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Abstract

Motivation: We introduce Pycellerator, a Python library for reading Cellerator arrow notation from

standard text files, conversion to differential equations, generating stand-alone Python solvers,

and optionally running and plotting the solutions. All of the original Cellerator arrows, which repre-

sent reactions ranging from mass action, Michales–Menten–Henri (MMH) and Gene-Regulation

(GRN) to Monod–Wyman–Changeaux (MWC), user defined reactions and enzymatic expansions

(KMech), were previously represented with the Mathematica extended character set. These are

now typed as reaction-like commands in ASCII text files that are read by Pycellerator, which in-

cludes a Python command line interface (CLI), a Python application programming interface (API)

and an iPython notebook interface.

Results: Cellerator reaction arrows are now input in text files. The arrows are parsed by

Pycellerator and translated into differential equations in Python, and Python code is automatically

generated to solve the system. Time courses are produced by executing the auto-generated

Python code. Users have full freedom to modify the solver and utilize the complete set of standard

Python tools. The new libraries are completely independent of the old Cellerator software and do

not require Mathematica.

Availability and implementation: All software is available (GPL) from the github repository at

https://github.com/biomathman/pycellerator/releases. Details, including installation instructions

and a glossary of acronyms and terms, are given in the Supplementary information.

Contact: bruce.e.shapiro@csun.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cellerator describes biological interactions with a reaction-like

arrow-based input language. Input strings are converted into differ-

ential equations and integrated to produce numerical time-course

predictions using Mathematica (Shapiro et al., 2003). Extensions

include Cellzilla for two-dimensional tissue simulation (Shapiro

et al., 2013) and KMech for exact enzymatic expansion (Yang

et al., 2005).

There are many tools that convert reactions to differential equa-

tions and solve them, particularly in Python, but they do not use an

arrow-based language in the same manner as Cellerator. Examples

include PySCeS (Olivier et al., 2004), which has its own text model-

ing language; PyDSTool (Clewey, 2012) (for hybrid systems); and

pybrn (pybrn.sf.net, for SBML-like structures). Perhaps the

closest conceptually to Pycellerator are PySB (Lopez et al, 2013) and

SBML shorthand (Wilkinson, 2011). PySB is a rule-based system

with a collection of text language rules that are merged into Python

commands; models are built as Python programs. SBML Shorthand

is not a simulator; it is a pre-processor for converting models into

SBML, in which each reaction is represented by a single line of text.

In addition, a number of popular stochastic simulation tools are also

implemented in Python.
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Pycellerator also provides a simulation, modelling, programming

and analysis interface. In Pycellerator the modelling language corres-

ponds to (and extends) the arrow language introduced in Cellerator.

Each arrow corresponds to a Cellerator arrow, but it can now by

reprsented with ASCII arrow-like characters. The Pycellerator li-

brary provides a command line interface (CLI), an application pro-

gramming interface (API) and an iPython notebook interface (Perez

and Granger, 2007), so that users have a choice of Python program-

ming environments. Mathematica is not required.

2 Approach

Simulations require a model file (Supplementary Fig. S1), which is a

text file divided up into sections representing reactions, rate con-

stants, initial conditions and functions. Alternatively, models may

be generated from (or saved as) SBML (Hucka et al., 2003) or as leg-

acy Mathematica files. The model is parsed, converted to differential

equations and Python code is generated to perform the simulation.

This auto-generated code may either be run and plotted within the

notebook (Fig. 1) or from the command line, and is a completely

stand-alone program (Supplementary Fig. S4).

Within a model file arrows are enclosed in square brackets; the ca-

nonical Cellerator form becomes [X- >Y,k] where the typewriter

symbols – > replace the fancier!. When several species are involved,

expressions like e1 X1þe2 X2þ � � � and f1 Y1þf2 Y2þ � � � can be

used on the left and right hand side of the arrow, where ei and fj are

the before and after stoichiometries, The interpreter converts each

reactant Uj (with its stoichiometry) to a differential equation term

using mass action kinetics, e.g. Uj
0 ¼

X

reactions

½ðfj � ejÞkXe1

1 Xe2

2 � � ��.

Additional text forms exist for all Cellerator arrows, e.g. catalyzed re-

actions, MMH, Hill, S-systems, GRN, user-defined arrows and all

KMech reactions (see Supplementary Tables S1–S3).

Built-in functions allow the user to inspect the differential equa-

tions, generate simulation code and run a simulation or parameter

scan. In addition, standard Python packages (e.g. pyplot, numpy,

scipy, sympy) can be used to analyze the results of the simulation.

3 Methods

The work flow is summarized in Supplementary Figure S2. Input

files are parsed using the pyparsing package, which allows the

grammar to be specified in BNF. Reactions are converted into a

Python reaction class that is used for all subsequent data process-

ing. Conversion into differential equations utilizes the sympy sym-

bolic processing package. Flux models use pulp, the Python linear

programming toolkit. Simulation code is generated and saved as a

Python program using the odeint solver in scipy. This solver is a

wrapper for LSODA (Hindmarsh, 1983) and automatically switches

between stiff (BDF) and non-stiff (Adams) methods, depending on

the nature of the problem. The user has full access to the code and

can change any desired parameter of the solver. This stand-alone

code can be run as a separate program from the command line,

wrapped within another program, or run automatically using eval.

Default is to output a numpy array.

4 Discussion

Pycellerator variables may be specified using an array index notation

to represent multiple compartments or multi-stage cascades. A pos-

sible future extension to the software would be two and three di-

mensional tissue based implementations similar to Cellzilla (Shapiro

et al., 2013). Dynamical grammars can also be implemented using a

more expressive notation that makes this modelling paradigm sig-

nificantly more powerful (Mjolsness, 2013). Rule-based models,

graph grammars and hybrid systems, for example, could be

automaticallygenerated using the techniques we have described

here.

5 Conclusion

The Cellerator arrow notation for specifying biological interactions

has been implemented in a human-readable text-based language.

Parsers could be written in any language. Extensible open source

Python libraries are provided for CLI, API and notebook support.

The iPython notebook provides Pycellerator with a very convenient

front end for modelers who want to combine code, text, markup

and figures together in single documents. This is particularly useful

for training researchers. The libraries can be used either as a front-

end to produce or interact with other solvers or as end-user solvers

in of themselves.
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