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Abstract

Motivation: Despite numerous successful Genome-wide Association Studies (GWAS), detecting

variants that have low disease risk still poses a challenge. GWAS may miss disease genes with

weak genetic effects or strong epistatic effects due to the single-marker testing approach com-

monly used. GWAS may thus generate false negative or inconclusive results, suggesting the need

for novel methods to combine effects of single nucleotide polymorphisms within a gene to in-

crease the likelihood of fully characterizing the susceptibility gene.

Results: We developed ancGWAS, an algebraic graph-based centrality measure that accounts for

linkage disequilibrium in identifying significant disease sub-networks by integrating the associ-

ation signal from GWAS data sets into the human protein–protein interaction (PPI) network. We

validated ancGWAS using an association study result from a breast cancer data set and the simula-

tion of interactive disease loci in the simulation of a complex admixed population, as well as path-

way-based GWAS simulation. This new approach holds promise for deconvoluting the interactions

between genes underlying the pathogenesis of complex diseases. Results obtained yield a novel

central breast cancer sub-network of the human interactome implicated in the proteoglycan synde-

can-mediated signaling events pathway which is known to play a major role in mesenchymal

tumor cell proliferation, thus providing further insights into breast cancer pathogenesis.

Availability and implementation: The ancGWAS package and documents are available at http://

www.cbio.uct.ac.za/~emile/software.html

Contact: emile.chimusa@uct.ac.za, Nicola.Mulder@uct.ac.za

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide Association Studies (GWAS) have successfully identi-

fied genetic variants in human populations, however many authors

have pointed out that GWAS may not detect genetic variants with

low or moderate risk, which don’t reach the intrinsic genome-wide

significance cut-off (5.00e�08) (Cantor et al., 2010; Zhang et al.,

2014). Today, only a few common variants have been linked to dis-

ease and the associated loci explain only a small fraction of the
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genetic risk (Zhang et al., 2014). Because the effect of a gene poly-

morphism may be small, GWAS may fail to detect a significant sig-

nal if the effect of a variant in another gene is not taken into account

(Cantor et al., 2010). Since complex diseases are typically caused by

multiple factors, including multiple genes, through gene–gene inter-

actions (Jia et al., 2010), single-marker-based analysis in GWAS

may generate false negative and inconclusive results (Jia et al., 2010;

Peng et al., 2008). Currently the challenges facing GWAS include:

(i) the translation of associated loci into suitable biological hypothe-

ses, (ii) the well-known problem of missing heritability (Cantor

et al., 2010; Chimusa et al., 2012) and (iii) the understanding of

how multiple modestly associated loci within genes interact to influ-

ence a phenotype (Peng et al., 2008).

Detecting the underlying genetic etiology of the disease can be

difficult, as it may involve a single gene or interactions between two

or more genes. Recent studies have demonstrated that there is a re-

lationship between gene function and phenotype, and that function-

ally related genes are more likely to interact (Wang et al., 2015a).

Alternatively, the effect can be at the phenotypic level, where a pair

of genes can interact to produce a specific phenotype (Zhang et al.,

2014). Interactions can play critical roles in the cause of disease,

therefore standard GWAS analysis alone is insufficient to examine

the complex genetic structure of complex diseases (Zhang et al.,

2014). The challenge of gene–gene interaction methods is that the

large number of multi-locus genotype combinations generated from

large numbers of genetic variants may leads to the so-called ‘curse

of dimensionality’ problem (Bellman, 1961). Recently, gene-set

based methods have been used to examine gene sets, particularly in

the form of biological pathways or grouping genes by cellular func-

tions or functional groups, using GWAS datasets (O’Dushlaine

et al., 2009; Wang et al., 2010). These methods search for signifi-

cantly enriched gene sets collected from predefined canonical path-

ways or functional annotations such as Gene Ontology (GO) terms.

However, these approaches have limitations, such as (i) the require-

ment for strong disease-specific background knowledge, (ii) the in-

complete annotation of pathways or GO annotations in the current

knowledgebase (Jia et al., 2010) and (iii) the results might be lim-

ited to a priori knowledge, thus, making it difficult to identify a

meaningful combination of genes (Peng et al., 2008). Because risk

genes may differ in different individuals, but may still lie in the

same pathway (Cantor et al., 2010; Wang et al., 2015a), the

protein–protein interaction (PPI) network based approach was re-

cently introduced. This approach has been shown to largely over-

come some of the limitations in its flexibility in setting the

components of a gene set (Cantor et al., 2010; Jia et al., 2010; Peng

et al., 2008). Examining the combined effects of genes by detecting

genetic signals beyond single gene polymorphisms may increase our

ability to fully characterize the susceptible genes and unravel the

pathogenesis of disease (Liu et al., 2010; Wang et al., 2015a). These

existing network-based approaches are mostly based on combining

p-values from standard GWAS for correlated SNPs into an overall

significance level for a gene, and combining P-values for the genes

in a pathway into an overall significance level to investigate the as-

sociation of a pathway with the disease (Zhang et al., 2014).

However, in many cases, SNPs within genes and genes within path-

ways are correlated, and these methods do not account for this de-

pendency, but rather assume genes or SNPs to be independent and

uniformly distributed under a null hypothesis, which may lead to

erroneous results. In addition, most of these network-based

approaches do not account for topological properties of biological

networks, which may lead to meaningless sub-networks (Mazandu

and Mulder, 2011).

Here, we present a method, ancGWAS that leverages PPI net-

work information, local ancestry (in the case of admixed popula-

tions) and Linkage Disequilibrium data to mine GWAS results.

ancGWAS introduces flexibility in estimating gene- and sub-

network-specific ancestry using the inferred local ancestry from

ancestry inference approaches such as in (Baran et al., 2012). From

different simulation results, we demonstrate that ancGWAS holds

promise for comprehensively examining the interactions between

genes underlying the pathogenesis of genetic diseases and also

underlying ethnic differences. In addition, we applied ancGWAS to

a GWAS data set from postmenopausal women of European ances-

try with invasive breast cancer (Hunter et al., 2007). Our result

yielded an interesting central breast cancer sub-network of

the human interactome implicated in the proteoglycan syndecan-

mediated signaling events pathway.

2 Materials and methods

We present an algebraic graph-based method (ancGWAS) that lever-

ages the topological analysis of the PPI network to (i) identify hub

genes, and use their topological properties, (ii) identify the most

meaningful and significant sub-networks, (iii) account for the correl-

ation that exists between SNPs within or between genes and genes

within pathways and (iv) estimate gene- and sub-network-specific

ancestry. Figure 1 summarizes the work-flow of the ancGWAS ap-

proach and more details are provided in the following sections.

2.1 Assignment of ancestry, P-values and LD from

SNPs to genes
SNPs, their associated local ancestry, ancestral population minor al-

lele frequencies and GWAS P-values are assigned to a given gene if

they are located within the gene’s downstream or upstream region.

The dependency between genes is complex and is due to many

Fig. 1. Work-flow of the ancGWAS approach, providing an overview of the in-

puts, modules and outputs
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factors (Liang and Wen-Hsiung, 2007) between closely located

SNPs. LD can be observed due to functional interactions where even

genes from different chromosomes can jointly confer an evolution-

ary selected phenotype or can affect the viability of potential off-

spring. To capture such information and to exploit the topological

structure of PPI network for identifying informative sub-networks,

we weight the PPI network with LD estimated from genotype data

of the population under study. This is accomplished by computing

an overall LD from pairwise LD between SNPs at each given pair of

interacting genes. In this manner, the PPI network is weighted with

a correlation estimated from the population genotype data. This

should efficiently break down the PPI network into different sub-

networks (see the section below) and help in combining p-value

approaches that account for dependency of neighbouring genomic

markers within/between genes.

Assuming sets of SNPs Sa ¼ fsigi¼1;2;...;m and Sb ¼ fsjgj¼1;2;...;n;

si 6¼ sj, for i ¼ 1; 2; . . . ;m, and for j ¼ 1;2; . . . ; n are assigned to

genes a and b; the pairwise LD of SNPs between a and b are inde-

pendent and are computed using the r2 measure (Kristin et al., 2002)

from non-admixed population genotype data. In the case of an

admixed population, the admixture LD is computed following the

model in (Pickrell et al., 2012). The distribution of the LD is not

normal, thus from (si 6¼ sj) we compute the average z-transforms of

LD from all possible combinations of pairs of SNPs between genes a

and b. The z-transforms of LD are normally distributed with mean 0

and variance 1 (Choi, 1977). We compute the combined LD be-

tween two genes a and b as follows,

rab ¼ tanh

Xn�m
i 6¼j

tanh�1ðLDsisj
Þ

n �m

0
BBBB@

1
CCCCA: (1)

The combined LD is used as the weight of the edge between a and b

genes in the PPI network. The computation of Eq. (1) may generate

values close to zero (but not exactly zero) for unlinked SNPs, par-

ticular for the genotype data of non-admixed populations, where

SNPs at genes across chromosomes or even on the same chromo-

some are not at all linked. After weighting the gene (node) with sum-

mary statistics from GWAS results and local ancestry; and the edges

of PPIs with LD data, the next section introduces the method for

breaking and clustering the network into different sub-networks.

2.2 Searching for sub-networks using

centrality measures
Genes interact in large networks in all living organisms, and some

genes in the network are more important or central than others (Liang

and Wen-Hsiung, 2007). Highly connected genes in PPI networks can

be functionally important and the removal of such nodes is related to

lethality (Liang and Wen-Hsiung, 2007). Here we introduce four cen-

trality measures (see more details in Supplementary Text S1) to ac-

count for the topological analysis of the PPI network. We consider our

edges- and nodes-weighted PPI network as an undirected network,

G ¼ ðV;EÞ, where V is the set of n genes as nodes and E is the set

of edges as interactions found between genes weighted using gene-

correlation. To break down the graph G into sub-networks, we ana-

lyse the general properties of G and quantify the usefulness of each

gene in G using their centrality scores; closeness, betweenness, degree

or eigenvector. These different centrality measures and the procedure

for identifying central genes and associated sub-networks based on

these centrality scores are described in the supplementary Text S1.

2.3 Statistical methods for combining P-values at the

gene and sub-network level
Here we discuss our approach to rule out the statistical significance

from SNPs within a given gene/sub-network. Combined P-value

approaches are commonly utilized for meta-analysis (Han and

Eskin, 2011) and neighbouring genomic markers in genetic associ-

ation studies, and have a long history (Folks, 1984). Under the null

hypothesis, the P-values Pi, ði ¼ 1; . . . ;LÞ for a test-statistic with a

continuous null distribution are uniformly distributed in the interval

½0;1�. In this framework, a parametric cumulative distribution func-

tion F is chosen and the P-values are transformed into quantiles ac-

cording to qi ¼ F�1ðpiÞ; ði ¼ 1; . . . ;LÞ. The combined test statistic

CP ¼
PL

i¼1 qi is a sum of independent and identically distributed

random variables qi each of which follows the corresponding prob-

ability density function for F. To account for the independent as-

sumption of P-values and the correlation of P-values among

neighboring genomic markers, we implement both the Stouffer–

Liptak (Liptak, 1958) and Fisher’s Combined probability (Fisher,

1958) methods (refer to Supplementary Text S2) accounting for spa-

tial correlations among SNPs within a gene or SNPs within a given

sub-network. We apply a similar algorithm to the Benjamini–

Hochberg (Benjamini and Hochberg, 1995) false-discovery correc-

tion method (Supplementary Text S2) on summary statistics from

both Stouffer–Liptak and Fisher’s Combined probability methods to

control the influence of possible type I error and account for gene/

sub-network difference the number of associated SNPs.

2.4 Method for combining local ancestry at gene

and sub-network level
Case–control admixture mapping has recently been advertised as a

promising strategy for identifying regions that contribute to both

shared and population-specific difference in disease susceptibility.

Admixture mapping has been applied to some admixed populations

such as Puerto Rican and Mexican populations (Torgerson et al.,

2012). However, similarly to standard GWAS, both approaches are

based on single-marker-based analysis. Because complex diseases

are caused by several factors, such as multiple genes through gene–

gene interactions and gene–environment interactions (Zhang et al.,

2014), both approaches mentioned above may generate false nega-

tive results. To take advantage of the combined effects of all SNPs in

a particular gene and genes within a sub-network, here we combine

the effect of locus-specific ancestry of SNPs within a gene/sub-net-

work in estimating sub-network- or gene-specific ancestry (see

Supplementary Text S3 for more details). The unknown true gene-

specific ancestry at gene j from the kth ancestral population, ljk, is

estimated using the maximum likelihood approach, and together

with its variance �jk are approximated by

l̂jk ¼

XL

m¼1

Wmk/mk

XL

m¼1

Wmk

and �̂ jk ¼
1

XL

m¼1

Wmk

(2)

where /mk is the average locus-specific ancestry from the kth ances-

try of SNP m 2 f1;2; . . . ;Lg associated with a given gene (or to a

combined set of SNPs associated with each gene within a sub-

network) and Wmk its inverse variance (precision). We test case–

control ancestry difference at gene or sub-network level using a

naive admixture mapping approach and computing the p-value

using the importance sampling approach. Let Hþjk and

H�jk; ðj ¼ 1; . . . ;N) be the gene-specific ancestries (for N genes
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within a given sub-network) estimated from n1 samples of cases and

from n2 samples of controls. Assuming jHþjk �H�jkj 6¼ 0;

ðj ¼ 1; . . . ;NÞ, thus let Cj be the rank pairs from smallest to largest

absolute difference within a sub-network. We use the Wilcoxon

signed-rank statistic W ¼ j
PN

j signðHþjk �H�jkÞ:Cjj (Wilcoxon,

1945), a non-parametric test of the null hypothesis that the gene-

specific ancestries from cases and controls are the same against an

alternative hypothesis. Because N increases, the sampling distribu-

tion of W converges to a normal distribution (Wilcoxon, 1945),

therefore we construct our weighted z-score as follows,

ZW ¼
ðW � 0:5Þ

XN
j

jqþjk � q�jkj

rW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j

jðqþjkÞ
2 � ðq�jkÞ

2j

vuut
(3)

where, rW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðNþ1Þð2Nþ1Þ

6

q
; qþjk and q�jk are the posterior probabil-

ities estimated from cases and controls (Supplementary Text S4).

The sign is an odd mathematical function that extracts the sign of a

real number (Supplementary Text S4). The p-value can be calculated

from enumeration of all possible combinations ofW, given N.

2.5 Characterization of enriched sub-networks
Here we aim to identify the association between each sub-network

(obtained from our network-based clustering approach)

Si, ði ¼ 1; . . . ;TÞ within n1; . . . ;nT genes and human pathway

Pj 2 P the set of human pathways. We obtained 1047 annotated

pathways from (Zhang et al., 2012) and collected more than 107

annotated pathways from the KEGG, BioCarta and Ambion

GeneAssist Pathway Atlas pathway databases. We downloaded gen-

omic coordinates for all genes from the NCBI ftp-server ftp://ftp.

ncbi.nih.gov and retained only entries for the human reference se-

quence. We assign the SNPs located within a gene or less than 40 kb

distance up/downstream of the gene. Let a be the number of genes in

the intersection between genes within Si and genes within the path-

way Pj. Let b be the number of genes in the intersection between

genes within Si and those in the union of all pathways Pk for

k ¼ 1; . . . ; J. Let N� be the number of genes in the intersection be-

tween genes in the pathway Pj and those in the union of all pathways

Pk for k ¼ 1; . . . ; J with k 6¼ j, and M� be the total number of genes

in all pathways Pk for k ¼ 1; . . . ; J. We compute the statistic of sig-

nificance of overlap between sub-network Si of nt genes and a given

pathway Pj using the z-score ðZSÞ, which employs the binomial pro-

portions test (Berger et al., 2007),

ZS ¼
a

N�
� b

M�

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

M� : 1� b
M�

� �
M�

vuut
(4)

3 Results

3.1 Evaluating ancGWAS
Firstly, we evaluated ancGWAS using the data of a 4-way admixed

population simulated from 162 samples of North-west Europe

(CEU), 140 Yoruba (YRI), 82 Guraji indian (GIH) and 80 Chinese

(CHB) within two disease loci associated with the IL23R gene in the

chromosomal region 1p31:3 and two other disease loci associated

with the SLC2A1 gene in the chromosomal region 1p34:2 (simula-

tion detail in Supplementary Text S5). We conducted the association

analysis on the causal simulated data set by applying EMMAX

(Kang et al., 2010), which accounts for both population

stratification and hidden relatedness. EMMAX could not identify

any significant SNPs, and failed to significantly identify the simu-

lated disease loci at SNPs rs841404 (P-values¼2.84e�05),

rs2297977 (P-values¼1.10e�05), rs790633 (P-value¼0.002) and

rs6664119 (P-value¼0.002) (Supplementary Table S1). However,

ancGWAS, in which the effect of several SNPs are combined within

a gene (see also Supplementary Text S6), detects the simulated

disease gene SLC2A1 (P-value¼2.98e�12 and IL23R

(P-value¼2.16e�04 based on Stouffer–Liptak statistics) and inter-

estingly other genes interacting with SLC2A1 or IL23R which were

not of genome-wide significance from the standard GWAS are now

significant after combining effects of different SNPs within a gene

(Supplementary Table S1). Both our modified Stouffer–Liptak statis-

tical and Fishers combined probability tests produce similar results,

with no evidence of type I error (Supplementary Fig. S1).

We additionally analysed the ancestry of the GWAS data set

from causal simulation of a 4-way admixed population and com-

pared it to the true locus-specific ancestry generated from that par-

ticular simulation. We noted from our simulation (Supplementary

Text S5) that the ancestry-specific minor allele frequencies from the

correct proxy ancestral populations (Chimusa et al., 2013; Pasaniuc

et al., 2013) of the admixed population may serve to correct the

local ancestry bias along the genome of the admixed individuals. We

tested for unusual case–control difference in ancestry under the null

hypothesis at the gene level using a modified Wilcoxon signed-rank

statistic. The reported Wilcoxon P-values and its q-values in

Supplementary Table S1 suggest a significant signal of unusual dif-

ference in YRI ancestry from case and control samples at the IL23R

locus (57%, P-value¼5.21e�08, q-value¼0.0005), consistent

with our simulation framework.

To fully characterize the susceptible genes and determine the

genetic structure of the simulated disease at the biological pathway

level, we conducted sub-network-specific association analysis using

ancGWAS. We built an LD-weighted network of 21 429 pair-wise

gene–gene interactions using the z-score method. We assessed

whether there is an opportunity of using topological properties of

the network as a factor for clustering. Supplementary Figure S2

shows that the network exhibits scale-free topology, meaning that

the degree distribution of genes approximates a power law

PðkÞ ¼ k�c, where c � 2:19 is the degree exponent obtained by fit-

ting the model using the least-square approach. This indicates that

most genes have few interacting partners but some have many and

are crucial for the robustness of the network. In addition it also

shows that the network has a small world property, suggesting that

the spread of information in the network is achieved through an

average of 7.01 steps, which corresponds to the average shortest

communication in the network. We computed the cut-off for each

centrality measure (Supplementary Text S1), and the intersection of

the top genes from each measure were considered to be the set of

central nodes (hubs). To break down the network into sub-net-

works, we ran the searching algorithm described in Supplementary

Text S1. Using network centrality measures, we identified all the

central genes (hubs) by applying the cut-off for each centrality meas-

ure, and the intersection of the top genes from each measure were

considered to be the set of central genes (Mazandu and Mulder,

2011).

We assessed the significance of each sub-network using the

Stouffer–Liptak statistical and Fishers combined probability tests.

We adjusted the latter statistics using the Benjamini–Hochberg false-

discovery correction. To make sure that the score of a sub-network

did not occur by chance, we applied a permutation test based on the

bootstrap. Our implemented bootstrap method adjusts for the
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dependency of P-values using a non-degenerate correlation matrix

and computes the related q-values (Supplementary Text S2).

Supplementary Table S2 displays the top 20 sub-networks ranked

by p-values and the overlap of each sub-network with known biolo-

gical pathways. 11 genes, including our simulated disease-genes and

their interacting genes, overlap between the top sub-network and

the metabolism pathway. From these top 20 sub-networks

(Supplementary Table S2), we identified the central sub-network

(Fig. 2) as the sub-network that has the connected hubs and overlap-

ping genes with the rest of top 19 sub-networks and performed

enrichment analysis as described in Section 2. This central sub-

network was found to be associated with the Integrin family cell

surface interactions pathway (z-score of overlap, Z w¼1.6). The

overlapping set of genes includes our simulated disease genes

(SLC2A1 and IL23R) and some of their interacting genes. In add-

ition, results of the causal simulation data set (Supplementary Table

S3) demonstrate evidence of unusual case–control difference in YRI

ancestry in one of these top 20 sub-networks, consistent with the

simulation. Finally, SLC2A1 and UBC are the hubs of the central

sub-network (Fig. 2) and both genes are interacting (Wu et al.,

2009). This highlights the benefit of characterizing susceptible genes

beyond standard GWAS and demonstrates the ability of ancGWAS

(i) to examine the combined effects of genes by detecting genetic sig-

nals beyond a single SNP and (ii) to elucidate the interactions be-

tween genes underlying the pathogenesis of a simulated complex

disease that could not be detected in a standard GWAS analysis.

Next, to determine whether the ancGWAS approach is cali-

brated, we evaluated ancGWAS using a null simulated data set with-

out any simulated causal SNPs of a 4-way admixed population (see

Supplementary Text S6). We conducted the association analysis on

this simulated data by using EMMAX. As expected, from the top 19

SNPs displayed in Supplementary Table S4, no genome-wide signifi-

cance was observed. We applied ancGWAS to the resulting GWAS

data set, but when combining effects of different SNPs within a

gene, the result was still not significant (Supplementary Table S4),

although the top genes are associated with the top SNPs observed in

the standard GWAS analysis. In addition, no significant results were

observed at the sub-network level (Supplementary Table S5). At

both gene and sub-network levels (Supplementary Tables S4 and

S5), the Wilcoxon signed-rank statistical test of unusual case–con-

trol difference in ancestry did not show any statistical significance

either. Overall, both the causal and null simulation of a 4-way

admixed population suggest that the approaches developed in

ancGWAS protect against false positives, and can unravel signals of

ancestry difference in disease risk.

Finally, we evaluated ancGWAS using a simulated pathway-

based GWAS data set (detail of simulation in Supplementary Text

S5). The standard single-marker-based association analysis using

EMMAX in Supplementary Table S6, failed to significantly identify

our three weak simulated interactive disease-associated loci with

very weak genetic effects (rs2834287 associated with ATP5O,

rs507238 associated with ATPIF1 and rs2250305 associated with

BTG3). We thus used a pathway-based approach in ancGWAS to

analyse the combined effect of all SNPs within a gene and genes

within a pathway, to detect the simulated interactive disease genes

with very weak genetic effects in the up-regulated aged mouse hypo-

thalamus pathway. We retained the resulting top 20 sub-networks,

and for each sub-network, we computed the number of genes over-

lapping between each sub-network and the up-regulated aged mouse

hypothalamus pathway (AGED_MOUSE_HYPOTH_UP), which is

our simulated pathway. Supplementary Table S7 displays the result

of ancGWAS, which was able to identify the up-regulated aged

mouse hypothalamus pathway, among the 20 top sub-networks

with 5 overlapping genes.

3.2 Application to CGEMS breast cancer data
We conducted an association analysis using data from the CGEMS

Breast Cancer study (see Supplementary Text S7), which included

1145 postmenopausal women of European ancestry with invasive

breast cancer (Hunter et al., 2007) and 1142 controls. We con-

ducted GWAS analysis based on the typed data set and imputed

missing SNPs using the 1000 Genomes reference panel (McVean et

al., 2012). Results from both GWAS on typed and genome-wide im-

putation data did not yield any significant association signal with

breast cancer (Supplementary Table S8). To account for possible

interacting cancer disease SNPs and moderate risk that did not reach

genome-wide significance in the standard GWAS, we applied

ancGWAS to the resulting GWAS data set containing 528 169 SNPs.

We identified a central sub-network (Fig. 3) and applied enrichment

analysis to it (see Supplementary Text S7 for more details). 63 genes

from the central sub-network overlapped those from the proteogly-

can syndecan-mediated signaling events pathway (z-score of overlap,

Z w¼12.9). The overlap of the central sub-network (Fig. 3) and

this pathway includes 15 known or previously identified breast can-

cer genes (Supplementary Table 9) including BRCA1, TGFBR1,

BRCA2, FANCA, MTR, MRPL19, CASP8, IGFBP3, IGFBP1,

VEGFA, IGF1, ATR, XRCC3, FGFR2, CHEK2. This is an import-

ant result, illustrating the benefit of incorporating both the associ-

ation signal from a standard GWAS and the human PPI network for

testing the combined effects of SNPs and searching for significantly

enriched sub-networks for complex diseases.

3.3 Comparing ancGWAS with dmGWAS
It is challenging to compare different pathway analysis methods be-

cause of the lack of accurate knowledge of complex traits and the in-

complete human protein interaction network (Wang et al., 2015a).

Most of these methods do not accept a user-defined network, only ac-

cept a short list of SNPs or genes, or use VEGAS (Liu et al., 2010) to

Fig. 2. Central sub-network from the top 20 ranked sub-networks on

the causal simulation data of a 4-way admixed population. The central sub-

network in this figure is highly connected and related to the Integrin family

cell surface interactions pathway (z-score of overlap¼1.6). The size of a node

denotes its statistical significance from small to large. Nodes are coloured ac-

cording to the ancestry proportions: red¼YRI (Yoruba ancestry), blue¼CEU

(European ancestry), green¼CHB (Chinese ancestry) and yellow¼GIH

(Gujarati Indian ancestry)
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map SNPs to genes, such as EW_dmGWAS, iPINBPA and PINBPA

(Wang et al., 2015a,b). This makes it impossible to directly compare

these methods to ancGWAS. Additional to GWAS summary statistics,

and although ancGWAS can use any weighted biological network, it

uses case–control genotype data sets to construct the weights of the

network, which current post-GWAS approaches do not account for.

dmGWAS (Jia et al., 2010; Wang et al., 2015b) is currently the most

popular network-based approach that uses a similar strategy to

ancGWAS for mapping SNPs to genes and analysing GWAS data sets

at the gene and sub-network level. This makes it the most appropriate

tool to compare against ancGWAS and enables a reasonable compari-

son between these two approaches. The dmGWAS method uses the

dense module searching algorithm for identifying modules or sub-net-

works in massive networks. Their searching algorithm is based on a

greedy algorithm that searches for dense modules using two param-

eters: (i) the numerical parameter d, is the constraint distance for

which any node with a shortest path to another node greater than this

cut-off, will not be considered as an interacting neighbour, (ii) the par-

ameter r, which obstructs restriction on the score of the module (sub-

network), and has a considerable effect on the result. Although the

new version of dmGWAS may use the edge-weighted PPI network,

the greedy searching algorithm and strategy used in both (Jia et al.,

2010; Wang et al., 2015b) don’t consider the topological properties

of biological networks. This may lead to less meaningful modules or

sub-networks (Mazandu and Mulder, 2011). Furthermore, the accur-

acy and performance of dmGWAS relies on the choice of these param-

eters (Jia et al., 2010; Wang et al., 2015b). Supplementary Table S10,

provides a comparison of technical components implemented in both

ancGWAS and dmGWAS.

Because dmGWAS was not designed for admixed populations, we

firstly applied both ancGWAS and dmGWAS to the simulated path-

way-based GWAS data set (Supplementary Text S5) to compare their

ability to detect the simulated interactive disease genes with very

weak genetic effects in the up-regulated aged mouse hypothalamus

pathway. We retained the top 20 sub-networks from each approach.

For each sub-network from both approaches, we computed the

number of genes overlapping between each sub-network and the up-

regulated aged mouse hypothalamus pathway (simulated pathway).

The top 3 sub-networks from ancGWAS include the simulated disease

genes ATP5O, ATPIF1 and BTG3 while sub-networks from

dmGWAS had no overlaps with the simulated disease genes (Fig. 4).

This indicates that the top sub-networks from ancGWAS are more en-

riched disease genes than those obtained from dmGWAS. The advan-

tage of ancGWAS may be due to the usage of the topological

structure of the network and network communication to break down

the network into different sub-networks, as shown previously in

Wang et al. (2015a). We also applied both methods to the breast can-

cer GWAS data (Supplementary Text S5). The top sub-networks from

both methods are associated with proteoglycan syndecan-mediated

signaling events pathway. However, the numbers of overlapping

known breast cancer disease genes with these top sub-networks from

ancGWAS are greater than those from dmGWAS (see Supplementary

Table S9 and Supplementary Text S8 for more details).

4 Discussion

We introduced ancGWAS, a post GWAS method based on an alge-

braic graph-based approach that leverages the topological analysis

of the PPI network to (i) identify hub genes, and use their topo-

logical properties, (ii) identify the most meaningful and significant

genes or sub-networks relevant to a disease and those underlying

ethnic difference in disease risk in the case of admixed populations

and (iii) account for the correlation that exists between SNPs within

or between genes and genes within pathways. ancGWAS integrates

the association signal from standard GWAS data, the local ancestry

for admixed populations and the SNP LD into the human PPI net-

work. In addition, ancGWAS also handles other user-defined

weights such as topological weight. ancGWAS introduces flexibility

in estimating gene- and sub-network-specific ancestry using the

inferred local ancestry from ancestry inference approaches such as in

(Baran et al., 2012). When ruling out the gene- and sub-network-

specific ancestry, the proposed method corrects for possible bias in

the inferred local ancestries obtained from current approaches of

local ancestry inference (Chimusa et al., 2012; Pasaniuc et al.,

2013). In addition, it tests for case–control unusual difference in an-

cestry at the gene and sub-network level using the corrected local an-

cestry of admixed populations.

Fig. 4. Comparing dmGWAS and ancGWAS. (A) Number of overlaping genes

between the top sub-networks from dmGWAS and ancGWAS and the simu-

lated disease-susceptibility genes (DSG). (B) Number of overlapping genes

between top sub-networks from dmGWAS and ancGWAS and the entire dis-

ease pathway (AGED_MOUSE_HYPOTH_UP). Line plot is ancGWAS and

circle plot is dmGWAS

Fig. 3. Central sub-network of breast cancer. The size of a node denotes its

significance with size increasing with significance. Dark nodes or nodes

inside a contour denote previously identified breast cancer associated genes

or genes interacting with known breast cancer genes
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We have done 3 types of simulation to test ancGWAS (i) causal

simulation (with some causal SNPs) on a 4-way admixed population

to test if ancGWAS can recover the GWAS signal and ancestry dif-

ferences, (ii) null simulation (without disease SNPs) on a 4-way

admixed population to test if ancGWAS produces a false signal

or type I error and (iii) pathway-based simulation with weak dis-

ease effect to test ancGWAS’s ability to recover interactive dis-

ease genes within a pathway. All simulated data sets are available

with the ancGWAS package, at http://www.cbio.uct.ac.za/

ancGWAS.

Our results from the causal simulation of a 4-way admixed

population; and the data set of invasive breast cancer demon-

strated that ancGWAS can recover weak and moderate association

signals from standard GWAS results by leveraging effects of all

SNPs within a gene and sub-network to unravel signals of possible

disease associated genes or pathways (further discussion in

Supplementary Text S9). Although our statistical methods account

for false discovery, we assessed the ability of ancGWAS to control

both type I and II errors based on null simulation with no causal

loci and causal simulation of disease loci in the simulation of an

admixed population, respectively. In these assessments, no false

positive/negative signals were identified (Supplementary Tables S1

and S4). Moreover, ancGWAS can detect ancestry differences in

admixed data as shown in Figure 2, which displays candidate an-

cestry difference at the gene/sub-network level. However, our cur-

rent method cannot perform allelic tests of association directly

from the data, controlling for differences in gene/sub-network-spe-

cific ancestry (candidate peaks), as this is very challenging due to

gene–gene interactions (or considering sub-networks of iterative

genes). This would mean a large number of multi-locus genotype

combinations generated from large numbers of genetic variants,

leading to the so-called ’curse of dimensionality’ problem

(Bellman, 1961). Inferring accurate local ancestry is also

challenging (Chimusa et al., 2014; Pasaniuc et al., 2013) and cur-

rently we do not have access to a phenotypic data set of an

admixed population. Otherwise it would be interesting to apply

the proposed approach to such a population to evaluate the per-

formance of this approach in identifying the pathways associated

with a disease. The lack of accurate knowledge of complex traits

and the incomplete human protein interaction network makes it

challenging to directly compare the results from different pathway

analysis methods. Nevertheless, we used a GWAS data set of inva-

sive breast cancer (Supplementary Text S8) to compare ancGWAS

to dmGWAS. These results have shown that ancGWAS identified

more cancer associated genes in its results than dmGWAS, and

holds promise for deconvoluting the interactions between genes

underlying the pathogenesis of complex diseases. dmGWAS re-

cently released a new feature (Wang et al., 2015b) that uses gene

expression profiles for edge weights (Wang et al., 2015b).

However, because the new dmGWAS still uses the same greedy

searching algorithm to break down the biological network into

sub-networks, it still doesn’t take advantage of the topological

properties of biological networks like ancGWAS does.
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