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Abstract

Motivation: Complex diseases such as cancers often involve multiple types of genomic and/or epi-

genomic abnormalities. Rapid accumulation of multiple types of omics data demands methods for

integrating the multidimensional data in order to elucidate complex relationships among different

types of genomic and epigenomic abnormalities.

Results: In the present study, we propose a tightly integrated approach based on tensor decompos-

ition. Multiple types of data, including mRNA, methylation, copy number variations and somatic

mutations, are merged into a high-order tensor which is used to develop predictive models for

overall survival. The weight tensors of the models are constrained using CANDECOMP/PARAFAC

(CP) tensor decomposition and learned using support tensor machine regression (STR) and ridge

tensor regression (RTR). The results demonstrate that the tensor decomposition based approaches

can achieve better performance than the models based individual data type and the concatenation

approach.

Contact: jianwen.fang@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Complex diseases such as cancers often involve multiple types of

genomic and/or epigenomic abnormalities. Although mutations

often are a hallmark of cancers, other types of abnormalities may

also play critical roles. For example, it was discovered that copy-

number amplification, rather than mutation of HER2, results in the

deleterious effects of HER2 in cancer (Sanchez-Garcia et al., 2014).

A recent review concluded that epigenetic changes may drive some

cancers by disrupting the expression of ‘tumor progenitor genes’

(Feinberg et al., 2016). Besides, interplays between different genom-

ic/epigenomic abnormalities may also play significant roles because

one type of abnormalities may induce other types of abnormalities.

For instance, DNA methylation may play a substantial role in the

regulation of gene expression (Wagner et al., 2014). Therefore, com-

prehensive analysis by integrating various genomic and epigenomic

data may provide insights into the complex nature of cancer devel-

opment and progression. However, only until recent years the

advances in high throughput technologies have permitted generation

of significant amount of multiple types of genomic data. For

instance, large scale projects such as The Cancer Genome Atlas

(TCGA, https://cancergenome.nih.gov) and The International Cancer

Genome Consortium (ICGC) (Hudson et al., 2010) have profiled

thousands of cancer samples using multiple omics technologies such as

mRNA, methylation, copy number variations and somatic mutations.

Consequently, rapid accumulation of multiple types omics data

demands methods for integrating the tremendous amount of multidi-

mensional omics data in order to elucidate complex relationships

among different types of genomic and epigenomic abnormalities.

1.1 Data integration methods
Current data integration approaches can be roughly divided into

two groups: tight and loose approaches (Fig. 1). In a loose analysis,

different type of data is utilized to build model separately (multiple

models, however, may be built from one data type, such as in ensem-

ble approaches) and the results from different models are combined

afterwards in either linear, ensemble, or hierarchical manner

(Ritchie et al., 2015; Thingholm et al., 2016). One simple approach

is to use each model as a filter that only allows biological descriptors
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(e.g. genes) to pass through to next stage if defined criteria are met

(e.g. statistically significant) (Holzinger and Ritchie, 2012). One

major advantage of multi-staged analysis is its simplicity. However,

it is not effective to reveal complex patterns from combinations of

multi type data types (Ritchie et al., 2015). Moreover, different

arrangements of the models may deliver different results.

In a tight approach, all features are combined and used to build

a model or models (Ritchie et al., 2015; Thingholm et al., 2016).

The simplest tight approach is to concatenate all types of data to-

gether to form a larger data matrix (Ritchie et al., 2015). For ex-

ample, Mankoo et al. (Mankoo et al., 2011) concatenated copy

number variation, methylation status, miRNA and gene expression

data to predict time to recurrence and survival in ovarian cancer.

However, the relationships between different data types are not uti-

lized in a concatenation approach. For example, there may be corre-

lations between mutation, copy number variation, methylation

status and gene expression level (Thingholm et al., 2016). In a con-

catenation approach, the data of these four types are spread as four

separate columns and therefore possible underlying relationships be-

tween them are disregarded. Furthermore, concatenation results in

the creation of a data matrix with potentially very high dimensional-

ity when the number of data types grows, increasing the risk of

overfitting. In order to capture the relationship between different

types of data, it is advantageous to organize the data in a multi-

dimensional fashion.

In the present study, we propose a tightly integrated approach

utilizing tensor decomposition (Kolda and Bader, 2009). Multiple

types of data are arranged as a high-order tensor. One of the advan-

tages of this approach is the number of parameters needed to be

determined can be reduced, especially when the number of data

types is large. Another advantage is the features associated with the

same gene are organized in the same dimension, allowing discovery

of possible complex patterns associated with different data types.

Tensor decomposition can be rooted back to the work by

Hitchcock in 20s of the last century (Hitchcock, 1927). It has been

widely used in chemometrics since early 80s (Appellof and

Davidson, 1981; Smilde and Geladi, 2004) and also in other areas

such as signal processing (Muti and Bourennane, 2005), and more

recently graph processing (Zhou et al., 2013). Tensor decomposition

has only recently found applications within bioinformatics,

probably due to the lack of suitable data (Morup, 2011). For ex-

ample, it was used for integrative analysis of DNA microarray data

from different studies (Omberg et al., 2007). To the best of our

knowledge, this study represents the first time that different types of

genomic and epigenomic data are integrated using tensor structure.

2 Materials and methods

2.1 Data
The genomic, epigenomic and clinical data of TCGA ovarian serous

cystadenocarcinoma (TCGA-OV) and head & neck squamous

cell carcinoma (TCGA-HNSC) were downloaded from the TCGA

data portal (https://gdc-portal.nci.nih.gov) and the UCSC Cancer

Browser (https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/), re-

spectively. These two datasets were screened from the whole TCGA

data collection because they had big sample sizes, poor survivals and

each datatype was generated using a single platform (Details avail-

able in Supplementary Material). In the present study, we used gene

expression (GE), DNA methylation (ME), copy number variation

(CN) and somatic mutation (MU) data. In brief, the level 3 expres-

sion, methylation and copy number data of TCGA-OV were

retrieved. For methylation, all probes were grouped by gene, and the

maximum beta value of the all probes for a gene was assigned to

this gene. Beta values, ranging from 0 to 1, represent estimated

methylation levels using the ratio of intensities between methylated

and unmethylated alleles. For copy number variation, the down-

loaded segmented CN data was mapped to genes to produce gene-

level estimates. For TCGA-HNSC, instead of processing data by

ourselves, we downloaded processed gene levels data from UCSC

Cancer Browser. We used thresholded copy number, IlluminaHISeq

percentile gene expression and Methylation450K DNA methylation

data. Detailed of how these data were processed can be found at

UCSC Cancer Browser website (https://genome-cancer.ucsc.edu).

2.2 Transforming somatic mutation data using

network propagation
Although somatic mutations are a hallmark of cancers, the vast ma-

jority of genes in cancer cells are not mutated. Therefore, direct use

of somatic mutation would result in a very sparse tensor. In this

study, we utilized network propagation to integrate somatic muta-

tions and gene interaction networks (Hofree et al., 2013; Vanunu

et al., 2010). The resulting matrix is far less sparse than the input

somatic mutation matrix. Besides, it contains not only somatic mu-

tation information, but also the influence of each mutation over its

network neighborhood. This method has been successfully applied

to network-based stratification of tumor mutations (Hofree et al.,

2013) and prioritizing disease genes (Vanunu et al., 2010).

Somatic mutation profiles of samples were firstly converted to a

binary matrix based on whether a gene in a sample has a functional

mutation (i.e. 1 if it has one or more of indel, nonsense, nonstop,

splice site, translation start site, or missense mutations; otherwise 0).

The obtained binary matrix was then projected onto human gene

interaction network to generate a network propagation model using

a propagation function (Vanunu et al., 2010):

Ftþ1 ¼ aFtAþ ð1� aÞF0

where F0 is the binary sample-by-gene mutation matrix, and A is

a degree-normalized adjacency matrix of the gene interaction net-

work. To generate the adjacency matrix, we first combined

three publicly available gene/protein interaction networks, namely

STRING (V.10, http://string-db.org), HumanNet (V.1, http://www.
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Fig. 1. Schematic diagram for loose and tight data integration
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functionalnet.org/humannet/), and Pathway commons (V.8, www.

pathwaycommons.org/). The combined dataset included all hits in

Pathway common but only top 10% hits from HumanNet and

STRING (Hofree et al., 2013). The adjacency matrix was then mul-

tiplied by a diagonal matrix with the inverse of its row sums on the

diagonal to create a degree-normalized adjacency matrix. a is a tun-

ing parameter that determines the distance that a mutation signal is

allowed to propagate. However, the performance of the models is

not sensitive to this value when the value is above 0.5 (Vanunu

et al., 2010). We set the value of a to 0.5 in the present study. The

propagation function was executed iteratively until converge,

defined as Ft11 – Ft < 1 * 10�4.

Different data types may include different sets of genes. For the pre-

sent study, we only considered genes with all four data types to avoid

missing data points. Overall, we obtained data for 7477 genes * 445

samples for TCGA-OV, and 13678 genes * 480 samples for TCGA-

HNSC. The difference of the numbers of genes in the two datasets was

largely due to the different methylation platform: Methylation27K for

TCGA-OV while Methylation450K for HNSC which had significantly

different numbers of probes and, therefore, coverages.

2.3 Learning algorithms
In this section, we briefly introduce the notions of tensor and

tensor decomposition. Because there are many algorithms available

and in practice we can only compare a few of them, we focused on

the matrix-based regression algorithms using the same base algo-

rithms, namely support vector regression (SVR) and RIDGE regres-

sion, as those used in tensor regression for direct comparison. We

also included state-of-the-art regular random forests (RF) (Breiman,

2001) and random survival forests (RSF) (Ishwaran et al., 2008)

algorithms to provide additional comparison.

2.3.1 Tensor

The term tensor is used to generalize vector (first-order tensor),

matrices (second-order tensor) and higher-order arrays (Kolda and

Bader, 2009). In the present study, third-order tensors were used to

store the all genomic and epigeomic data. The three dimensions of

the tensors include sample, gene and data type.

2.3.2 CANDECOMP/PARAFAC (CP) tensor decomposition

It was suggested that a tensor x can be expressed as the sum of a finite

number of rank-one tensors (Kolda and Bader, 2009). The rank of the

tensor is the smallest number of rank-one tensors that generate x as

their sum. An N-order tensor is rank-one if it equals to the outer prod-

uct of N vectors. The procedure is often termed as the CANDECOMP/

PARAFAC (CP) decomposition, which factorizes a tensor into a sum

of R component rank-one tensors (Kolda and Bader, 2009):

x �
XR

r¼1

uð1Þr o uð2Þr . . . o uðMÞr (2)

where R is the rank of the CP decomposition, M is the order of the

tensor and the symbol ‘o’ represents the vector outer product.

2.3.3 Tensor learning model

Linear tensor learning models in the present study were generalized

from the conventional vector linear model as (Guo et al., 2012):

y ¼ f v;x; bð Þ ¼ v;xh i þ b (3)

where v 2 IRI1� I2 ...�IM is the input tensor, x is the weight tensor in

the same dimension as v, y is the regression outcome, f represents

regression function, and scalar b is the bias of the model. The learn-

ing process is to determine the weight tensor and bias based on the

training data. The number of parameters needed to be learned is

equal to I1� I2::�IM (i.e.
QM

k¼1 Ik where M is the order of the tensor).

Thus, when M is high, the number of weights can be significant;

consequently, overfitting and other problems associated with high

computational complexity may appear. This can be especially prob-

lematic when the number of cases to learn parameters from is small,

relative to the number of available training cases. In this study, we

used the CP algorithm to constrain the weight tensor x to a sum of

R component rank-one tensors (Eq. 4). This approach reduces the

number of parameters that need to be estimated from
QM

k¼1 Ik to

R
PM

k¼1 Ik.

y ¼ v;xh i þ b � v;
XR

r¼1

u 1ð Þ
r 8 u 2ð Þ

r 888 u Mð Þ
r

* +
þ b (4)

¼
XR

r¼1

v;u 1ð Þ
r 8 u 2ð Þ

r 888 u Mð Þ
r

D E
þ b

where ‘o’ represents the vector outer product. The weight matrix

and bias were trained from a set of training data using support ten-

sor regression (STR) and RIDGE tensor regression (RTR) (Guo

et al., 2012). As their names indicated, STR and RTR are expansions

of support vector machine and RIDGE regression, respectively.

In most cases, it is difficult to determine the exact rank of a

tensor because it is a NP-hard problem (Håstad, 1990). Thus, in

practice the rank is usually determined by fitting multiple CP de-

composition with different ranks until a reasonably ‘good’ rank is

found. For each possible R to test, a common method to compute

the CP decomposition of a tensor is the alternating least squares

(ALS) method, which only optimize one mode at a time while all

other modes are fixed (Kolda and Bader, 2009).

To achieve unbiased estimate of the performance of predictive

models in the study, we used a nested cross validation (CV) procedure

(Varma and Simon, 2006). In brief, the inner CV was used to conduct

a parameter search of the STR or RTR parameters and the outer CV

was used to measure the performance of the model based on parame-

ters determined in the inner CV. Because the external fold used in the

outer CV was never seen in the inner model selection, the nested CV

is considered to provide unbiased estimate of the true error (Varma

and Simon, 2006). For simplicity and consistency, we only considered

linear models which used the same parameter set (relative weight of

the regularization term C¼2ˆ [�5, �3, �1, 1,. . ., 17, 19]) in inner

CV for all tensor and matrix based models. The TCGA data are vul-

nerable to batch effects because the tumor samples that the data were

derived upon were collected and processed in different institutions at

different times (Leek et al., 2010). To achieve realistic estimate of per-

formance, we adopted a leave-one-batch-out (LOBO) CV procedure

in which all data from one batch were grouped and used as training

or test data together (Varma and Simon, 2006).

2.4 Performance evaluation
To evaluate the performance of the models, we combined all

predictions from the outer CV and calculated its concordance index

(C-index). C-index is the fraction of all pairs of subjects whose

observed survival times are correctly ordered by the predictive

model. It is considered as a ‘global’ index for estimating the predict-

ive ability of a survival model. We then divided all subjects equally

into two groups, namely higher risk and lower risk groups, based on

predicted survival times. We created Kaplan-Meier estimators to

evaluate the statistical significance of the difference between these
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two groups (Kaplan and Meier, 1958). In addition, we developed

Cox models to calculate the hazard ratios (HR) and their associated

P-values of the higher and lower risk groups (Cox, 1972). We also

reported the mean, 3-year and 5-year survivals for both groups.

3 Results

3.1 Predictive models using single type of genomic data
To evaluate how informative each type of genomic and epigenomic

data is, and to perform direct comparison with the tensor based

models we planned to develop, we first built SVR and RIDGE re-

gression models using GE, ME, CN and MU data sets separately.

We optimized the parameters using the inner CV and then built

testing models in the outer CV to estimate the performance of

these SVR models. The numeric metrics of the models are summar-

ized in Table 1 and their Kaplan-Meier curves are available in

Supplementary Table S1. Among all four data types, GE was the

only one that resulted in models with statistically significant differ-

ences between higher and lower risk groups for both datasets. Other

data types lead to models with little to modest prediction power ex-

cept methylation data that achieved significant separation for

TCGA-OV (P-value: 0.0483) used in SVR models. The trend can be

consistently seen in hazard ratio, C-Index, 3- and 5-year survivals.

In addition to SVR and RIDGE regression, we also developed RF

and RSF regression models using individual and concatenated data-

sets (Table 1). While GE afforded the best performance model with

individual data for HNSC, MU delivered the most predictive model

for TCGA-OV dataset, suggesting network propagation resulted in

informative transformed data. Interestingly, RF and RSF gave differ-

ent performance for TCGA-OV and TCGA-HNSC datasets: while

RFS in general out-performed RF for the TCGA-OV data, overall

RF was the better choice for TCGA-HNSC.

3.2 Predictive models using concatenated genomic data
One simple way to integrate a number of genomic and epigenomic

data is to concatenate all data types to form a large data matrix with

the size of n *
PM

k¼1 Ik where n is the number of cases, M is the num-

ber of data types and Ik is the number of features for the data type k.

To compare the concatenation approach with the proposed tensor

based data integration, we developed SVR and RIDGE models using

concatenated features. In the present study, there are 4*7477 fea-

tures for TCGA-OV, and 4*13678 features for TCGA-HNSC. We

used the same nested CV to select the parameters and estimate the

performance. The performance of the SVR model is very similar to

the SVR model using GE features (Table 1). Consistent with the pre-

vious findings that SVR has strong tolerance against noise contamin-

ation (Raymond et al., 2017).

3.3 Tensor based predictive models
We developed a series of STR models for TCGA-OV and TCGA-

HNSC with rank ¼ 1, 2, 3 (Table 2 and Fig. 2). All models delivered

Kaplan-Meier curves that showed statistical difference between

higher and lower risk groups. For TCGA-OV, the rank2 model

delivered the best separation while rank3 model delivered the best

results for TCGA-HNSC. Therefore, the optimal rank may depend

on the characteristics of the data. The number of features used in

tensor models, as well as the numbers for concatenation models are

summarized in Table 3. It is noteworthy that the rank1 models for

both data sets delivered better performance than GE alone and con-

catenated models while only including approximate one fourth of

features of the concatenated model.

We then attempted to build RTR models for TCGA-OV and

TCGA-HNSC (Table 2 and Fig. 2). However, we were only able to

build ranks 1 and 2 because rank3 models were very time consuming

and we were not able to build all models within a reasonable

time frame. For both datasets, rank2 models performed better

than rank1. Overall, STR and RTR models delivered similar

performance.

Comparing tensor based models with matrix based models, it is

clear that the best performance scores were usually associated with

tensor models. For example, For TCGA-OV dataset, the best C-index

is 0.611 for tensor based models (RTR Rank2) versus 0.587 (RFS

model for MU data) for matrix based models, and best HR (P-value)

is 1.65 (1.77e�4) for the RTR Rank2 model versus 1.56 (9.52e�4)

for the RFS model of MU data. The same trend can be found for other

metrics and the TCGA-HNSC dataset (Tables 1 and 2).

3.4 Computational complexity and execution time
In this section, we compare empirical execution times of the tensor

based approach with the concatenation method. There are two differ-

ent types of computational complexity and execution time involved in

most machine learning based predictive model development: at train-

ing time and at test time. The computational complexity at the test

time for tensor decomposition based approach is linear to the overall

number of features, so as the concatenation based approach.

Therefore, there is no significant difference between these two

approaches. The training time computational complexity and execu-

tion time are more difficult to estimate. However, the base operations

of tensor based approaches are the linear SVR or RIDGE regressions,

same as the concatenation approach, because the ALS method opti-

mizes one mode at a time. Although the total number of features are

identical, all features in the concatenated approach are in the same

matrix while the features in the tensor approach are arranged in three

dimensions. Thus, it takes more time to build a model using concaten-

ation than tensor approaches. The tensor approach, however, often

requires multiple iterations. The number of iterations is determined

by the nature of the data and is impossible to predict. Thus, we only

report the average empirical time to build the outer CV models of the

tensor and matrix based approaches for both TCGA-OV and TCGA-

HNSC datasets (Table 4). Overall, TCGA-HNSC model requires

more time than its TCGA-OV counterpart because the former has

more features. Higher-rank models demand more time than lower-

rank models. In fact, we were not able to complete rank3 RTR mod-

els within reasonable time frame. Interestingly, the Rank 1 and 2 STR

model building is slower than the concatenation models while the

rank 1 and 2 RTR model building is faster than the corresponding

concatenated matrix model building. However, the required time

increases rapidly with the rank; consequently, it was not feasible to

build rank3 RTR models within a reasonable time frame. For STR

models, even though Rank1 and Rank2 models requires more time

than the concatenation approach, the time increases relatively slowly

with the rank. As a consequence, we were able to build rank3 STR

models. Taken together, apparently, RTR has advantages at lower

rank, but STR may be the choice for higher rank CP decomposition

when necessary.

4 Discussion and conclusions

As we discussed in the previous sections, CP tensor decomposition

based models require fewer parameters while preserving underlying

relationship among different data types, compared to concatenated

models (Table 3). In general, it reduces the number of parameters
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that need to be estimated from
QM

k¼1 Ik to R
PM

k¼1 Ik. Currently we

used four different types of features in the present study. It is reason-

able to believe the reduction can be more significant when more

types of data and, perhaps even more important, additional dimen-

sions such as time series data become available.

Tensor approach comes with some drawbacks. For example, CP

decomposition requires the set of matrices have the same numbers

of rows and columns to be modeled as a tensor. Genes are the

best vehicle to organize features as many genomic and epigenomic

features can be directly associated with genes. However, some

genomic or epigenomic features cannot be easily mapped to genes.

For example, currently the reported number of microRNA is only a

few thousands (Kozomara and Griffiths-Jones, 2011). Nevertheless,

a microRNA functions by regulating its targeted genes. Therefore,

the impact of microRNA can be modeled at the gene level by consid-

ering its impact to individual genes, similar to the way that we

transformed the mutation data in this study. Currently we are

exploring such an approach. In addition, algorithm such as

PARAFAC2 can be applied to a collection of matrices that each

have the same number of columns but a different number of rows

(Helwig, 2017). Alternatively, multiple tensors can be used to model

complex data at multiple levels (Khan et al., 2016), e.g. one for

Fig. 2. Kaplan-Meier curves of tensor-based models. R, rank; STR, support

tensor regression; RTR, RIDGE tensor regression

Table 2. Performance of tensor based models

Rank Metrics TCGA-OV TCGA-HNSC

STR 1 C-index 0.573 0.589

HR (P-value) 1.55 (1.1e�3) 1.71 (3.56e�4)

Median 39.6/50.4 32.8/77.3

3Y Survival 0.57/0.707 0.499/0.673

5Y survival 0.257/0.385 0.387/0.543

2 C-index 0.594 0.566

HR (P-value) 1.61 (3.75e�4) 1.59 (1.8e�4)

Median 39.6/52.6/ 37.8/77.3

3Y Survival 0.579/0.697 0.514/0.658

5Y survival 0.239/0.396 0.381/0.545

3 C-index 0.585 0.563

HR (P-value) 1.44 (6.17e�3) 1.72 (2.86e�4)

Median 41/50 33.1/90.1

3Y Survival 0.588/0.688 0.495/0.675

5Y survival 0.262/0.375 0.367/0.556

RTR 1 C-index 0.582 0.553

HR (P-value) 1.44 (6.17e�3) 1.53 (3.9e�3)

Median 39.9/50 37.8/68.8

3Y Survival 0.579/0.698 0.514/0.658

5Y survival 0.265/0.373 0.392/0.535

2 C-index 0.611 0.576

HR (P-value) 1.65 (1.77e�4) 1.63 (1.03e�3)

Median 38.5/50.4 37.8/68.8

3Y Survival 0.547/0.728 0.527/0.651

5Y survival 0.387/0.252 0.3910.542

STR, support tensor regression; RTR, RIDGE tensor regression; C-index,

concordance index; HR, hazard ratio of higher risk and lower risk groups;

Median, median survival (months) of higher risk group/lower risk group; 3Y

(5Y) survival, three (five) year survival of higher risk group/lower risk group.

Table 3. Numbers of features used in the models

Tensor Matrix

Rank1 Rank2 Rank3 Concatenation

OV 7481 14962 22443 29908

HNSC 13682 27364 41046 54712

Table 4. Average execution time (in minutes) for one outer CV

training run

Tensor Matrix

Rank1 Rank2 Rank3 Concatenation

STR OV 16 19 34 13

HNSC 43 239 408 16

RTR OV 13 89 NA 106

HNSC 50 539 NA 602

Note: All jobs were executed in a computer system with 128 cores

(2.27 GHz 8-core XeonTM X7560) and 1 TB of memory. STR: support tensor

regression; RTR: RIDGE tensor regression.
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DNA and another for microRNA. Moreover, curated data such as

pathway structure can also be considered to further improve per-

formance and learn biological structures (Zhang et al., 2017).

Applications of these algorithms in genomic and epigenomic data

will be investigated separately. We also invite the research commu-

nity to conduct research in this promising area.

In the present study, we did not allow missing data in the tensor,

which resulted in filtering a number of genes, especially for TCGA-

OV dataset. This was largely due to the low coverage of the

Methylation27K platform used to generate the methylation data. We

expect the number of missing genes will be much smaller for newer

datasets because sequencing based genomic and epi-genomic data

have become increasingly popular. Besides, methodologies designed

for tensor decomposition with missing data can be employed (Acar

et al., 2010; Khan and Kaski, 2014). It is possible to impute missing

data using various algorithms (Sterne et al., 2009); cautions should be

taken, however, because imputation may introduce biases and there-

fore is not suitable for all datasets. In the present study we did not

apply imputation to avoid additional complexity.

The present study should be considered as the first step toward

modeling complex genomic and epigenomic data using the tensor

structure. For example, we did not attempt to determine the true rank

of the tensors, despite that it is crucially important for most studies.

Recent development of algorithms that can be used to automatically

determine the rank of tensors may overcome the computational bur-

den to determine the true rank of tensors (Khan and Kaski, 2014). We

only focused on lower rank decomposition in the present study; it

should be pointed out, however, it can be very useful to study higher

ranks. Thus, further optimization of the rank may yield better results

and provide valuable insight into underlying biological structures.

In summary, we have presented a proof-of-the-concept study

using tensor to model genomic and epigenomic data. It is encourag-

ing that the results have clearly demonstrated the feasibility and the

models have achieved better performance than single data type and

concatenated approaches. Currently we are actively exploring fea-

ture selection algorithms to identify informative features and eluci-

date the complex interrelationships to take the advantage of tensor

based modeling, which will allow discovery of biological structures

relevant to disease prognosis and treatment.
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