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Abstract

Motivation: Canalizing genes enforce broad corrective actions on cellular processes for the pur-

pose of biological robustness maintaining a constant phenotype to remain unchanged in spite of

genetic mutations or environmental perturbations. Despite their central role in biological systems,

the observation/detection of canalizing genes is often impeded because the behavior of affected

genes is highly varied relative to the inactive canalizer. Therefore, the activity of canalizing genes is

difficult to predict to any significant degree by their subject genes under normal cell conditions.

Results: We investigate this question and present a quantitative framework that allows for the esti-

mation of the power of canalizing genes in the context of Boolean Networks (BNs) with perturb-

ation. This framework borrows tools from the Pattern Recognition theory and uses the coefficient

of determination (CoD) to capture the capacity of the canalizing genes. The canalizing power (CP)

of a gene is quantitatively characterized by two terms: regulation power (RP) and incapacitating

power (IP). We base this assumption on the idea that canalizing power of a gene should be quanti-

fied by the extent of its regulation on the overall network and the extent of control that the gene

takes over from other master genes when it is activated, which is equivalent to reduction of the

control of other master genes upon its activation. Following this, the CP concept is illustrated with

examples in which the goal is to provide preliminary evidence that CP can be used to characterize

the ability of canalizing genes.

Availability and implementation: A library of functions written in MATLAB for computing CP is

available at http://github.com/eunjikim-angie/CanalizingPower.

Contact: eunjikim@tamu.edu

1 Introduction

The concept of genes that can constrain, or canalize, a biological

system to a specific behavior was first proposed by C. Waddington

in 1942 (Waddington, 1942). Waddington proposed the existence of

genes that can produce reliable developmental effects against genetic

mutations or environmental changes during evolution (Waddington,

1942; Wagner, 2005). Lehner investigated Waddington’s intuition

and stated that canalizing genes are hub genes that present similar

robustness when faced with environmental, stochastic and genetic

perturbations (Ben Lehner, 2010). The term canalizing gene has

been used by Martins et al. (2008) to refer to genes that possess

broad regulatory power, and their action sweeps across a wide

swath of processes for which the full set of affected genes are not

highly correlated under normal conditions. Zhao et al. (2012) made

a clear distinction between master genes and canalizing genes. Both

master and canalizing genes exert a strong control over many down-

stream gene pathways; however, canalizing genes have an additional

ability of taking over the control and overriding other regulatory
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instructions. In this paper, canalizing genes refer to genes that are

not highly active under normal conditions, but are capable of taking

over the control of many pathways and exerting broad regulatory

power upon such activation. Canalizing genes produce adaptive and

optimal reactions to environmental, stochastic and genetic perturba-

tions and they are essential in a complex system so it can achieve

biological robustness and buffer itself from the effects of random

alterations or operating errors. We also suggest that the currently

adopted definitions of canalizing and master genes could be modi-

fied so that a particular gene does not have to be exclusively a mas-

ter or a canalizing gene. It is important to emphasize that the

notions of canalizing and master gene are relative. Any gene

possesses some degree of canalizing power over its subnetwork.

The notion of canalizing gene can only be defined relative to other

genes and the notation C;M and S used in this paper for a

canalizing, master and slave gene, respectively, is used with this

understanding.

The principle of a canalizing gene is similar to the concept of an

interrupt in computer architecture. In systems programming, an

interrupt is a mechanism by which the hardware or software alerts

the processor to a high-priority condition indicating an event that

needs immediate attention and requests the processor to stop the

normal processing or current code it is executing and perform a spe-

cific action (Linux Device Drivers, 2001). The processor responds

by suspending its current activities and jumping to a separate piece

of code to deal with the event. Similar to an interrupt handler or an

interrupt service routine (ISR) that is invoked by a special instruc-

tion or by an exceptional condition and puts the program into a dif-

ferent execution context (Comp Arch And Org, 2E, 2010), the

activation of a canalizing gene occurs in response to diverse stress

signals or situations where special attention is needed and results in

a regulatory mode switch. There are multiple opportunities for

canalizing behavior to be observed along the signal-transducing

pathway that governs central cellular functions such as cell-cycle,

survival, apoptosis and metabolism (Martins et al., 2008). Early

observations of canalization along the mitogenic pathway involved

dual specificity protein phosphatase 1 (DUSP1) and Ras (Tabin and

Weinberg, 1985). DUSP1 antagonizes the activity of the p38 mito-

gen activated kinase, MAPK1 (ERK), which is a central component

of the pathway by which extracellular signal-regulated kinases send

mitogenic signals (Chang and Karin, 2001); thus, this gene is canal-

izing in its phosphorylated state, and DUSP1 is canalizing when it

dephosphorylates MAPK1(Martins et al., 2008). Another important

instance of canalization involves the tumor protein 53 (p53) gene

with regard to stresses to the genome (Gomez-Lazaro et al., 2004).

While canalizing genes can be extremely potent, their potency is

often obscured by other features of the regulatory apparatus operat-

ing in the particular cell where control is attempted (Martins et al.,

2008).

Martins et al. (2008) proposed Intrinsically Multivariate

Predictive (IMP) scores, which quantify the synergistic prediction

effect of multiple genes, and provided evidence that IMP could po-

tentially be used as a practical tool for discovery of canalizing

genes. Chen and Braga-Neto (2015) developed a statistical tool for

this inference problem based on the IMP score, by providing a test

for a nonzero IMP score between a Boolean target and its respect-

ive Boolean predictors. Rejection of the null hypothesis of zero

IMP score at a given level of statistical significance gives evidence

for the presence of IMP properties. Zhao et al. defined canalizing

power in a tree model in the context of Bayesian networks (Zhao

et al., 2012). The canalizing power of a gene in the paper by Zhao

and co-authors measures the total increase in prediction power

using pairs of predictors over the maximum prediction power of

the respective single predictors, which is equivalently the sum of

the IMP scores from all genes in the model. The paper concludes

that target genes showing large IMP scores with multiple predictor

sets tend to be canalizing. However, when single predictors pro-

vide perfect predictions for a canalizing gene, the sum of the IMP

scores becomes zero, leading to a paradoxical result: the canalizing

power is zero. Furthermore, a key characteristic of a canalizing

gene is its ability to override other regulatory instructions and

none of the previously mentioned papers considers terms associ-

ated with the regulation power of other controlling genes that lose

control by the activation of the canalizing gene. Although Zhao

et al. suggested a formula to measure the canalizing power of a

gene, their definition fails to capture the incapacitating trait of

canalizing genes. Therefore, we introduce a novel definition of the

canalizing power that can quantitatively characterize the power of

a canalizing gene based on two important characteristics: (i) It has

to be sensitive to the strength of the influence of the canalizing

gene on downstream genes and (ii) It should be able to detect how

much the canalizing gene incapacitates other regulatory instruc-

tions upon its activation. The novelty of this paper lies in the intro-

duction of the notion of incapacitating power and development of

a mathematical formula for canalizing power in terms of regula-

tion power and incapacitating power.

This paper is organized as follows. In Section 2, we present the

Boolean Networks (BNs) with random gene perturbations as a model

for gene regulatory networks and the concept of CoD. Then, we define

the regulation power, incapacitating power and canalizing power. In

Section 3, we apply the novel definition of canalizing power to both

synthetic data and real gene expression data to evaluate effectiveness

of the proposed measurements in quantitatively characterizing canaliz-

ing genes. Finally, Section 4 gives concluding remarks.

2 Materials and methods

We restrict ourselves to the binary case and note that the method-

ology presented here presupposes that gene expression has been pre-

processed and quantized into binary values. There are several

methods that accomplish this (Shmulevich and Zhang, 2002; Zhou

et al., 2003). We do not address these methods in this paper, but

they are naturally central to the accuracy of the results.

2.1 Boolean networks with gene perturbations as a

model for gene regulatory networks
A Boolean network GðX ;FÞ is defined by a set of binary-valued

nodes X ¼ ðX1; . . . ;XnÞ and a corresponding list of Boolean func-

tions F ¼ f1; . . . ; fnð Þ. Each node Xi represents the state (expression)

of gene i, where Xi ¼ 1 means that gene i is expressed and Xi ¼ 0

means it is not expressed. F represents the rules of regulatory inter-

actions between genes. To every node Xi; a Boolean function fi :

0; 1gn ! 0;1gf
�

determining the value of gene Xi is assigned. It is

known that genes may become either activated or inhibited due to

external stimuli. Moreover, noise could also affect the Boolean rela-

tionships. To capture this uncertainty, we consider a BN with per-

turbation, which has been discussed in (Shmulevich et al., 2002).

A Boolean additive-noise model with a random perturbation vector

N 2 0; 1gn
�

is given by

Xi ¼ fi Xð Þ � Ni (1)

where fi is a Boolean logic function of gene Xi, Ni is the ith compo-

nent of N and � is modulo-2 addition. N does not need to be
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independent and identically distributed (i.i.d.) and we suppose that

P Ni ¼ 1g ¼ pif . Then, Equation (1) states that when Ni ¼ 1, the ith

gene is flipped with probability pi because of the noise, independent-

ly of other genes; otherwise it remains unperturbed. If pi ¼ 0 for all

i, then the model is reduced to a deterministic Boolean Network and

the standard network transition function F determines the evolution

of the model. If pi > 0, then with a probability 1�
Qn

i¼1 1� pið Þ,
the current network state will change due to at least one random bit

perturbation.

The randomness of this particular network model is encoded by

the selection of the initial starting state of the network and also by

the gene perturbation probabilities. In order to have a useful prob-

abilistic description of this dynamical system, it is necessary to con-

sider the joint probailities of all of the genes over time. The

dynamics of BNs can be modeled by Markov chains, consisting of

2n states D Xð Þ;X 2 0; 1gn
�

, with the 2n � 2n state transition ma-

trix A where A X ;X
0� �

is the probability of transitioning from X to

X
0

(Shmulevich et al., 2002). We are interested in computing the

joint probability distribution after one step of the network, which

can be achieved iteratively by Dtþ1 ¼ Dt � A ¼ D0 � Atþ1, where Dt

and Dtþ1 are 1 � 2n vectors containing the joint probability distri-

bution at time t and t þ 1, respectively, and D0 is the starting (prior)

joint distribution.

2.2 Coefficient of determination
Let Y 2 0; 1gf be a binary target random variable and X ¼
ðX1; . . . ;XrÞ 2 0;1gr

�
be a vector composed of r binary predictor

random variables, which in our model represent the values of net-

work nodes perturbed with a random noise vector N. The CoD for

X predicting Y is defined by

CoDX Yð Þ ¼ e0 Yð Þ � e8 X;Yð Þ
e0 Yð Þ

(2)

where e0 Yð Þ ¼ min P Y ¼ 0ð Þ;P Y ¼ 1ð Þg
�

is the optimal error of pre-

dicting Y in the absence of observations and

e8 X;Yð Þ ¼
X

x2f0;1gn
minfP Y ¼ 0;X ¼ xð Þ;PðY ¼ 1;X ¼ xÞg

is the optimal error upon observation of X (Dougherty et al., 2000).

By convention, one assumes 0/0¼1 in the above definition because

zero prediction error indicates strong interaction between discrete

predictor and target variable. The CoD measures the relative de-

crease in the classification/prediction error when optimally predict-

ing a random variable Y using random vector X as opposed to

optimally predicting Y based only on its own statistics. The CoD

measures the inherent strength of the nonlinear interaction between

a target gene and its predictors and is therefore more appropriate to

genomics than the correlation coefficient, which only measures lin-

ear interaction. If CoDX Yð Þ ¼ 0, there is no association between X

and Y, whereas if CoDX Yð Þ ¼ 1, then X and Y are deterministically

related. The CoD measures nonlinear association (increase in predic-

tion power), not causality. The CoD is often used to measure the

strength of downstream genes predicting upstream genes. The intu-

ition behind this interpretation is that, if gene Y regulates genes X1

and X2, the observation of X1 and X2 should allow one to predict

the behavior of Y. Moreover, the stronger the control by Y, the

stronger is the prediction based on X1 and X2.

2.3 Regulation power
In Zhao et al., (2012), the mean CoD value of a gene was defined

to represent its regulatory importance in the model. Specifically,

the mean CoD of a node Y using all single predictors X ¼
X1; . . . ;Xnð Þ 2 0; 1gn

�
is given by

CoDX ;1 Yð Þ ¼
Pn

i¼1 CoDXi
Yð Þ

n
(3)

Similarly, the mean CoD of a node Y using all sets of double pre-

dictors is given by

CoDX ;2 Yð Þ ¼
P

1� i< j�n CoDXi ;Xj
Yð Þ

nC2

(4)

A generalized definition for the mean CoD using d predictors is

given by

CoDX ;d Yð Þ ¼

P
nCd

i¼1 CoD
X ið Þ

d

Yð Þ

nCd
¼ RPX ;d Yð Þ (5)

where X
ðiÞ
d 2 R

d is the ith d-dimensional vector composed of the ele-

ments of X when all possible combinations of size d from the array

X are lexicographically ordered for i ¼ 1; . . . ; nCd (e.g., X
ð1Þ
3 ¼

X1;X2;X3ð Þ; X
ð2Þ
3 ¼ X1;X2;X4ð Þ; . . . ;X 20ð Þ

3 ¼ X4;X5;X6ð Þ when

X ¼ X1; . . . ;X6ð Þ and d ¼ 3). Equation (5) gives the average

strength of predicting Y by using all possible combinations of size d

formed by the genes in the network. This general mean CoD measures

the influence of the gene Y on the overall network and therefore we

call it the “d-regulation power” of the gene Y in the network when d

predictors are used for measurements and denote it by RPX ;dðYÞ.

2.4 Incapacitating and enhancing power
In this section, we assume that S ¼ fS1; . . . Smg is a set of regulated/

slave genes. Furthermore, suppose that there is a master gene M which

controls the slave genes in a regular network regime and there is a

canalizing gene C that is capable of overriding the instructions from the

master genes. Intuitively, the regulation power of M could experience

significant changes depending on the activation of C: The conditional

CoD for S predicting M given that C is on is defined by

CoDS MjC ¼ 1ð Þ ¼ e0 MjC ¼ 1ð Þ � e8 S;MjC ¼ 1ð Þ
e0 MjC ¼ 1ð Þ (6)

where e0 MjC ¼ 1ð Þ is the error of the best predictor of M in the ab-

sence of observations under the condition that C is turned on and

e8 S;MjC ¼ 1ð Þ is the error of the best predictor of M based on the

observation of S when C is on. Change in control of S by M relative

to the activity of C is defined by

DCoDS MjCð Þ ¼ CoDS MjC ¼ 0ð Þ � CoDS MjC ¼ 1ð Þ: (7)

A positive value of DCoDS MjCð Þ indicates that C incapapcitates M

as C is turned on. We call this value the incapacitating power (IP) of C

relative to the regulation of S by M. A negative value of DCoDS MjCð Þ
means that there is an increase in control of M over S as C is turned on

and the magnitude is referred to as the enhancing power (EP) of C with

respect to M upon the activation of C. This can be written as

DCoDS MjCð Þ
�� �� ¼ IPS MjCð Þ if DCoDS MjCð Þ > 0

EPS MjCð Þ if DCoDS MjCð Þ < 0
8ð Þ

�

Equation (7) can be generalized to equation (9) if one wants to con-

sider all possible subsets of size d � m of predictors in S being used:

DCoDS;d MjCð Þ ¼

P
mCd

i¼1 CoD
S ið Þ

d

MjC ¼ 0ð Þ � CoD
S ið Þ

d

MjC ¼ 1ð Þ

mCd
9ð Þ

where S
ðiÞ
d 2 R

d is ith d-dimensional vector consisting of the entries
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of S ¼ ðS1; . . . SmÞ when all possible combinations of size d from S

are lexicographically ordered for i ¼ 1; . . . ;mCd.

2.5 Canalizing power
In this section, we define the canalizing power of the gene C,

CPS[M Cð Þ, as a quantitative measure of canalization potential

of a gene C relative to the set of genes S [M ¼
S1; . . . ; Sm;M1; . . . ;Mpg;
�

where S ¼ S1; . . . ; Smgf and M ¼
M1; . . . ;Mpg
�

are sets of slave genes and master genes, respectively.

The canalizing power of gene C is expressed in terms of the regu-

lation power and incapacitating power of C. This follows from

the intuition that canalizing power should be quantified by the

control of a gene C on the overall network and the extent of con-

trol that the gene C takes over from master genes when C is acti-

vated, which is equivalent to reduction of the control of the

master genes M due to gene C. Thus, the canalizing power of gene

C is given by

CPS[M Cð Þ ¼ RPS[M Cð Þ þ
X

i

IPS MijCð Þ (10)

¼ RPS[M Cð Þ þ
X

i

DCoDS MijCð Þ

�1 CoDS MijC ¼ 0ð Þ � CoDS MijC ¼ 1ð Þ > 0½ �

where 1½�� is an indicator function. RPS[M Cð Þ and IPS MijCð Þ can be

obtained by replacing X with S [M in (5) and M with Mi in (8).

Note that the summation is over only those master genes that have

been incapacitated by the activation of C.

2.6 Applications
Consider a network consisting of n genes and assume that it has a

canalizing gene and one is interested in detecting it. One possible ap-

proach to do this is to sort out all of the controlling genes which

could be either a master gene or a canalizing gene by computing the

mean CoD because both master and canalizing genes should exhibit

high regulation power. Hypothesis testing based on user-selectable

thresholds or statistical tools presented in (Chen and Braga-Neto,

2015, 2013) can be also used for picking out controlling genes.

Suppose that we constitute a vector of controlling genes X ¼
ðX1; . . . ;XpÞ and slave genes S ¼ ðS1; . . . ; SlÞ, where n ¼ pþ l.

Furthermore, let X�c ¼ X1; . . . ;Xc�1;Xcþ1 . . . ;Xpg
�

be the vector X

without the element Xc: The canalizing power of Xc is

CPX�c[S Xcð Þ ¼ RPX�c[S Xcð Þ þ
X
k6¼c

IPS XkjXcð Þ

¼ RPX�c[S Xcð Þ þ
X
k6¼c

DCoDS XkjXcð Þ

�1 CoDS XkjXc ¼ 0ð Þ � CoDS XkjXc ¼ 1ð Þ > 0½ �:

By taking turns, compute the canalizing power for each of the

gene in the vector of controlling genes X. The gene Xi� possessing

the maximum canalizing power is the most likely candidate for the

canalizing gene with respect to our model assumptions, where

i� ¼ argmax
c21;...;p

CPX�c[S Xcð Þ

¼ argmax
c21;...;p

RPX�c[S Xcð Þ þ
X
k6¼c

IPS XkjXcð Þ
� �

11ð Þ

Since the power of incapacitation is a key attribute of canalizing

genes which can be used to distinguish canalizing genes from master

genes, only the second term in (11) can be utilized for a fast approxi-

mate search. Thus,

i� � argmax
c21;...;p

X
k 6¼c

IPS XkjXcð Þ

¼ argmax
c21;...;p

X
k6¼c

DCoDS XkjXcð Þ

� 1 CoDS XkjXc ¼ 0ð Þ � CoDS XkjXc ¼ 1ð Þ > 0½ �

3 Results

In this section, we illustrate the application of canalizing power in a

number of experiments using both synthetic data and real data sets.

3.1 Synthetic data
We generate a synthetic BN with n ¼ 10 genes as shown in Figure 1

which is composed of one canalizing gene C, two master genes M1

and M2 and three levels of slave genes S11; . . . S32. Regulatory influ-

ences on downstream genes are transferred between master genes

and the canalizing gene depending on the activity of C. Thus,

Boolean functions that govern the activity of downstream genes are

designed to differ according to the expression of the canalizing gene

C and therefore, the canalizing gene is embedded in the network by

these Boolean rules. When there is no noise, the system transitions in

accordance with its structural rules as defined by the Boolean func-

tions listed in Table 1. The regulation power, incapacitating power

and canalizing power of controlling genes are measured at each time

point along the network evolution under various settings of the

Fig. 1. A synthetic BN with n ¼ 10 genes which is composed of one canalizing

gene C , two master genes M1 and M2 and three levels of slave genes

S11; . . . S32. Upstream genes C ; M1 and M2 regulate downstream genes and

downstream genes provide feedback signals to the upregulators

Table 1. Boolean functions of genes in the synthetic BN

Boolean expression C inactivated C activated

Controlling

Genes

C S11�S12

M1 S22 ^ ðS31 �S32Þ
M2 M2 ^ S11 ^ S32

Level 1 S11 C _M1 _M2 M1 _M2 C

S12 C ^M2 M2 C

S13 C_ (M1�M2) M1�M2 C

Level 2 S21 S11 ^ S12 _ C ^M1 M1 _M2 C

S22 S11 _ S12 ^ S13 M1 _M2 C

Level 3 S31 S21 ^ S22 M1 _M2 C

S32 S21�S22 0 C

Note: The symbols _, ^ and � denote the Boolean disjunction, conjunction

and exclusive-OR, respectively.
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model parameters. Each target is predicted by d ¼3 predictors.

Given the network, we consider four different simulation scenarios:

(i) no gene is perturbed, (ii) only one specific gene is perturbed while

other genes are noiseless, (iii) all genes are perturbed with equal prob-

ability and (iv) all of the genes are susceptible to noise where the per-

turbation probability for each gene is randomly generated from a beta

distribution. Since the behavior of the network depends not only on

the perturbation probabilities but also on the initial state distribution,

we compute the average RP, IP and CP over ten thousand random

generations of its initial joint probability distribution, D0.

In the first case, no gene is perturbed and we plot the mean RP,

IP and CP measured at each time step averaged over 10, 000 random

starting joint probability distributions. Figure 2A shows that the

mean regulation power of C is similar to or even less than that of

M1; whereas incapacitating power is exhibited only for the canaliz-

ing gene. This leads to higher CP of C, which indicates that the inca-

pacitating power is a key attribute of canalizing genes that can be

used to distinguish canalizing genes from other controlling genes.

The results for the second case where only one specific control-

ling gene is perturbed are presented in Figure 2B and C. In

Figure 2B, the canalizing gene is perturbed with a probability PC ¼
0.1 and other genes are not perturbed at all. Presence of noise in the

canalizing gene corrupts its gene expression resulting in its lower IP,

which negatively impacts its canalizing power. A case where only

M1 is perturbed with a probability PM1
¼ 0.1 is shown in

Figure 2C. In concordance with intuition, RP and IP of the canaliz-

ing gene is hardly impacted which does not compromise its predom-

inance in CP. Effects of noise imposed on each of the downstream

genes S12 and S22 with perturbation probabilities PS12
¼ 0.1 and

PS22
¼ 0.1 are presented in Figure 2D and E, respectively. S12 is

given as an input to C and therefore, IP of C deteriorates substantial-

ly which makes CP of C contiguous to that of M1 across the timeline

when PS12
¼ 0.1 (Fig. 2D). S22 provides a feedback signal to the mas-

ter gene M1, thus, the RP of M1 dwindles when PS22
¼ 0.1 as illus-

trated in Figure 2E. While there is little noticeable distinction in

regulation power between C and M1, IP of the canalizing gene is re-

markably higher in comparison to the rest of controlling genes,

resulting in CP of C being greater than M1 and M2 (Fig. 2E).

For the next group of experiments, all of the genes are equally per-

turbed. Figure 2F shows that when the common perturbation prob-

ability is relatively small, P ¼ 0.01, C experiences a decrease in its IP

and CP. However, it still remains the gene with the highest canalizing

potential in the network. When the perturbation probability is

increased to P ¼ 0.1, IP of C is virtually nonexistent and mean canal-

izing power of C has fallen below 0.18 as depicted in Figure 2G. This

suggests that the amount of noise in the regulatory network could

negatively affect the canalizing potential of certain genes.

For the final group of simulation experiments, all genes are per-

turbed with different probabilities. The beta distribution, which is

defined on the interval ½0;1�, can represent all the possible values of

a probability and it is widely used as a probability distribution of

probabilities (Mun, 2015). The perturbation probability for each

gene is randomly generated from a beta distribution with two

parameters a ¼ 2, b ¼ 200, which is a right-skewed distribution

with mean 0.0099 to introduce a moderately small perturbation.

The results are displayed in Figure 2H. When the entire network is

exposed to such type of random noise, RP of M1 decreases over time

and while the canalizing gene C remains the most potent canalizer in

the network despite its diminished IP. Boxplots of incapacitating

power of controlling genes measured at t ¼14 are shown in Figure 3

and the first boxplot represents a decrease in control of M1 over

downstream genes as C is turned on. The boxplots are based on the

10 000 samples which are generated from random starting joint

probability distributions under the same experimental conditions as

used for Figure 2H. The expected canalizing power of C is clearly

higher than the CP of the rest of the controllers in the network:

E CPC½ � ¼ 0.483, E CPM1½ � ¼ 0.053, E CPM2½ � ¼ 0.005.

3.2 Real data
In this section, the proposed definition of the canalizing power is

applied to a real data set from a study on ionizing radiaiton (IR) re-

sponsive genes in (Kim et al., 2000) to assess the usefulness of our

quantification in characterizing a canalizing gene. Note that our

Fig. 2. Mean regulation power, incapacitating power and canalizing power

over time (A) when no gene is perturbed. (B) A particular controlling gene is

perturbed with PC ¼ 0:1 and (C) PM1
¼ 0:1. (D) Effects of noise in the expres-

sion of downstream genes on mean RP, IP and CP when PS12
¼ 0:1 and

(E) PS22
¼ 0:1. All genes are perturbed with the same probability (F) P ¼ 0:01

and (G) P ¼ 0:1: (H) All genes are perturbed with different probabilities which

are randomly generated from beta 2; 200ð Þ distribution
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goal is not to discover new canalizing genes, but rather to illustrate

the potential of our measurement on well-known canalizing genes.

The data set consists of 12 genes under three conditions (i.e., IR,

MMS, UV) in 30 cell lines of both p53 proficient and p53 deficient

cells. The data are ternary, indicating up-regulated (þ1), down-

regulated (�1), or no-change (0) status. Here we map this to binary

expressions using the following rules: change (1), for either up-

regulated or down-regulated genes, and no-change (0). Additionally,

we consider the three binary conditions (IR, MMS, and UV) as pos-

sible predictive factors, for a total of 15 Boolean variables in the BN

model of this data set. We then apply the definitions of regulation

power, incapacitating power and canalizing power outlined in the

previous section. Figure 4 shows a bar chart with the canalizing

power of each gene when triple predictors are used (d ¼ 3Þ. It is

stacked to display the regulation power and incapacitating power of

each gene. p53 turns out to be the most powerful canalizing gene in

the data set. This is in accordance with the known fact that p53 is

kept at a low level/dephosphorylated in unstressed cells and becomes

significantly activated/phosphorylated in response to environmental

stresses like UV, IR and oxidative stress, leading to a quick accumu-

lation of p53 in stressed cells (Collot-Teixeira et al., 2004).

4 Discussion

It is a well-established notion in biology that canalizing genes pos-

sess broad regulatory power and can enforce broad corrective

actions. Canalizing genes can be extremely potent not only because

they produce optimal reactions to operating errors and external

stimuli, but also because they don’t act alone. Canalizing genes are

more like master switches that set in motion a cascade of regulatory

events that have huge impacts on downstream genes for the sake of

driving the system to a desired condition. Discovering such potential

drug targets that affect the disease trajectories is a strong step to-

ward significant therapeutic benefits. From the perspective of opti-

mal control, this is viewed as obtaining the best estimates of inputs

which are most probable to elicit certain behavior of the network.

However, the detection of these genes is circumscribed by their par-

ticular behavior. Under normal cell conditions, canalizing genes are

not active and they are turned on only when cells encounter unfavor-

able situation. One of the most intensively studied tumor suppressor

genes, p53 best describes this situation in which it is found at very

low levels in normal cells while it is frequently observed in its phos-

phorylated state cancer-prone cells.

Although there have been several studies attempting to mathem-

atically characterize canalizing genes and their power, they all

missed the opportunity to characterize an important property of

canalizing genes; that is, their incapacitating power. Therefore, we

introduce a conditional CoD that characterizes predictive power of

a set of genes with respect to a target gene under a specific condition

of other genes. Our approach also suggests that the currently

adopted definitions of canalizing and master genes could be modi-

fied so that a particular gene does not have to be exclusively a mas-

ter or a canalizing gene. The newly introduced canalizing power

resides in the continuous domain; therefore it presents a relative

characterization of controlling genes. Although we have focused on

BNs with perturbations to validate our ideas in a simplified environ-

ment, the same concept can be easily extended to Probabilistic

Boolean Networks (PBNs), which offers more model flexibility.
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