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Abstract

Motivation: DNA methylation analysis suffers from very long processing time, as the advent of

Next-Generation Sequencers has shifted the bottleneck of genomic studies from the sequencers

that obtain the DNA samples to the software that performs the analysis of these samples. The exist-

ing software for methylation analysis does not seem to scale efficiently neither with the size of the

dataset nor with the length of the reads to be analyzed. As it is expected that the sequencers will

provide longer and longer reads in the near future, efficient and scalable methylation software

should be developed.

Results: We present a new software tool, called HPG-Methyl, which efficiently maps bisulphite

sequencing reads on DNA, analyzing DNA methylation. The strategy used by this software consists

of leveraging the speed of the Burrows–Wheeler Transform to map a large number of DNA

fragments (reads) rapidly, as well as the accuracy of the Smith–Waterman algorithm, which is

exclusively employed to deal with the most ambiguous and shortest reads. Experimental results

on platforms with Intel multicore processors show that HPG-Methyl significantly outperforms in

both execution time and sensitivity state-of-the-art software such as Bismark, BS-Seeker or

BSMAP, particularly for long bisulphite reads.

Availability and implementation: Software in the form of C libraries and functions, together with

instructions to compile and execute this software. Available by sftp to anonymous@clariano.uv.es

(password ‘anonymous’).

Contact: juan.orduna@uv.es or jdopazo@cipf.es

1 Introduction

DNA methylation is an important mechanism of epigenetic regula-

tion in development and disease. It is a heritable modifiable chem-

ical process that affects gene transcription, and it is associated with

other molecular markers (e.g. gene expression) and phenotypes (e.g.

cancer or other diseases) (Jones, 2013). Although many methods for

DNA methylation profiling have been developed, only bisulphite

sequencing gives rise to comprehensive DNA methylation maps at

single-base pair resolution (Laird, 2010). Bisulphite treatment con-

verts unmethylated cytosines (Cs) into thymines, which gives rise to

C-to-T polymorphisms after subsequent polymerase chain reaction

(PCR) amplification, while leaving methylated cytosines unchanged.

By aligning and comparing bisulphite sequencing reads to the gen-

omic DNA sequence, it is possible to infer DNA methylation

patterns at base pair-resolution.

Moreover, the introduction of new DNA sequencing technology,

known as Next-Generation Sequencing (NGS), now makes it

possible to sequence the genomic DNA in a few days, as well as at a

very low cost. Current NGS sequencers can sequence short DNA or

RNA fragments of lengths usually between 50 and 400 nt, though

new sequencers with longer fragment sizes are being developed.

Primary data produced by NGS sequencers consist of hundreds of
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millions or even billions of short DNA fragments which are called

reads. This big data trend has shifted the pressure from the sequencers

to the software analysis tools (Fonseca et al., 2012), which should be

scalable enough to process increasing volumes of methylation data

with acceptable sensitivity and reasonable execution times. Several

software tools for methylation analysis have been proposed, amongst

which Bismark (Krueger and Andrews, 2011), BS Seeker (Chen et al.,

2010), BSMAP (Xi and Li, 2009) and RRBSMAP (Xi et al., 2012) can

be cited as the state-of-the-art, due to their sensitivity and/or execution

times. However, as sequencers are expected to provide longer and lon-

ger reads, the performance of these software tools decreases either in

sensitivity and/or in execution times. Thus, there is an urgent need for

a software tool that properly scales not only the reads lengths but also

the amount of reads to be processed.

In this article, we present HPG-Methyl, a new software tool for

mapping and determining the methylation state of bisulphite reads.

Like other existing tools (Krueger and Andrews, 2011), HPG-

Methyl is based on coding both the reference genome and the reads

to be mapped with only three ASCII characters, in order to avoid

the mapping problems generated by the methylated cytosines.

However, it includes an innovative strategy that combines an effi-

cient algorithm for those reads with a low rate of mutation errors,

insertions or deletions (EIDs), and an algorithm with notably

improved sensitivity that correctly aligns reads with a high rate of

EIDs. This software tool (HPG-Methyl) shows excellent sensitivity

and remarkable parallel performance for both short and long bisul-

phite reads, presenting runtimes that linearly depend on the number

and the length of reads. HPG-Methyl uses a parallel pipeline similar

to HPG-Aligner (Martı́nez et al., 2013; Tárraga et al., 2014). This

parallel pipeline aligns the reads first by using the Burrows–Wheeler

Transform (BWT) (Li and Durbin, 2009), next reads that are still

unmapped are aligned with the Smith–Waterman algorithm (SWA)

(Smith and Waterman, 1981). As BWT is faster but less precise than

SWA, we employ the former in the early stages of the process, to ob-

tain a rapid mapping of a large number of reads (those which con-

tain few EIDs). SWA is applied in the final stages, to reliably map

ambiguous reads. However, HPG-Methyl adds some important im-

provements with respect to the parallel pipeline of the HPG-Aligner:

firstly, in this case the input data are bisulphite reads, rather than

RNA reads. Therefore, different transformations are carried out on

each read in order for them to be correctly processed. Secondly,

under certain conditions the reads which are unmapped after the

BWT stage are processed in a different way, rather than using the

SWA. Hence, the cost of aligning these reads is greatly reduced,

making this software scalable with the length of the reads.

The rest of the article is organized as follows: first, Section 2 de-

scribes the approach used for mapping the bisulphite reads. Next,

Section 3 describes the baseline version of the parallel pipeline im-

plemented by HPG-Methyl, as well as different improvements added

to the baseline version of the parallel pipeline, in order to develop

software that is scalable with the length of the reads, while keeping

the same sensitivity. Section 4 presents detailed experimentation,

evaluating the performance of the proposed software and comparing

it against the most commonly used software tools for the analysis of

methylation data. Moreover, comparisons are performed with simu-

lated datasets as well as real datasets. Finally, Section 5 presents

some concluding remarks and future work to be carried out.

2 Approach

Bisulphite treatment converts unmethylated cytosines (Cs) into thy-

mines, which gives rise to C-to-T polymorphisms after subsequent

PCR amplification, while leaving methylated cytosines unchanged.

Nevertheless, PCR amplification can produce methylated sequences

from the negative thread, and there are several possibilities. For ex-

ample, let us consider the methylated DNA sequence shown in the

upper left-hand part of Figure 1. We have coloured the methylated

cytosines of that sequence in red, the non-methylated cytosines in

yellow and the complementary guanines (in the opposite strand) of

the non-methylated cytosines in green.

The upper right-hand part of Figure 1 shows the bisulphite-treated

reads that a sequencer would obtain from the original sequence. The

copy would have all the non-methylated cytosines turned into uracils

(thymines). Finally, the lower part of this figure shows the four pos-

sible reads after PCR amplification. These four possibilities include

the bisulphite-treated reads and their complementary reads (depend-

ing on the strand on which the PCR is applied). The first two se-

quences correspond to the reads derived from the forward strand (the

direct and complementary sequence, respectively), and the other two

to the reads derived from the reverse strand.

The problem that arises when trying to align any of these four

possible bisulphite reads to the reference genome sequences shown

in the upper left-hand part of Figure 1 (which do not include infor-

mation about methylated cytosines, nor are they bisulphite treated)

is that none of them completely matches the correct positions in the

reference genome sequence. This is due to the fact that the original

non-methylated Cs in the reference genome were converted to Ts in

the bisulphite reads (also coloured in yellow in order to show the

corresponding nucleotide in the reference genome), or their comple-

mentary Gs in the opposite strand in the reference genome are now

As in the reads (also coloured in green). Thus, for example, the last

read in the lower part of Figure 1 matches the forward strand of the

reference genome sequence, except for the last nucleotide (A), which

in the forward strand of the reference genome is a G.

In order to avoid this alignment problem, we propose an align-

ment based on an alphabet composed of three letters (ACT or AGT)

instead of a four-letter alphabet (ACGT). This three-letter alphabet

should be applied to both the reference genome and the bisulphite

reads. The first step is to first convert all the Cs in the reference gen-

ome into Ts, providing what we will denote as Genome_CT, and

then convert all the Gs in the original reference genome into As. We

will denote this latter conversion as Genome_GA. As the reference

genome contains only the forward strand, the sequence example of

the reference genome shown in the upper left-hand part of Figure 1

would be converted into the sequences ATTGTATG (Genome_CT)

and ACTACATA (Genome_GA).

The second step is to obtain the four possible versions of each

read [the two possible conversions (C-T or G-A) and their reverse

complement sequences]. Thus, if we consider the first of the four

bisulphite, PCR-amplified reads shown in the lower part of Figure 1

(sequence ACTGTATG), the second step will generate the reads

Fig. 1. DNA sequence and bisulphite-treated reads produced by NGS
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ATTGTATG (C-T conversion, denoted as read_CT), TAACATAC

(reverse complement of C-T conversion, denoted as

read_comp_CT), ACTATATA (G-A conversion, denoted as

read_GA) and TGATATAT (reverse complement of G-A conversion,

denoted as read_comp_GA). The reverse complement sequences of

the converted reads are needed because the reference genome only

contains the forward strand; therefore, we need the reverse comple-

ment version of the read in order to align it to the reference genome

assuming that it matches the reverse strand. Worth mentioning is

that if we obtain the 16 possible conversions for the four bisulphite,

PCR-amplified reads, only 8 different reads will be generated.

Once all the conversions are performed, a key aspect for the effi-

cient alignment of the reads is the alignment strategy. As the refer-

ence genome only contains the forward strand, it may seem that the

best way to take advantage of current multicore architectures is to

simultaneously perform the alignment of the read and its comple-

mentary sequence on the reference genome. However, this strategy

cannot be applied to bisulphite-treated reads, as they will not per-

fectly match the reference genome, as shown in the example in

Figure 1. Instead, we propose the alignment of the reads in the gen-

ome version that has the same alphabet. That is, the reads denoted

as read_CT and read_comp_GA, that contains the alphabet {AGT},

will be aligned on the Genome_CT version of the reference genome,

and the other two reads will be aligned on the Genome_GA version.

The alignments found for read_CT and read_GA will be assumed to

occur on the forward strand, whereas the alignments found for the

read_comp_CT and read_comp_GA will be assumed to occur on the

reverse strand, as they are complementary to the converted original

reads. This strategy will result in a set of four possible alignments

for each read.

3 Methods

3.1 Baseline parallel framework
HPG-Methyl implements the alignment strategy described in Section

2. However, in order to take advantage of the parallel architectures

available in current computers, it follows a very similar parallel

pipeline to the one used by HPG-Aligner (Martı́nez et al., 2013;

Tárraga et al., 2014), but adapted to the specific features of methy-

lation analysis. The implementation described in this section repre-

sents the baseline version of HPG-Methyl that will be used later as a

reference. In this section, we describe the parallel pipeline and the

specific features that this pipeline contains for methylation analysis.

One of the main features is the fact that the transformation of the

original bisulphite read that is being processed is always kept in all

the stages of this pipeline. It is necessary to properly detect on which

strand the methylation is located, and which weights matrix should

be applied when the SWA is applied (SWA stage).

The HPG-Methyl baseline pipeline maps bisulphite reads into

the reference genome, with the mapping process being divided into

stages A–F, illustrated in Figure 2. The interaction between two con-

secutive stages follows the well-known producer–consumer model,

and it is synchronized through a shared data structure, where the

producer inserts work that is to be processed by the consumer.

3.1.1 Stage A: load and generate input files

Initially, the bisulphite reads are stored in a disk file following the

standard FASTQ format (Cock et al., 2010). Due to the large num-

ber of reads involved per experiment (tens of millions) and the

information provided per read, typical file sizes can reach up to 200

GB, greatly exceeding the memory capacity of most current

workstations. Thus, the main task in this stage is to retrieve data

from the disk in blocks, hereafter referred to as batches of reads,

which can be processed independently from each other. In this way,

the pipeline can take advantage of the degree of parallelism available

in the underlying computer architecture. The batches are then stored

in the Read queue for later use in the subsequent stage. The batches

of reads are kept in main memory in an array list, which accommo-

dates fast serial and indexed access. Among other information, this

array records the header, sequence, size, and quality of each read. It

should be noted that bisulphite reads apparently do not differ very

much from other kinds of reads. The only difference is that bisul-

phite reads contain a much lower percentage of cytosines (only

methylated cytosines), as all the nonmethylated cytosines are trans-

formed into thymines.

Besides the original bisulphite reads, we need other input files: a

compressed version of the reference genome, a compressed version

of the original reference genome with all the Cs converted to Ts

(Genome_CT) and another compressed version with all the Gs con-

verted to As (Genome_GA). It should be noted that all three ver-

sions only contain the forward strand of the genome, and therefore

the information about the reverse strand will have to be generated

by converting the positive one. In order to be properly processed,

the files containing the three versions of the reference genome have

to first be pre-processed by applying the Burrows–Wheeler algo-

rithm, so obtaining the indexes of all the genome positions through

a suffix tree.

Finally, the context information about the Cytosines in the refer-

ence genome has to be obtained. Thus, both the Genome_CT and

the Genome_GA files are processed as input files, and two binary

files denoted as Context_CT and Context_GA are generated. These

binary files code the context information with two bits for each nu-

cleotide in the input file as follows: the value ‘00’ means that the nu-

cleotide under consideration in the input file is not a C in the case of

input file Genome_CT, or it codes the absence of a G in the case of

input file Genome_GA. The value ‘01’ means that the context is CG

(Context_CT) of GC (Context_GA). The value ‘10’ means that the

context is CHG (or GHC), and finally the value ‘11’ means that the

context is CHH (or GHH), where ‘H’ means a nucleotide different

from G (or different from C in Context_GA). That is, the context in-

formation looks for Gs within the two next nucleotides to the right

of each C (or it looks for Cs within the two next nucleotides to the

left of a G) in the input files.

3.1.2 Stage B: BWT

In this stage, the four sets of possible alignments described in Section

2 for each original read are computed by using the BWT.

Fig. 2. Pipeline scheme of the Methylation mapper
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As described in Martı́nez et al. (2013), the BWT stage performs a

fast mapping of reads to the genome, using our own implementation

of the BWT, which allows a single EID within the whole read. The

procedure extracts a batch from the read queue, and it applies the

four possible conversions to each original bisulphite read [the two

possible conversions (C-T or G-A) and their complementary se-

quences], as described in Section 2. The reads denoted as read_CT

and read_comp_GA, which contain the alphabet {AGT}, are

mapped onto the Genome_CT version of the reference genome. The

other two conversions of each read, which contain the alphabet

{ACT}, are aligned on the Genome_GA version. That is, four pos-

sible mappings should be searched for each bisulphite read. The

mapping is performed by using the BWT-based algorithm, allowing

up to 1 EID per read. If the read is successfully mapped, then this

stage creates an alignment record for each mapping which identifies

the chromosome, among other information, with the initial and final

positions of the read within the chromosome, and the strand where

the read has been mapped (those mappings found in conversions

read_comp_GA or read_comp_CT are marked to be mapped on the

negative strand, whereas those found in conversions read_CT or

read_GA are marked to be mapped on the positive strand. Next,

these mappings are transferred directly to the methylation phase).

Otherwise, the information that identifies the unmapped read is

stored in a target array. The alignment records and the target array

make up a single data structure with the batch of reads, which is

passed to the next stage once all the reads in the batch have been

processed through the BWT queue (which contains both mapped

and unmapped reads). Those reads which are unmapped in this

stage will be processed in the seeding stage (Stage C), whereas those

reads that have been mapped (in any of their conversions) will be

processed in the POST PAIR stage. It should be noted that all the

possible transformations of the unmapped reads are passed to the

next stages.

3.1.3 Stages C and D: seeding and CAL seek

These stages are identical to the analogue stages in the HPG-Aligner

software (Martı́nez et al., 2013). Stage C consists of, given a batch

in the BWT queue, processing the unmapped reads, leaving un-

touched those reads that were already mapped in the previous stage.

Each unmapped read from the batch is split in this stage into a num-

ber of adjacent ‘fragments’, hereafter referred to as seeds. The real

datasets used are the ones in the European Nucleotide Archive

(http://www.ebi.ac.uk/ena/data/view/SRR309230 and SRR837425).

Next, the BWT-based algorithm is again employed to map each one

of these seeds into the reference genome, though this time no EIDs

are permitted. Once the full batch of reads has been processed, the

results are stored as part of the same data structure and passed to

the next stage through the Region queue. Next, Stage D processes

the batch, skipping the reads that were previously mapped in stage

B. For each unmapped read in the batch, this stage uses the seeds

produced by stage C to obtain a list of candidate alignment locations

(CALs) or regions, which define potential mappings of that read.

We have considered seed lengths, number of seeds and CAL sizes in

a proportional way to the average read length in each dataset, in

order to properly scale the parallel pipeline to the length of the

reads.

3.1.4 Stage E: SWA

The purpose of this stage in HPG-Methyl consists, exclusively, of

mapping the read under consideration, starting from the CALs. In

order to achieve this goal, we use the SWA to align the whole read

against each CAL region of the genome. The SWA will return a nu-

merical value indicating the degree of similarity between the strings

under consideration (the read and the CAL region of the genome).

This value will have to be higher than a threshold value (determined

by the length of the read), in order to consider that the read has been

aligned. Nevertheless, the SWA should be properly modified with re-

spect to the implementation used in Martı́nez et al. (2013) in order

to keep its well-known sensitivity in the case of methylation ana-

lysis. Specifically, the matrix of relative weights assigned to the com-

parisons of characters of the two strings under consideration should

be modified, to take into account on which transformation the

CAL was found. If the CAL region was found on read_CT or

read_comp_GA transformations, which contain the alphabet

{AGT}, then the original bisulphite read should be aligned on the

Genome_CT. Table 1 should be used to compute the numerical

value for the alignment. The first row on this table shows the four

possible nucleotides in the reference genome, and the left-most col-

umn shows the possible nucleotides in the string to be aligned. The

values in the matrix correspond to the relative weights assigned to

all the possible occurrences of comparisons between characters, tak-

ing into account the probability of appearance of that symbol on

both the read and the genome.

As we are looking at methylated reads, the occurrence of a C in

both strings denotes that a methylated cytosine has been aligned,

and therefore the alignment of that string should be ‘rewarded’.

Additionally, the mismatches of Cs with Ts and Ts with Cs should

be ‘punished’ to a lower degree, as they represent the finding of non-

methylated cytosines. An analogous table should be used when the

transformations on which the CAL have been found are read_GA or

read_comp_CT. In this case, the original bisulphite read should be

aligned on the Genome_GA version of the genome.

3.1.5 Stage F: methylation status

The output of the previous stage consists of two lists of alignments

for each read, one coming from the read_CT and read_comp_CT

conversions, denoted as CT_List, and the other from the read_GA

and read_comp_GA conversions, denoted as GA_List. The first step

in this stage is to filter all the duplicate alignments that are present

in both lists, in order to remove redundant information. Next, for

each alignment in these lists, the second step consists of annotating

the conversion and the strand on which the alignment was found.

Depending on these two criteria, we use the methylation context in-

formation contained in the Context_CT and Context_GA files to

determine the methylation present in that read. If the alignment is in

the CT_List and is in the forward strand, or the alignment is in the

GA_List and it is in the reverse strand, then the methylation context

file Context_CT will be used, meaning the methylation is in the

same strand as the alignment. On the other hand, if the alignment is

in the GA_List and is in the forward strand, or the alignment is in

Table 1. Relative weight of matches and mismatches used in

the SWA

Genome

A C G T N

Read A 5 �4 �4 �4 �4

C �400 500 �400 �400 �4

G �4 �4 5 �4 �4

T �2 2.5 �2 2.5 �4

N �4 �4 �4 �4 �4
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the CT_List and is in the reverse strand, then the methylation con-

text file Context_GA will be used, meaning the methylation is in the

opposite strand to the alignment. The methylation information is

then written on an output text file, denoted as F in Figure 2.

3.2 Improved parallel framework
We have added different improvements to the baseline version

shown above. In this section, we describe these improvements. The

stages that are not modified in the improved version (with regard to

the baseline version) are not mentioned, but they are present in the

improved version of the pipeline.

3.2.1 Stage B: BWT

We have improved this stage by exploiting the information present

in the original bisulphite read, thus avoiding the unnecessary map-

ping processes of those transformations that are very unlikely to

happen. In order to achieve this goal, HPG-Methyl computes the

number of Cs and Gs in the original read prior to the alignment of

the four possible transformations of the original read. The idea is to

avoid the alignment of certain transformations of the original read,

depending on the relative number of appearances of Cs and Gs in

the read. We have defined Nc as the number of Cs in the original

bisulphite-treated read, divided by the sum of Cs and Gs in the ori-

ginal read. In the same way, Ng is computed as the number of Gs

divided by the sum of Cs and Gs in the original read. We have

experimentally analyzed the reads in real datasets (SRR309230),

obtaining in all cases histograms very similar to the ones shown in

Figures 3 and 4. Specifically, the X-axis on these figures shows the

percentage values that each variable (Nc and Ng) can reach, with a

precision of 0.01 (that is, from 0.00 to 1.00). On the Y-axis, these

figures show the number of reads in the real dataset that show each

of the percentage values and have been mapped.

Figures 3 and 4 show that the vast majority of reads have a high

percentage of either Gs or Cs, over the sum of both. Thus, we have

developed a ‘filter’ to process only the most likely transformations.

In this stage, if Ng is lower than a threshold value Th (experimen-

tally set to 0.8, with regard to the results shown in the figures), then

the read_CT and read_comp_CT transformations are aligned

against Genome_CT and Genome_GA, respectively. Similarly, if Nc

is lower than the threshold value Th, then the read_GA and

read_comp_GA transformations are aligned against Genome_GA

and Genome_CT, respectively (it should be noted that the histo-

grams indicate when the threshold value is exceeded, the opposite

transformations must be avoided because most of the reads only

need two of the transformations). As Nc ¼ 1�Ng, the alignment of

the four possible transformations of the original read will be per-

formed when both Nc and Ng are lower than Th. Let us assume, for

example, that Th¼0.8, Nc ¼ 0:9, and Ng ¼ 0:1. In this case, Ng is

lower than Th but Nc is higher than Th. Therefore, only the

read_CT and read_comp_CT transformations will be aligned, as the

histograms suggest. We have denoted this version of the BWT stage

as the ‘filter’. It should be noted that the idea behind this filtering

can be applied not only to the BWT but also to any software or algo-

rithms that process bisulphite-treated reads.

3.2.2 Stage E: SWA/direct search

We have added another improvement in the SWA stage, which takes

advantage of the information provided by stages C and D. One of the

main problems with using the SWA is that its computational cost is

proportional to the length of the reads being analyzed. This feature

prevents any software based on the SWA from achieving scalability

with the length of the read. In order to minimize this problem, we

have modified the SWA stage. The CAL stage provides a CAL region

formed by some seeds (that have been already aligned with BWT

algorithm) and some regions located between seeds. In the improved

version of the SWA stage, which we have denoted as ‘SW’ stage, the

SWA algorithm is not executed for the entire read. Instead, the length

of each region (in the genome) between two consecutive seeds (already

aligned by means of BWT) is analyzed. If the length of that region in

the genome is identical to the length of the region in the read to be

aligned, then this probably means that neither insertions nor deletions

are found, and only mismatches are found. Therefore, a direct com-

parison between the characters of the genome and the characters in

the read is performed for that region. If the length of the region be-

tween the seeds is different, then the SWA is applied to align that re-

gion of the read on that region of the genome. This process is repeated

until all the regions between two consecutive seeds are processed. If

there are still some unmapped regions at the beginning or end of the

read, the same process is applied, until the whole read is aligned. As

the SW stage only uses the SWA for regions between seeds, the length

of the strings analyzed by the SWA no longer depends on the length of

the read, but on the length of the unmapped regions in the CAL.

Additionally, there are some regions where SWA is not used. As a re-

sult, the pipeline becomes more scalable with the length of the reads,

as shown in Section 4.

4 Performance evaluation

This section presents a comparative performance evaluation among

the different versions of HPG-Methyl, as well as a comparative per-

formance evaluation between HPG-Methyl and other well-known

Fig. 3. Histogram for Nc

Fig. 4. Histogram for Ng
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Methylation software. We have measured the performance of the

software in terms of both sensitivity and execution time. For per-

formance evaluation purposes, we have used synthetic datasets, arti-

ficially extracted from the reference genome. In this way, we know a

priori the correct alignment for each of the reads. Also, we have

used real datasets obtained from the European Nucleotide Archive

(SRR309230 and SRR837425). In order to make the proposed soft-

ware publicly available, the source code of the two versions of the

HPG-Methyl software (baseline and improved), as well as all the

datasets (both real and synthetic) used to obtain the results shown in

this section, can be downloaded by an anonymous sftp (password

‘anonymous’) from the host clariano.uv.es. The two versions of the

source code are packed in each.tar.gz compressed file in the /src dir-

ectory. There is also a README.txt file explaining the installation

instructions, the compilation and execution options of the source

code, the parameter values used in the HPG-Methyl software to ob-

tain the results shown in this section, as well as the commands used

for generating the synthetic datasets from the human genome.

Unlike other existing software tools (for example, BSMAP can

only use eight cores), HPG-Methyl can take advantage of all the

existing cores in current multicore processors, providing shorter exe-

cution times particularly for datasets made up of very long reads.

Therefore, instead of running all the tools using the same number of

processor cores (therefore limiting the number of cores to the one

that the worst tool can exploit), we have used as many processor

cores as each piece of software allows, for maximum speedup.

4.1 Version comparison
Figure 5 shows the comparative performance evaluation, in terms of

mapping efficiency (sensitivity) achieved by the different versions of

HPG-Methyl when executed with a synthetic dataset of different

read lengths. All the datasets in this case have mutation rate of 0.1%

with respect to the reference genome, and they are composed of 2

million reads. The X-axis shows the read lengths under consider-

ation in the different synthetic datasets, and the Y-axis shows the

percentage of correct mappings achieved by HPG-Methyl. We have

looked at three different versions of HPG-Methyl for evaluation

purposes: the baseline version, corresponding to the plot labelled

‘original’ in the figure, the SW version, and the version including

SW and the filter in the BWT stage. Each of the plots in the figure

shows one of these versions. Figure 5 shows that there are no signifi-

cant differences among the three versions in terms of sensitivity

when the mutation rate is 0.1%.

Figure 6 shows the execution times (in minutes) required by each

version of HPG-Methyl to process the datasets. This figure shows

the execution time in minutes on the Y-axis. The figure shows that

for read lengths shorter than 250 nt the SW and filter additions do

not actually improve on the execution times achieved by the baseline

version. However, for large read lengths (400 nt) the performance of

the baseline version largely decreases, whereas the improved ver-

sions clearly outperform the baseline version. Nevertheless, these re-

sults show short execution times, and therefore any variation does

not represent a significant amount of time in absolute values.

Figure 7 shows the results, in terms of mapping efficiency (sensi-

tivity), achieved by the different versions of HPG-Methyl for data-

sets with a mutation rate of 1% with respect to the reference

genome. This figure shows that for a high rate of mutations, the sen-

sitivity of both the SW and the SWþ filter versions is identical, and

lower than the baseline version. That is, the application of the SWA

to the entire read provides better sensitivity. Also, as could be ex-

pected, the filter does not affect sensitivity. Nevertheless, it is worth

mentioning that the sensitivity lost by the improved version does not

exceed 3% for short reads, and this difference decreases with the

length of the reads.

Finally, Figure 8 shows the execution times (in minutes) required

by each version of HPG-Methyl to process the datasets. In this case,

the plots are similar to those shown in Figure 6, except for the fact

that the plot for the version including the SW and the filter stages

provides the shortest execution times for all the lengths under con-

sideration. Moreover, for lengths of 250 and 400 nt, the differences

between this version and the other ones clearly increase, indicating

that this version is the most scalable with the length of the reads.

These results show that the most efficient version of HPG-Methyl is

the one including the SW and the filter stages, as it slightly reduces

software sensitivity, but greatly reduces the required execution time.

Additionally, the loss of sensitivity tends to decrease as the length of

the reads increases. Thus, in the rest of the article the version includ-

ing the SW and the filter stages will be denoted as HPG-Methyl.

4.2 Comparative study
In this subsection, we present a comparative study of HPG-Methyl

with other existing software tools for methylation analysis. We have

analyzed synthetic datasets with read lengths ranging from 100 to

800 nt. All the tests whose results are shown in this subsection have

been executed on a desktop computer comprising of an Intel

i7-3930 K processor (http://ark.intel.com/products/63697), with

Fig. 5. Software sensitivity for a synthetic dataset with 0.1% of mutations

Fig. 6. Execution times for a synthetic dataset with 0.1% of mutations
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6 cores and 12 threads, 48 GB of RAM, two hard disks each one

being 2 TB. Table 2 shows the sensitivity (in terms of the percentage

of reads aligned) that HPG-Methyl as well as Bismark, BSMAP and

BS-Seeker software have provided for synthetic datasets composed of

4 million reads with 0.1% of mutations. For each of the software

tools, there are two columns. The one labelled ‘R’ shows the percent-

age of reads that have been correctly aligned, and the column labelled

‘W’ shows the percentage of reads that have been wrongly aligned.

The sum of both columns is the total percentage of reads aligned.

HPG-Methyl and Bismark software have been executed using 12

threads (all the existing ones in the machine), whereas BSMAP and

BS-Seeker are only able to use 8 of the 12 threads. The ‘—’ value

means that the executions with datasets of that length did not finish

within three days, and were aborted because it makes no sense to

compare software tools with such long execution times. Table 2

shows that HPG-Methyl provides the greatest sensitivity; the percent-

age of correctly aligned reads being greater than 96% in the worst

case. Also worth mentioning is that HPG-Methyl yields incorrect

alignments for less than 0.06% of the reads, regardless of the read

length. Although Bismark yields a lower percentage of incorrectly

aligned reads, it yields a slightly lower percentage of correctly aligned

reads. Additionally, it can be seen that HPG-Methyl yields a lower

percentage of incorrectly aligned reads than BSMAP, particularly for

long reads (400 and 800 nt). Even for a short read length of 75 nt,

HPG-Methyl yields incorrect alignments for 0.01% of the reads,

whereas BSMAP yields incorrect alignments for 5.88% of the reads (a

factor of more than 58). This table also shows that HPG-Methyl,

Bismark and BS-Seeker yield similar sensitivity for all the read lengths

under consideration. However, BSMAP yields half the sensitivity for

read lengths of 400 and 800 nt. The reason for this behaviour is that

the maximum read length that BSMAP can process is 144 nt. For lon-

ger reads, this software exclusively uses the first 144 nt. Therefore, it

cannot yield good sensitivity for long reads.

Table 3 shows the execution times (in minutes) required to process

the synthetic dataset. Again, the ‘—’ value means that the execution

for that read length was aborted after 3 days. These results show that

HPG-Methyl is the fastest software for read lengths of 75 and 150 nt,

followed by BSMAP, which requires longer execution times. The

other two software tools provide execution times of 1 or even 2 orders

of magnitude. For read lengths of 400 and 800 nt, BSMAP requires

very similar execution times to those required for the shortest lengths,

as this tool exclusively processes the first 144 nt of each read, and

therefore longer reads do not affect the required execution time.

Among the rest of the tools, HPG-Methyl requires execution times 2

orders of magnitude lower than Bismark or BS-Seeker. If we take into

account both the sensitivity and the execution times, these results

show that HPG-Methyl yields the best results for this dataset, as

BSMAP only can process datasets with read lengths lower than

145 nt. We have performed the same evaluation with other synthetic

datasets, and the results obtained are similar; however, the results are

not shown here for the sake of brevity.

We have also tested the tools with a similar synthetic dataset

including a higher rate of mutations (1%), in order to test the ro-

bustness of the results. Table 4 shows the sensitivity achieved by the

software for this mutation rate. This table shows that HPG-Methyl

yields higher percentages of correctly aligned reads than the rest of

the tools for short read lengths (75 and 150 nt). For long reads,

HPG-Methyl yields similar percentages of correctly aligned reads to

Bismark, and higher percentages than BSMAP or BS-Seeker. Also, a

Fig. 7. Software sensitivity for a synthetic dataset with 1% of mutations

Fig. 8. Execution times for a synthetic dataset with 1% of mutations

Table 2. Comparative study of sensitivity on a synthetic dataset

with a mutation rate of 0.1%

Length (nt) HPG-Methyl Bismark

R W R W

75 96.31 0.06 89.57 0.01

150 99.20 0.03 95.15 0.00

400 99.90 0.02 97.66 0.00

800 99.96 0.01 98.51 0.00

Length (nt) BSMAP BS-Seeker

R W R W

75 93.9 5.88 92.07 0.11

150 96.92 2.39 96.40 0.03

400 48.49 50.84 98.07 0.01

800 48.78 51.21 — —

Table 3. Comparative study of execution times (min) required for

processing a synthetic dataset with a mutation rate of 0.1%

Length (nt) HPG-Methyl Bismark BSMAP BS-Seeker

75 1.283 63.436 3.464 118.229

150 1.600 106.338 3.230 139.766

400 2.916 244.733 3.464 315.765

800 9.266 1220.34 3.530 —
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comparison of this table with Table 2 shows that the tools under

consideration do not yield very different sensitivities when the rate

of mutations increases.

Next, Table 5 shows the required execution times (in minutes)

when the rate of mutations is 1%. This table shows that HPG-

Methyl requires the shortest execution times for read lengths of 75

and 150 nt. BSMAP requires constant execution times, and HPG-

Methyl requires execution times 1 order of magnitude lower than

those required by Bismark or BS-Seeker. These results are similar to

those shown in Table 3, demonstrating that a significant mutation

rate does not affect the performance of HPG-Methyl. Again, if we

take into account both sensitivity and execution times, these results

also show that HPG-Methyl yields the best results.

We have tested the behaviour of the software tools when the

number of reads in the dataset increases, not shown here due to

space limitations, and we have seen that the execution time required

by all the tools increases in a quadratic way with the number of

reads in the dataset, as could be expected.

Finally, we have tested the programmes with current real data-

sets (SRR309230 and SRR837425). These two datasets contain

16.6 million Homo sapiens bisulphite reads of 75 and 100 nt, re-

spectively. Table 6 shows the percentage of reads in the datasets that

have been mapped, provided by each of the programmes for these

real datasets. This table shows that HPG-Methyl and BSMAP yield

similar sensitivities for both datasets, and these sensitivities are

higher than those yielded by Bismark and BS-Seeker. In the case of

75 nt long reads, BSMAP seems to be slightly superior to HPG-

Methyl. However, reads used currently are longer than 100 nt, a

length for which HPG-Methyl provides a better percentage than

BSMAP. It must be taken into account that the percentage of incor-

rectly aligned reads yielded by HPG-Methyl is, at most, half of that

provided by BSMAP for synthetic datasets (Tables 2 and 4).

Therefore, if we assume similar behaviour for the 100 nt long reads,

then it is very likely that HPG-Methyl will yield a greater percentage

of correctly aligned reads compared to BSMAP. Table 7 shows the

execution times, (measured in minutes) required to provide the

alignments whose sensitivity is shown in Table 6. This table shows

that BSMAP requires the shortest execution times, whereas HPG-

Methyl requires slightly longer execution times and the other two

programmes require much longer ones. These results, together with

the sensitivity results, show that HPG-Methyl yields good sensitivity

while requiring short execution times for dataset with short reads,

similar to the ones provided by BSMAP.

5 Conclusions

HPG-Methyl is a new software tool for mapping and determining

the methylation state of bisulphite reads. HPG-Methyl shows excel-

lent sensitivity and remarkable parallel performance for both short

and long bisulphite reads, presenting runtimes that linearly depend

on the number and the length of reads. HPG-Methyl adds some im-

portant contributions for processing bisulphite reads: first, different

transformations are carried out on each read in order to correctly

process them. Second, all the reads are first processed with the

BWT, and then under certain conditions the reads which are un-

mapped after the BWT stage are directly processed. The use of SWA

is reduced to some strings of some reads, in order to make this soft-

ware scalable with the length of the reads. The performance evalu-

ation results show that HPG-Methyl yields good performance for

current, real datasets as well as for synthetic datasets containing

reads of relatively short lengths when compared to some other well-

known programmes for methylation analysis. Nevertheless, the

results for synthetic datasets containing long reads show that HPG-

Methyl yields the best sensitivity, while requiring one of the shortest

execution times. These results validate HPG-Methyl as a sensitive

and efficient software tool able to cope with real datasets with the

longer reads which are expected in the near future.
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Table 4. Comparative study of sensitivity on a synthetic dataset

with a mutation rate of 1%

Length (nt) HPG-Methyl Bismark

R W R W

75 93.37 0.62 88.30 0.1

150 96.87 0.80 94.59 0.08

400 97.55 0.48 97.55 0.1

800 97.58 0.43 98.45 0.08

Length (nt) BSMAP BS-Seeker

R W R W

75 91.36 6.5 89.11 1.71

150 90.68 2.67 92.68 0.37

400 45.29 48.05 76.22 0.08

800 48.87 51.13 — —

Table 5. Comparative study of execution times (min) for a synthetic

dataset with a mutation rate of 1%

Length (nt) HPG-Methyl Bismark BSMAP BS-Seeker

75 1.366 62.579 4.601 116.044

150 1.950 106.173 6.220 141.442

400 10.850 248.207 4.601 324.616

800 50.600 1246.89 4.159 —

Table 6. Comparative study of percentage of reads mapped on real

datasets

Dataset HPG-Methyl Bismark BSMAP BS-Seeker

SRR309230_1 87.71 71.81 89.21 84.18

SRR837425_1 82.75 68.42 82.84 77.35

Table 7. Comparative study of execution times (min) for real

datasets

Dataset HPG-Methyl Bismark BSMAP BS-Seeker

SRR309230_1 12.053 82.120 9.975 250.686

SRR837425_1 19.047 95.194 15.286 271.048

A parallel and sensitive software tool for methylation analysis 3137



References

Chen,P.-Y. et al. (2010) Bs seeker: precise mapping for bisulfite sequencing.

BMC Bioinformatics, 11, 203.

Cock,P.J.A. et al. (2010) The Sanger FASTQ file format for sequences with

quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res.,

38, 1767–1771.

Fonseca,N.A. et al. (2012) Tools for mapping high-throughput sequencing

data. Bioinformatics, 28, 3169–3177.

Jones,P.A. (2013) Functions of DNA methylation: islands, start sites, gene

bodies and beyond. Nat. Rev. Genet., 13, 484–492.

Krueger,F. and Andrews,S.R. (2011) Bismark: a flexible aligner and

methylation caller for bisulfite-seq applications. Bioinformatics, 27,

1571–1572.

Laird,P.W. (2010) Principles and challenges of genome-wide DNA methyla-

tion analysis. Nat. Rev. Genet., 11, 191–203.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with bur-

rows-wheeler transform. Bioinformatics, 25, 1754–1760.

Martı́nez,H. et al. (2013) Concurrent and accurate RNA sequencing on multicore

platforms. Technical report icc 2013-03-01. Universitat Jaume I, Castelln, Spain.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.
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