� 1Þ þ cloop

max
a12P;aR

1
¼i

ðaL
1 � aL þ 1Þcloop

þIa1b
A ðaR

1 � 1Þ þWAa1

 !

max
a12P;aR

1
¼i

ðaL
1 � aL þ 1Þcloop

þDða1; bÞ þWAa1
þ bloop

 !

8>>>>>>>>>>><
>>>>>>>>>>>:

Notably, these extensions do not change the time or space

complexity.

3.3 SPARSE—folding and alignment of RNA with

ensemble-based sparsification
This section describes the sparsification of PARSE, resulting in

SPARSE, which achieves quadratic time complexity. Instead of

filling the whole matrix Mab for each pair of base pairs a, b, we are

going to skip matrix cells that do not contribute to probable solu-

tions. To define the probable structures and alignments, and thus

determine the ‘relevant’ entries of the matrix, we define several

probabilities of structure elements in the structure ensemble of a

sequence A. For defining these probabilities, we assume that the

structures of an RNA sequence A are Boltzmann-distributed in the

structure ensemble, where RNA energy is given by a loop-based

energy model.

• Pr½ði; jÞjA� ¼
X

ði; jÞ3S
Pr ½SjA� denotes the probability that a

structure in the ensemble of A contains the base pair (i, j).

• Pr½k 2 loopði; jÞjA�, denotes the joint probability that for a struc-

ture S in the ensemble of A, (i, j) is a base pair of S or the pseudo

base pair and k is unpaired in the loop closed by (i, j).
• Pr½ði0; j0Þ 2 loopði; jÞA�; i < i0 < j0 < j, denotes the joint probabil-

ity that for a structure S in the ensemble of A, (i, j) is base pair of

S or the pseudo base pair and the ends of ði0; j0Þ are in the loop

closed by (i, j).

Note that we explicitly include the case that (i, j) is the pseudo base

pair aw, which closes the external loop. The base pair probabilities

are the immediate outcome of McCaskill’s original algorithm

(McCaskill, 1990), whereas we calculate the joint probabilities by

an extension of this algorithm with the same computational com-

plexity (Otto et al., 2014). Importantly for the complexity of our

final algorithm, all these probabilities can be precomputed since

they depend only on the single sequences.

3.3.1 Sparse structure and alignment space

The key to sparsifying PARSE, is to optimize only over a subset of

solutions, namely probable structures and alignments defined apply-

ing fixed probability thresholds h1, h2 and h3 to the above

probabilities.

DEFINITION 2 (Sparse Structure and Alignment Space). Assume

fixed thresholds h1; h2; h3 2 ½0; 1� and sequences A and B. The struc-

ture alignment triple ðS;T;AÞ of A and B is contained in the sparse

structure and alignment space of A and B and, for this reason, called

sparse iff

ðC1Þ Pr½ajA��h1 and Pr½bjB� �h1 for all base pairs a 2 S and b 2 T

ðC2Þ Pr ½i 2 loopðâÞA��h2

and Pr ½k 2 loopðb̂ÞB� �h2

for all ði; kÞ 2 A, i unpaired and

internal in S, k unpaired and

internal in T, where â denotes

the parent of i in S and b̂, the

parent of k in T

ðC3Þ Pr ½a 2 loopðâÞA� �h3

and Pr ½b 2 loopðb̂ÞB� �h3

for all internal base pairs a in S and

b in T, where â denotes the

parent of a in S; b̂, the parent of

b in T.

Note that in those definitions, explicitly we do not restrict ele-

ments in the external loop by Conditions (C2) and (C3), since this

does not improve the final complexity further (see Complexity

Analysis), but allows more flexibility. An alternative, which we have

chosen in our implementation, is filtering the external bases and

base pairs by their probabilities to be external (i.e. treating them as

elements of the external loops Aw and Bw).

Finding the best structure alignment triple in the sparse space is a

form of constrained evaluation of the PARSE recursions (see previous

section). We modify the recursions such that only cases are considered

that extend a sub-solution in a way that satisfies the conditions of

Fig. 2. Recursions of the novel lightweight alignment algorithm PARSE
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Definition 2. First of all, only matrices for base pairs a and b satisfying

Condition (C1) are considered. This restricts the cases of the recur-

sions for M, IA and IB that predict base pairs (in S, T or both.)

Furthermore, Condition (C2) constrains the base match case of the

M-recursion; and Condition (C3), its base pair match case.

Constraining the recursion cases based on these probabilities is

possible only because, during the evaluation, one has determined the

base pairs closing the loop containing the considered bases and base

pairs in the single structures. In contrast, previous PMcomp-like

algorithms, e.g. LocARNA (Will et al., 2007), RAF (Do et al., 2008)

and FoldAlignM (Torarinsson et al., 2007), keep track of only the

consensus structure (i.e. the pairs of base pairs matched to each

other). Thus, one cannot apply the appropriate joint probabilities

with respect to closing base pairs in the single structures; conse-

quently, the developed techniques are not applicable. Figure 3A

illustrates that constraining according to loops in the consensus

structure would discard relevant structure alignment triples. In the

figure, the base pair a3 is highly unlikely contained in the loop closed

by a1 (due to stacking, it is much more likely in the loop closed by

a2.) Consequently, even moderate thresholds would disallow its

alignment to b2.

3.3.2 Sparsified evaluation

Constraining the evaluation allows us to represent and fill the matri-

ces only partially for optimizing in the sparse structure and align-

ment space. Concretely, we do not represent all matrix entries that

can be derived only via insertion and deletion cases, since we calcu-

late them from smaller represented entries by adding appropriate

gap cost (Fig. 3B).

DEFINITION 3 (Represented entries). A position i in A is represented

for a base pair a 2 P (aL < i < aR), iff Pr½i 2 loopðaÞA� � h2 or there

exists some i0 (aL < i0 < i): ði0; iÞ 2 P and Pr½ði0; iÞ 2 loopðaÞjA� � h3.

The position i� :¼ maxfi0 � iji0 is represented for ag is called prede-

cessor of i for a. The entry Iab
A ðiÞ is represented iff i is represented for

a; Iab
B ðkÞ, iff k is represented for b; and Mabði;kÞ, iff both conditions

hold.

LEMMA 1 (Value of unrepresented entries). Restricting the optimiza-

tion to the sparse alignment and structure space, an unrepresented

entry Mabði; kÞ has the value Mabði�;k�Þ þ ði� i�Þcþ ðk� k�Þc, where

i� is the predecessor of i for a and k� is the predecessor of k for b.

Intuitively, Lemma 1 holds, since the unrepresented entries in a

matrix Mab correspond to alignments of subsequences A½aL þ 1::i�
and B½bL þ 1::k� that must end in a gap (because the base match (i,

k) and the match of base pairs with right ends i and k are disal-

lowed). Moreover, in such an alignment the entire subsequences A½
i� þ 1::i� and A½k� þ 1::k� cannot be aligned. The formal proof of

Lemma 1 is given in the appendix.

3.3.3 Complexity analysis

Let us prepare the analysis of SPARSE by first deriving the time

complexity of PMcomp, where we apply the weak ensemble-based

sparsification of LocARNA, i.e. P and Q contain only base pairs sat-

isfying Condition (C1) of Definition 2. Then, for each position i of

A, the number of base pairs a 2 P where aL ¼ i is constantly

bounded by 1=h1; analogously, this holds for Q (Will et al., 2007).

Consequently, evaluating each single entry takes constant time; it

remains to count the computed entries. Define the number of times

each respective position i (or k) in sequence A (or B) is considered in

combination with some base of the second sequence in the entire

computation. Denote this number of times by #AðiÞ. Then, we count

the computed entries by
X

i2½1::n�;k2½1::m�
#AðiÞ#BðkÞ: Because, #AðiÞ

2 OðnÞ and #BðkÞ 2 OðmÞ, we have re-derived the time complexity

Oðn2m2Þ.

THEOREM 1 SPARSE optimizes the folding and alignment score in

the sparse structure and alignment space in O(nm) time and space.

PROOF: Analogous to the above analysis of PMcomp, we bound

the time complexity in the same way from numbers #sp
A ðiÞ and

#sp
B ðkÞ, where #sp

A ðiÞ is the number of base pairs a in P such that i is

represented for a. The sum over all such base pairs a of the terms

min ðPr½i 2 loopðaÞjA�; Pr½ði0; iÞ 2 loopðaÞA�Þ is smaller or qual 1,

since this is a sum of probabilities of disjoint events. Due to the

Conditions (C2) and (C3), each term is at least min ðh2; h3Þ, which

bounds the number of such base pairs a, i.e. #sp
A ðiÞ, by 1=min ðh2; h3Þ

in O(1). Finally, the complexity is bounded by
X

i2½1::n�;k2½1::m�
#sp
A ðiÞ#

sp
B ð

kÞ 2 OðnmÞ for computing all entries Dða; bÞ and filling Mawbw in

O(nm).

3.3.4 Relaxing the problem for further speedup

So far, we have considered finding the best sparse structure align-

ment triple. In practice, it is usually sufficient to find some (not nec-

essarily sparse) triple that is at least as good as any sparse triple. For

solving the relaxed problem, analogously to the optimization of

PMcomp, we combine the computation of all matrices

Ma1b1 ; . . . ; Ma‘b‘ , where aL
q ¼ i and bL

q ¼ k for 1�q� ‘ and posi-

tions i and k. For all these matrices, we consider an entry iff it is a

represented entry of any of the matrices. Consequently, each consid-

ered entry would have been considered by the first algorithm at least

once, but possibly several times for different matrices Maqbq .

Although, thus, we do not increase the complexity, we save

A

B

Fig. 3. (A) Example alignment. Due to stacking effects, the probability of a

base pair a3 in the loop closed by a2 (loop of single structure) is much higher

than its probability in the loop closed by a1 [loop of the consensus structure

fða1;b1Þ; ða3;b2Þg]. (B) Computing represented entries in the sparsified algo-

rithm. We show the matrix Mab; the rounded bars left and on top of the matrix

symbolize the represented positions for a and b; the gray areas contain the

represented entries for Mab. In our example, the entry Mabði ; kÞ recurses

(solid arrows) to unrepresented entries Mabði � 1; k � 1Þ; Mabði ; k � 1Þ,
Mabði � 1; kÞ and MabðaL

1 � 1;bL
1 � 1Þ (white boxes); the latter via matching

base pairs; their left ends correspond to the dashed box at ðaL
1 ;b

L
1 Þ. The num-

bers 1-4 at the arrow heads refer to the respective recursion case. The unrep-

resented entries are computed from represented entries (dashed arrows to

black boxes), each in constant time

2494 S.Will et al.



computation time in the latter case. This algorithm searches com-

pletely through all sparse structure alignment triples. However, it

can not guarantee that the triple is sparse. For example, a solution

could match a base that is not represented for a predicted base pair

a1 (a1 2 S), but is represented for an (unpredicted) base pair a2

(a2 62 S) that shares the left end with a1 (aL
1 ¼ aL

2).

3.4 Multiple alignment
To construct multiple alignments, we suggest a progressive align-

ment pipeline based on the pairwise SPARSE algorithm. There, we

apply SPARSE to construct the guide tree and to align profiles in

each progressive step. Unlike PMmulti, the multiple alignment

extension to PMcomp (Hofacker et al., 2004), which otherwise

applies a similar strategy, we apply RNAalifold (Hofacker et al.,

2002; Bernhart et al., 2008) to compute ‘profile’ consensus dot plots

in the progressive phase.

For aligning k sequences with maximal length n, we start by

computing pairwise alignments between all pairs of the input

sequences. Because the required ensemble probabilities depend only

on the single sequences, they are precomputed for each sequence.

Thus, all pairwise alignments are performed in Oðkn3 þ k2n2Þ time.

Then, the pipeline constructs a guide tree in Oðk2Þ time by UPGMA

(Gronau and Moran, 2007). In each step of the progressive

alignment, RNAalifold computes all required ensemble probabilities

in Oðn3Þ and SPARSE calculates an alignment in Oðn2Þ (We

extended RNAalifold to compute the additional joint probabilities

without changing the complexity.). Thus, the progressive alignment

takes Oðkn3 þ kn2Þ time, resulting in total time Oðkn3 þ k2n2Þ.
In comparison, the corresponding pipeline for LocARNA requires

Oðkn3 þ kn4Þ time.

4 Results

4.1 Speedup and alignment quality
We evaluated our implementation of SPARSE on the Bralibase 2.1

(Wilm et al., 2006) benchmark sets k2 and k3, which consist of pairwise

and three-way alignments, respectively. We compared SPARSE to

LocARNA and RAF; For set k2, which contains only short and

medium-sized RNAs of �110nt average length, SPARSE and RAF

achieve similar speed ups over LocARNA (Table 1) (For SPARSE,

we used these values: h1¼1e-3, h2¼5e-5, h3¼1e-4, bbase¼�900,

cbase¼�3500, bloop¼�900 and cloop¼�350; for LocARNA and

RAF, we used default settings.). For each alignment tool, Figure 4 shows

the dependency of alignment quality on sequence identity across k2; for

each benchmark instance, the quality is measured as similarity to the

Rfam-derived reference alignment reported as sum-of-pairs score (SPS)

by compalignp (Wilm et al., 2006). The dependencies are estimated

by non-parametric regression (lowess; Cleveland, 1981). This resulting

curve visualizes the approximate average SPS at each sequence identity.

To furthermore visualize the distribution of the SPS values, we iterated

the lowess method both on the elements above and below of the main

lowess curve. LocARNA and SPARSE show qualitatively similar per-

formance; across the entire range of sequence identities, we observe a

largely constant quality offset, where both tools maintain a high align-

ment quality even for low sequence identities. In contrast, the quality of

RAF alignment drops dramatically when sequence similarity decreases;

we conjecture that this is a consequence of the strong sequence-based

heuristics in RAF. Our benchmarks on k3 (Supplementary Fig. S1) sug-

gest that this behavior extends to multiple alignment. Although all

RNA comparison tools introduce some form of time-quality trade-off,

remarkably, in terms of alignment quality SPARSE and RAF behave

strongly different at very similar run times.

4.2 The SPARSE model improves folding
Moreover, we studied the effect of the novelties in the SPARSE

alignment model. Recall that only SPARSE maintains the full flexi-

bility of Sankoff’s approach in the lightweight model, while all pre-

vious methods restrict Sankoff’s model by disallowing loop

insertions and deletions. Furthermore, the sparsification of SPARSE

is expected to affect structure prediction (cf. Fig. 3A.) Comparing

our implementations of SPARSE and LocARNA enables isolating

these effects, since by design these implementations behave as simi-

lar as possible otherwise. The quality of each predicted structure is

measured as Matthews Correlation Coefficient (MCC; Matthews,

1975) relative to the Rfam-derived reference structure. For each

sequence of the benchmark, we derive reference structures from

Rfam, by constrained folding of the associated Rfam consensus

structure of the sequence. We compute MCC values for predictions

by SPARSE and LocARNA across k2. Figure 5 compares the struc-

ture prediction quality by SPARSE and LocARNA. Visualized by the

non-overlapping notches, there is strong evidence for improvements

(Chambers et al., 1983) across all sequence identity ranges covered

by the benchmark set. For example, these effects are illustrated well

by RNAs of the family gcvT (Appendix).

Although SPARSE improved prediction quality and speed over

LocARNA, these results suggest even more general conclusions.

That is, the improvements can be directly ascribed to the single dif-

ferences of the tools: sparsification and model flexibility.

Table 1. Total run-time and speed up of pairwise alignments due to

sparsification across Bralibase 2.1 set k2

Tool Total

time (s)

Mean

time (s)

Speedup

(versus LocARNA)

LocARNA 13400 1.49 1.0

SPARSE 3600 0.40 3.7

RAF 3200 0.36 4.2

Fig. 4. Alignment quality (measured by SPS) at different sequence identities

for pairwise alignments (Bralibase 2.1 set k2). The curves are lowess curves

(Cleveland, 1981) through data points for each benchmark instance. The thin

lines visualize the distribution of scores by estimating the respective instance

averages above and below of the main lowess curve
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5 Discussion

We presented a novel method for simultaneous alignment and fold-

ing of RNAs. The relevance of this method is 2-fold. First, we devel-

oped the first full-featured lightweight variant of the Sankoff model.

This fundamentally improves over the lightweight model of

PMcomp. Because this model drastically lowered the computational

burden of simultaneous alignment and folding, it has been adopted

by many successful RNA alignment approaches. However, all of

these methods lack the full flexibility of the Sankoff model; for the

first time, SPARSE combines this flexibility with lightweight compu-

tation. Second, we present a novel method to speed up Sankoff-style

alignment that is purely based on the structure ensemble of RNAs;

in particular, it does not have to resort to sequence-based heuristics,

which could compromise the alignment quality. We showed that by

sparsification based on ensemble probabilities of unpaired bases and

base pairs in specific loops, simultaneous alignment and folding

requires only quadratic time.

Performing Bralibase 2.1 benchmarks, we demonstrated that,

also in practice, the method provides a profound speed up. At simi-

lar speed as one of the fastest known simultaneous alignment and

folding tools RAF, SPARSE maintains high alignment and folding

quality for the ‘twilight’ zone of RNAs with low sequence identity,

which are particularly hard to align. Finally, these benchmarks (and

concrete examples, see Appendix) suggest that the added expressiv-

ity of the novel lightweight model improves the folding accuracy.
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equally to this work.

Torarinsson,E. et al. (2007) Multiple structural alignment and clustering of

RNA sequences. Bioinformatics, 23, 926–932.

Tseng,H.-H. et al. (2009) Finding non-coding RNAs through genome-scale

clustering. J. Bioinform. Comput. Biol., 7, 373–388.

Will,S. et al. (2007) Inferring non-coding RNA families and classes by

means of genome-scale structure-based clustering. PLoS Comput. Biol., 3,

e65.

Will,S. et al. (2012) LocARNA-P: accurate boundary prediction and improved

detection of structural RNAs. RNA, 18, 900–914.

Wilm,A. et al. (2006) An enhanced RNA alignment benchmark for sequence

alignment programs. Algorithms Mol. Biol., 1, 19.

Fig. 5. Structure prediction quality measured by MCC within different ranges

of average pairwise sequence identity (APSI) shown as boxplots. (Bralibase

2.1 set k2) whiskers are extended up to one interquartile range from the

boxes

2496 S.Will et al.


	btv185-M1
	l
	l

