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Abstract

Summary: Family-based designs offer unique advantage for identifying rare risk variants in genetic

association studies. There are existing tools for analyzing rare variants in families but lacking

components to handle binary traits properly and survival traits. In this report, we introduce an R

software package RVFam (Rare Variant association analysis with Family data) designed to analyze

continuous, binary and survival traits against rare and common sequencing variants in genome-

wide association studies (GWAS) involving family data. Single and multiple variant association

tests were implemented while accounting for arbitrary family structures. Extensive simulation stud-

ies were performed to evaluate all the approaches implemented in RVFam.

Availability and Implementation: http://cran.r-project.org/web/packages/RVFam/

Contact: qyang@bu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

It was hypothesized that rare variants poorly represented in existing

GWAS may underlie the unexplained heritability by common vari-

ants identified to date. Emerging exome sequencing and whole gen-

ome-sequencing studies are designed to capture rare variants in

human genomes. The regularity condition assumed in many existing

GWAS tools for common variants may become invalid when

applied to rare variants (Chen et al., 2011, Chen et al., 2014).

Family-based designs are advantageous for identifying rare risk vari-

ants such as private or pedigree specific mutations that may only be

enriched with family samples. Ignoring family structure could intro-

duce bias in the results and selecting unrelated sample from family

data reduces power. There are existing tools that can handle rare

variant analysis with family samples, such as rareMetalWorker

(http://genome.sph.umich.edu/wiki/RAREMETALWORKER),

seqMeta (https://cran.r-project.org/web/packages/seqMeta), and

EPACTS (http://genome.sph.umich.edu/wiki/EPACTS). The three

packages report test based on score statistic from linear mixed

effects model (LME) for continuous traits measured on family sam-

ples. For binary traits, seqMeta can only analyze unrelated sample,

and RareMetalWorker and EPACTS use LME and treat binary traits

as continuous, so the effect estimate is not interpretable. None of

the package can handle survival traits. In this report, we introduce

RVFam that is designed to provide tools for family samples for all

three types of traits: continuous, binary and survival. RVFam can

perform single variant and multiple variant pooled analysis for a sin-

gle cohort as well as producing score statistics formatted for meta-

analysis in seqMeta. We performed extensive simulation studies to

assess the approaches implemented in RVFam.

2 Methods

2.1 Single variant analysis
For continuous traits, we use LME with a fixed effect for geno-

type score, and with person specific random intercepts that are

correlated only within family according to relationship coefficients

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 624

Bioinformatics, 32(4), 2016, 624–626

doi: 10.1093/bioinformatics/btv609

Advance Access Publication Date: 27 October 2015

Applications Note

http://cran.r-project.org/web/packages/RVFam/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv609/-/DC1
Deleted Text: ,H., Lumley,T.,
Deleted Text: .
Deleted Text: , Chen,M.H., Liu,X., etal. 2011
http://genome.sph.umich.edu/wiki/RAREMETALWORKER
https://cran.r-project.org/web/packages/seqMeta
http://genome.sph.umich.edu/wiki/EPACTS
Deleted Text:  
Deleted Text:  
Deleted Text:   
Deleted Text:      
Deleted Text: Variant Analysis
http://www.oxfordjournals.org/


(Supplementary Methods). This model is implemented in RVFam by

calling lmekin() in R coxme package (version 2.2-3). Different from

aforementioned packages that report test based on score statistic,

Wald test result is reported in RVFam. For binary traits, we imple-

mented generalized linear mixed effects model (GLMM) with a lo-

gistic link and with same fixed and random effects as LME except

an exchangeable within family correlation structure for random ef-

fects. This model is implemented in RVFam by calling glmer() in R

lme4 package (version 1.1-7). For survival traits, Cox-proportional

hazard with shared frailty (random effect) in each family is imple-

mented by calling coxph() in R survival package (version 2.37-7).

Likelihood ratio (LR) test P-values are reported for binary and survival

traits as inflation was observed for Wald test in our simulations

(Supplementary Table S2A, S3A). The methods and tests for all three

types of traits (Supplementary Methods) were chosen based on statis-

tical properties as well as results from our extensive simulation studies.

We also provide interface with seqMeta so that RVFam results

can be directly meta-analyzed in seqMeta. The required R object by

seqMeta for meta-analysis contains the score statistic and its vari-

ance for each SNP that was converted from our Wald or LR test

(Supplementary Methods).

2.2 Gene-based analysis
For gene-based analysis, we implemented two burden tests ((Li and

Leal, 2008) denoted by T, and (Madsen and Browning, 2009) denoted

by MB) that are powerful when the directions of association are the

same across multiple variants, and one direction insensitive test: the

sum of squares (SSQ) test (Pan, 2009). For burden tests, a super variant

is created by summing the weighted genotype score of selected SNPs

within a gene region (weight¼1 for T and (q(1�q))�1 for MB, where

q is minor allele frequency (MAF)). The super variant is analyzed using

the same method as in single variant analysis. For SSQ, Z-statistics or

signed LR statistics from single variant analysis are squared and

summed up for selected SNPs within a gene or region. Under null hy-

pothesis that none of the SNPs are associated with the outcome, SSQ �
v2(n), where n is the degrees of freedom depending on the covariance

matrix among the statistics (Supplementary Methods). We have previ-

ously shown through empirical studies that the SSQ had similar power

as SKAT for unrelated sample (Wang et al., 2012).

3 Input and output

Input to this package are SNP genotype data coded as 0, 1, and 2 for

number of copies of coded allele, phenotype and covariate data, and

pedigree data. It also requires gene annotation for each SNP for form-

ing pooled multi-variant tests, a comma delimited file with MAF

(based on all genotyped sample), and an RData containing genotype

correlation matrix for the defined genes or regions. The output from

RVFam includes: (i) a text file containing single variant test results

including beta, se, and P-value; (ii) text files of gene-based test results;

(iii) an RData containing score statistics that can be directly used by

seqMeta for meta-analyses. See RVFam Document in Supplementary

information for details of input and output.

4 Simulation studies

We conducted extensive simulation studies to evaluate the validity

and power of the tests implemented in RVFam. The simulations

used the real genotypes of 225 160 nonsynonymous, stop-altering,

and splice variants captured on the Illumina HumanExome

BeadChip, and simulated phenotypes of 3880 Framingham Heart

Study (FHS) Offspring samples from 1147 families. Description of

the genotyping was reported previously (Peloso et al., 2014). In sum-

mary, about 90% of the variants have a MAF 0.05 or less, and 50%

have MAF lower than 0.0001. We used SOLAR (Almasy and

Blangero, 1998) to simulate phenotypes conditional on the observed

family structures in FHS sample. Survival traits were simulated to

follow a Weibull distribution with normal distributed random ef-

fects incorporated in the scale parameter. Binary traits were simu-

lated based on an additive threshold model. To evaluate the validity

of the methods, 100 replicates of phenotypes were generated inde-

pendent of all genetic variants, with a polygenic heritability 0.25 for

the random effects. To evaluate power, we assign various effects to

5 SNPs (pairwise R2<0.01, MAF 0.0003, 0.001, 0.004, 0.02, 0.25,

respectively) in the ABO gene that contains a total of 36 SNPs

(Supplementary Table S1-B). We took the event variable from sur-

vival traits as our binary traits to evaluate power. MAF ranges of (0,

0.01) and (0, 0.05) were used for gene-based analysis.

4.1 Simulation results
The type I error and power for RVFam analysis of continuous traits

are presented in Supplementary Table S1-A,B,C. We found that the

single variant and gene-based tests (Supplementary Table S1-A)

yielded valid genome-wide type I error rates (<0.05) as well as SNP-

wise and gene-wise type I error rates (2.22�10�7 and 2.85�10�6,

respectively, by Bonferroni correction). The power simulations

(Table S1-B,C) show that gene-based tests can achieve higher power

than single variant test, and SSQ test is more powerful than T and

MB especially when QTL of opposite effects are included (SSQ5).

The type I error and power for RVFam analysis of binary traits

are presented in Supplementary Table S2-A, B. RVFam had valid

type I error rates when prevalence was 5% or higher. Inflation was

reduced significantly by applying a minor allele count filter among

cases when prevalence is 0.01 (Supplementary Table S2-A). Power

results show similar pattern as described in continuous traits.

The type I error and power for RVFam analysis of survival traits

are presented in Supplementary Table S3-A, B. We observed valid

type I error rates for RVFam single SNP analysis and T but slight in-

flation for MB and SSQ tests in some cases. To explore this further,

we calculated type I error by MAF groups and found inflation only

in SNPs with MAF<0.001. This explains why MB is inflated be-

cause it weights each SNP by its inverse MAF and highlights ex-

tremely low MAF SNPs. By aggregating single SNP results, inflation

also occurs to SSQ for genes with multiple extremely low MAF

SNPs. We propose a remedy to reduce inflation in low MAF single

SNP results and SSQ that divides the single SNP chi-square statistics

by the genomic control parameter for rare SNPs (e.g. minor allele

counts<5) and then re-computes SSQ. Power results (S3-C) show

similar pattern as described in continuous and binary traits.

It took RVFam 46, 64 and 19 min for continuous, binary and sur-

vival traits, respectively, to complete all single variant and gene-based

tests for chromosome 21 containing 2671 SNPs and 254 genes for a

sample of 400 three-generation pedigrees each with 10 members on a

linux cluster with 4 16-core 2.3 GHz AMD Opteron 6276 processors

and 256 GB of RAM running CentOS 6 with Sun Grid Engine.
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