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Abstract 

Motivation: Increased throughput and diverse experimental designs of large-scale sequencing studies necessi-

tate versatile, scalable and robust variant calling tools. In particular, identification of copy number changes re-

mains a challenging task due to their complexity, susceptibility to sequencing biases, variation in coverage data 

and dependence on genome-wide sample properties, such as tumor polyploidy or polyclonality in cancer samples. 

Results: We have developed a new tool, Canvas, for identification of copy number changes from diverse se-

quencing experiments including whole-genome matched tumor-normal and single-sample normal re-sequencing, 

as well as whole-exome matched and unmatched tumor-normal studies. In addition to variant calling, Canvas 

infers genome-wide parameters such as cancer ploidy, purity and heterogeneity. It provides fast and simple to 

execute workflows that can scale to thousands of samples and can be easily incorporated into existing variant 

calling pipelines. 

Availability: Canvas is distributed under an open source license and can be downloaded 

from https://github.com/Illumina/canvas. 

Contact: eroller@illumina.com  

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 INTRODUCTION 

    The increased throughput of sequencing studies has created high de-

mand for versatile and scalable tools to detect somatic and germline copy 

number changes. Increasingly complex experimental designs require 

accurate characterization not only of individual copy number variants 

(CNVs), but also of global genome and sample properties, such as 

ploidy, normal contamination and polyclonality (frequently present in 

cancer samples). Tumors can adopt a wide range of evolutionary strate-

gies depending on the organs involved and treatment protocols, leading 

to diverse clonal compositions of bulk biopsies (Navin et al., 2010). The 

interaction of these factors creates an array of different somatic genome 

architectures that confounds optimization of CNV calling algorithms 

given an often limited availability of training data. While many CNV 

calling methods have been introduced, most of them present a number of 

shortcomings when it comes to scalability and throughput. First, many 

tools rely on external segmentation software that complicates workflow 

management and version control. Second, model parameters to infer 

global genome and sample properties are often hard-coded and difficult 

to optimize for individual projects. Finally, many tools require the user 

to provide pre-specified sample-specific parameter values that might not 

be known prior to CNV detection. For example, TITAN (Ha et al., 2014) 

and FREEC (Boeva et al., 2011), while inferring heterogeneity and nor-

mal contamination respectively, require genome-wide ploidy values as 

an input, which incorporates a manual step in the variant calling work-

flow and complicates automation. 

    We have developed a new tool for CNV calling, Canvas, to address 

the aforementioned limitations of existing solutions. It fully implements 

all steps of the variant calling workflow and requires only aligned se-

quence data and related reference genome files as input. Canvas offers 

inference of global tumor genome and sample characteristics, including 

ploidy, purity and heterogeneity, as well as loss of heterozygosity. 

Alongside fast and easy-to-run whole-genome and exome workflows for 

both somatic and germline variants, Canvas incorporates a number of 

global parameter inference strategies based on unsupervised learning 

approaches such as Expectation Maximization (EM) clustering. This 

combined functionality makes Canvas a favorable tool for somatic and 

germline CNV detection in large-scale sequencing projects. 
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2 METHOD 

Outline The Canvas workflow comprises five distinct modules designed to (1) 

process aligned read data and calculate coverage bins, (2) perform outlier removal 

and normalization of coverage estimates, (3) identify segments of uniform copy 

number, (4) calculate minor allele frequencies (MAF) and (5) assign copy number / 

allelic states and infer genome-wide parameters. Separate workflows exist for 

somatic, germline and exome sequencing data. The latter workflow can be run 

either with or without a matched normal control sample and requires a manifest file 

with locations of targeted regions. Detailed step-by-step explanations can be found 

in Supplementary Methods. 

Implementation and performance Canvas is implemented in C# programming 

language and can be run on Linux system using mono or on Windows under the 

.NET framework. A full per-chromosome parallelization is available for all time-

consuming modules. An average Canvas runtime for tumor/normal workflow on 

a 80x/40x coverage matched sample pair and a Linux node with 32 CPUs is 40 

minutes (70 minutes when fragment-based GC-content normalization is invoked); 

with a peak RAM consumption of under 6 gigabytes.  

3 RESULTS 

    We tested Canvas on both simulated and real data and also compared 

its performance with a number of alternative somatic CNV calling tools. 

The selection of third-party methods was based on the principle that they 

either showed a superior performance in the previous benchmarks (as in 

the case of FREEC) or that they offered inference of a number of differ-

ent genome-wide parameters, like THetA (Oesper et al., 2013). We 

didn’t aim to perform a comprehensive evaluation of CNV callers, as this 

was covered elsewhere (Alkodsi et al., 2015; Nam et al., 2015). What 

follows is an overview of test data generation strategies and performance 

results. 

Simulation data We have used a haplotype mixing workflow to generate 

simulation data. Briefly, aligned reads were split into haplotypes inferred 

from phasing of Platinum Genomes (PG) family 

(http://www.platinumgenomes.org). These reads along with manually 

curated CNV calls from previously sequenced genomes at Illumina were 

used to create truth sets. Simulation also included parameters to generate 

tumors of different contamination and polyclonality levels. 

Cell lines Breast carcinoma cell lines HCC2218 and HCC1187 were 

sequenced to 80x coverage on HiSeq2000 along with matching normal 

lymphoblastoid cell lines (sequenced to an average of 40X). Exome 

samples of the same cell lines were prepared using Nextera Rapid Cap-

ture Exome reagent kit, and sequenced on a HiSeq 2500. Read titration 

with normal lymphoblastoid data was used to approximate contamination 

by normal cells.  

Evaluation strategy and results A total of 37 samples have been used in 

benchmarking (Supplementary Results, Section 1). We have focused on 

exploring concordance between expected and observed copy numbers for 

each tool. Either exact or directional CN matching was considered. Ge-

nome-wide percentage of overlapping regions was used to estimate accu-

racy, precision and recall. Table 1 shows average metrics values across 

all simulated and real samples; Supplementary Results provide full de-

tails of simulation and evaluation strategies. 

Table 1.  CNV calling performance metrics (average values across 

all samples for each workflow type) 

 

Work-

flow 

Method Accu-

racy 

Preci-

sion 

Re-

call 

Direc-

tion 

Accu-

racy 

Direc-

tion 

Preci-

sion 

Direc-

tion 

Recall 

So-

matic 

Canvas 86.81 77.09 67.93 90.50 90.71 81.81 

THetaA 40.49 17.94 29.74 50.15 32.42 51.84 

TITAN 70.31 58.91 68.51 79.31 75.33 86.07 

FREEC 72.69 50.32 42.02 82.89 94.79 72.69 

Germl

ine 

Canvas 93.08 98.42 92.91 94.03 99.60 94.12 

FREEC 63.86 97.86 63.86 64.95 99.52 64.95 

Exo-

me 

Canvas 94.11 85.84 88.91 96.85 93.53 97.24 

EXCAVA

TOR  

71.82 38.43 46.72 86.92 89.11 62.28 

ADTEx  90.91 79.28 89.17 93.90 86.41 97.80 

    Canvas attained the largest number of best performing metrics among 

tools used in comparison for each workflow type (Table 1). For example, 

in somatic workflow evaluation Canvas had three highest metrics versus 

two for TITAN and one for FREEC. Moreover, while the distance be-

tween Canvas and a second best performing tool was 13.3% for metrics 

where Canvas performed better, it was only 2.7% for metrics where 

Canvas didn't show the best result. Moreover, Canvas exhibited a much 

better performance when exact complimentary between predicted and 

expected copy number calls was required. Similar observations were 

made for exome and germline re-sequencing workflows, where Canvas 

outperformed EXCAVATOR (Magi et al., 2013), ADTEx (Amarasinghe 

et al., 2014) and FREEC on all but two metrics. Canvas also showed the 

fastest runtime on a whole genome tumor-normal input in a regular nor-

malization mode and whole genome re-sequencing workflow, complet-

ing on average 2.5 times faster than the next fastest method (Supplemen-

tary Results, Section 3).  To conclude, Canvas is a versatile tool for CNV 

identification with superior performance metrics across a range of 

whole-genome and exome sequencing experiments and a fast runtime.  
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