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Abstract 

Motivation: DNA methylation is essential for normal embryogenesis and development in mammals 

and can be captured at single base pair resolution by whole genome bisulfite sequencing (WGBS). 
Current available analysis tools are becoming rapidly outdated as they lack sensible functionality and 
efficiency to handle large amounts of data now commonly created.  

Results: We developed gemBS, a fast high-throughput bioinformatics pipeline specifically designed 

for large scale BS-Seq analysis that combines a high performance BS-mapper (GEM3) and a variant 
caller specifically for BS-Seq data (BScall). gemBS provides genotype information and methylation 
estimates for all genomic cytosines in different contexts (CpG and non-CpG) and a set of quality reports 
for comprehensive and reproducible analysis. gemBS is highly modular and can be easily automated, 
while producing robust and accurate results. 

Availability: gemBS is released under the GNU GPLv3+ license. Source code and documenta-

tion are freely available from www.statgen.cat/gemBS. 

Contact: angelika.merkel@cnag.crg.es  

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  
Whole genome sequencing of bisulfite converted DNA (WGBS) is con-

sidered the current gold standard for studying DNA methylation at base 

pair resolution, but due to high costs its application has been lagging be-

hind other more cost-efficient platforms (such as microarrays). Recent de-

creases in sequencing costs have led to a rise in genomic BS-sequencing 

applications and the creation of significant amounts of large data sets, fre-

quently as part of large epigenomic consortia such as BLUEPRINT, 

ENCODE or NIH ROADMAP. However, most available tools (see 

Krueger et al. (2012) for a review) lack the functionality to process diverse 

BS-Seq dataset sensibly and do not scale efficiently for high-throughput 

analysis. 

DNA methylation analysis from bisulfite treated DNA poses particular 

challenges  (Laird, 2010; Bock, 2012). Firstly, bisulfite treatment initially 

converts un-methylated cytosines to uracils, which are replaced by thy-

mines during PCR amplification. This results in four (potentially different) 

sequences that need to be aligned to a reference genome. Although, pow-

erful tools for short read alignment exists, the increased rate of mismatches 

and low sequence complexity of bisulfite converted sequences prevent a 

straightforward implementation. Secondly, cytosine methylation status is 

derived from read counts of converted and non-converted cytosines. Ge-

netic variants, low base call qualities and conversion failures can lead to 

misinterpretation of the observed counts (i.e. methylation levels) and have 

to be accounted for.  

Here we describe gemBS, an efficient and scalable pipeline for high per-

formance BS-mapping and accurate variant and methylation calling.



Table 1: Overview of requirements and features of gemBS compared with other popular BS-Seq analysis tools. 

 

GEMBS BISMARK BSMAP BWA-meth Novoalign Bis-SNP MethylExtract

General

Memory required (RAM) 48GB 16GB 8-16GB, 26GB 8-16GB 16GB 10GB ?

Multi-threading yes yes yes yes yes yes yes

Language C, Python Perl C++ Python ? Java, Perl Perl

Distribution GitHub (GNU GPL v3), Github (GNU GPL v3) Github (GNU GPL v3) Github (MIT license) Novocraft (free trial) SourceForge (MIT license) Github (GNU GPL v3)

Singularity, Docker

Supported data types

RRBS yes yes yes yes yes yes yes

WGBS yes yes yes yes yes yes yes

PBAT yes yes - - - ? ?

NOMe-seq - - - - - yes yes

Directional/non-directional library yes/ yes yes/ yes yes/ yes yes/ - yes/ yes yes/ yes yes/ yes

Single end/ paired end yes/ yes yes/ yes yes/ yes yes/ yes yes/ yes yes/ yes yes/ yes

Base space/ colour space yes/no yes/ no yes/yes ? yes/ yes yes/no yes/no

Functionality

BS-alignment GEM3 bowtie2 BSMAP (SOAP) bwa mem Novoalign (SOAP) (Bwa-meth, BSMAP, (Bismark)

 Novoalign)

BS- and nonBS alignment combined GEM3 - - - - - -

Spike-in support yes yes yes yes yes - -

UMI support - - - - - - -

Adapter trimming - TrimGalore yes (TrimGalore) yes - -

5'/3' end trimming (M-bias) BScall TrimGalore yes (TrimGalore) yes yes (5' end, 3'end) yes

Remove duplicates BScall yes - yes Picard-Tools yes, (Picard-Tools)

Collapse overlapping PE reads BScall yes - yes yes yes

Variant calling BScall - - (biscuit) - yes (GATK) yes

Methylation calling BScall MethylationExtractor methratio.py (methylDackel) NovoMethyl yes yes

Input/ output

FASTQ/FASTA yes yes yes yes yes - -

Standard input yes - - - - - -

Alignments in TXT/BAM yes/no yes/ yes yes/ yes yes/ yes yes/ yes - -

BAM/SAM sorted by readID yes/yes - yes - yes yes yes

Genotype and methylation calls yes (bcf) - - - - yes (vcf) yes (vcf)

CpG and nonCpG yes/ yes (txt,bed) ?/ yes yes (txt) - yes/ yes (txt) yes/ yes (bed) yes/ yes (txt)

both strands /strand specific

Visualization methylation and coverage yes (bigWig,bedGraph) yes (bedgraph) - - - yes (.wig, bedgraph) Yes (.wig, bigWig)

Summary reports yes (json, html) yes (html,txt) - (methylDackel) yes(txt) yes yes  
 

BISMARK, BSMAP, BWA-meth and Novoalign are predominantly used for aligning BS data and methylation calling. Bis-SNP and MethylExtract perform genotype and methylation calling from already 

aligned data. (Italics indicate third party applications recommended by the authors of the software for extended analysis). 

 

 



It can be used to analyze DNA methylation in CpG and non-CpG context 

and allows for variant calling from BS-Seq data. We compare gemBS 

against some commonly used tools and test its performance on a variety 

of BS-Seq data types. Additionally, we demonstrate how gemBS can ac-

curately call SNPs and how this is influenced by sequencing coverage. 

2 Methods 
gemBS is a versatile pipeline that allows for fast and reproducible analysis 

while providing up-to-date functionality (see Table 1 for a comparison of 

features between gemBS and other popular tools). 

gemBS is capable of analyzing data derived from diverse protocols, such 

as WGBS, RRBS and PBAT, for single and paired-end sequencing and 

directional/non-directional libraries, while providing support for spike-in 

sequences. If available, gemBS can additionally process genomic data, for 

example to increase power during genotype calling (see below). Outputs 

are provided in standard data formats for seamless downstream analysis 

and summary reports allow for quality checks (see Figure 1). gemBS’ two 

core components are GEM3, a high performance short read aligner and 

BScall, a methylation aware variant caller. Both are embedded in a highly 

efficient framework together with standard sequence analysis tools 

(samtools, bcftools) (http://samtools.sourceforge.net/) and a small data-

base (sqlite3) that tracks the failure/completion of individual gemBS tasks. 

 

 

 

Fig. 1.  gemBS workflow and components. (Software in italics) 

 

GEM3 similarly to other ‘3 letter’ aligners, such as Bwa-meth (Pedersen 

et al., 2014), Novoalign (http://www.novocraft.com/) or Bismark 

(Krueger and Andrews, 2011), uses an in silico conversion approach for 

mapping. Bisulfite treatment and PCR create four types of reads: Crick+, 

Crick-, Watson+, Watson-. Crick+ and Watson- correspond to the original 

strands after bisulfite conversion and are C-depleted, while Crick- and 

Watson+ are the respective complementary strands and are G-depleted.  

In directional sequencing, the first read in paired end sequencing (and the 

only read in non-paired sequencing) stems from either the Crick+ or Wat-

son- strands and is therefore C-depleted. The second read for paired end 

sequencing is derived from the complementary strand (Crick- or Watson+) 

respectively and is G-depleted. For non-directional sequencing, the first 

read (or only read) can be from any of the four strands and forms a mixture 

of reads that are C-depleted and G-depleted (with the second read, if pre-

sent, being from the strand complementary to the first read).   

 

For directional sequencing, GEM3 converts all remaining (non-converted) 

C’s in the first or only read to T’s, and all remaining G’s in the second 

read (if present) to A’s prior to mapping.  For non-directional non-paired 

sequencing, GEM3 uses the proportion of C’s and G’s in the reads to as-

sess whether the read is C or G depleted and performs the conversion step 

accordingly.  For non-directional paired-end sequencing, GEM3 uses the 

base proportions in both reads to assess whether the read pair is C depleted 

for read 1 / G depleted for read 2 or G depleted for read 1 / C depleted for 

read 2, and performs the conversion accordingly. 

An alternative mapping approach to in silico conversion is used by so 

called ‘4 letter aligners’, such BSMAP (Xi and Li, 2009). Reads are simply 

mapped against the original reference allowing for either a C or T as match 

for any potential cytosine. 

 

After successful alignment, BScall performs genotype and methylation 

calling from the mappings (produced by GEM3 or an alternative bisulfite 

aware mapper). Variant calls can be derived from matched genome se-

quencing data, SNP arrays or public databases such as dbSNP 

(www.ncbi.nlm.nih.gov/projects/SNP/index.html), but it is more sensible 

(and cost efficient) to call variants directly from BS-Seq data (Barturen et 

al., 2013; Liu et al., 2012).  

BScall uses Bayesian inference to jointly infer the most likely genotype 

and methylation levels while taking into account sequence quality, bisul-

fite under- and over-conversion and the observed bases similar to Bis-SNP 

(Liu et al., 2012) (see Supplement for a detailed description of the model). 

The program reports all potential cytosines and non-reference homozy-

gous calls together with the conditional methylation estimates (= uncon-

verted and converted bases). Conversion rates can be either set as fixed 

values (based on previous experience) or estimated from reads mapping 

to control sequences. 

Prior to the calling step, depending on the sequencing protocol (defined in 

the parameters set by the user), BScall removes duplicated reads, collapses 

overlapping paired-end reads and trims read-end cytosines that are known 

be to artificially generated during library preparation. If external pro-

cessing tools have been used to manipulate the read data previously (e.g. 

TrimGalore for trimming 

(www.bioinformatics.babraham.ac.uk/projects/trim_galore/) or Picard 

tools for marking duplicates (https://broadinstitute.github.io/picard/)), 

BScall will honor the set flags and process the alignments accordingly. 

Once the genotypes are called, they are further processed by two utilities 

‘mextr’ and ‘snpxtr’ (see Figure 1).’mextr’ extracts all homozygous cyto-

sine methylation in different contexts (CpG, CHG, CHH) and in a variety 

of formats (txt, bed, bedGraph, bigWig). ‘snpxtr’ extract a set of variants 

for a given list of genomic positions.  

3 Results 

3.1 Performance of GEM3 and BScall compared to other 

analysis tools 

We compared GEM3 against the above mentioned aligners and found that 

GEM3 is 4 and 72 times faster than BSMAP and Novoalign but similarly 

sensitive in aligning 85% of all sequenced bases with high quality (97% 

prior to filtering and trimming) (see Table 2, Figure 2A, Table S2). Bwa-

meth and Bismark, in comparison, are both slower and slightly less sensi-

tive.   

GEM3 achieves its fast processing mostly thanks to its efficient algorithms 

(Marco-Sola et al., 2012; Marco-Sola, 2017), but also by avoiding unnec-

essary processing steps and the generation of intermediate files.  

 

 

Table 2. Processing times (CPU hours) for BS mapping and calling tools 

http://samtools.sourceforge.net/
http://www.novocraft.com/
http://www.ncbi.nlm.nih.gov/projects/SNP/index.html
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)
https://broadinstitute.github.io/picard/
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*Calls performed on GEM3 alignments  

 

 

 
 

Fig 2. gemBS performance compared with other BS-Seq analysis tools (58X coverage). A) Mapping sensitivity across BS aligners (Q20 = alignments 

with mapping quality > 20). B) SNPs calls by caller and mapper C) Shared CpG calls and methylation estimates across callers (GEM3 alignment) 

 

 

For example, all of the conversion steps before and after mapping are per-

formed on the fly on a read-pair-by-read-pair basis in the mapper  

itself. GEM3 only performs one alignment against a single composite ref-

erence since its internal design allows the handling large indices. Because 

of its large index, GEM3 requires comparatively large memory resources 

(e.g. 48GB RAM to process the human genome), which nowadays how-

ever is readily available on most midrange workstations. As with other 

mappers, the index needs to be generated only once prior to mapping and 

is reused for multiple mappings when mapping to the same reference (see 

Figure 1). 

When we compare BScall against Bis-SNP (Liu et al., 2012) and Meth-

ylExtract (Barturen et al., 2013), two other bisulfite variant callers (see 

Table 1), we find that BScall is more than 50 times faster than any of them 

(Bis-SNP and MethylExtract take approximately the same time for pro-

cessing). In contrast to non-bisulfite variant calls that focus on the identi-

fication of variable sites, the objective of BScall is to confidently identify 

homozygous cytosines that can be used for downstream methylation anal-

yses. Despite this difference, the accuracy and sensitivity of BScall for 

SNP variants is comparable to non-bisulfite variant callers such as Free-

Bayes (Garrison and Marth 2012). Amongst the 3 callers, MethylExtract 

reports most SNPs, followed by BScall and Bis-SNP see Figure 2B). Be-

tween BScall and Bis-SNP SNP calls are more similar (71% of SNP 

shared) than MethylExtract (17% and 20% of SNP shared) likely because 

both tools implement a similar model for genotype calling (Liu et al., 

2012). In fact, most SNPs identified by Bis-SNP are also identified by 

BScall but do not pass the filtering thresholds. Out of the SNP identified 

by Bis-SNP, 99.9% are also found by BScall when relaxing all filters. 

At the CpG level, about 85% of position are shared across amongst the 

callers and show a similar distribution of methylation levels (see Figure 

2). Those CpG unique to either Bis-SNP or BScall show similar methyla-

tion levels as expected, but those unique to MethylExtract have a large 

proportion of unmethylated CpG. Together, with the observation that 

MethylExtract calls around 30 million CpG (gemBS ~26 million and Bis-

SNP ~25 million CpGs, see Table S4) while there are only 28 million pre-

sent in the human genome, a significant amount of these are likely false 

genotype calls. 

We also noticed that the alignments (i.e. the mapper used to produce them) 

influence the calling results. All callers produced more cytosine calls 

based on alignments from BSMAP which were however are less concord-

ant than calls produced from GEM3 or Bismark alignments (see Table S3). 

3.2 Validation 

 

In order to further evaluate the robustness of gemBS to cope with different 

BS-Seq protocols, namely WGBS, RRBS and PBAT, we tested gemBS 

on a variety of publicly available datasets (see Figure 3, Table S7). Dif-

ferent BS-sequencing protocols exhibit different biases due to BS-induced 

DNA degradation and PCR amplification that can have an impact on ge-

nomic coverage distribution (Laird, 2010; Olova et al., 2017) and read 

alignment itself can be affected by read length, single/paired-end sequenc-

ing and dimerization in paired-end. Rates of unique mappings were high-

est for WGBS data from BLUEPRINT (~84%), ENCODE (aver-

age=~69%) and Lister et al. (2013)(~69%), 

  Mapper Caller* 

Depth Bwa-meth Novo align Bismark GEM3 Bis-SNP Methyl Extract BScall 

27x 278.7  2419.6 354.3 33.5 266.8 204.9 6.2 

58x 612.5 5050.9 732.6 69.2 419.5 372.5 8 



 
Fig 3. gemBS performance for different BS-Seq protocols (PBAT, RRBS, WGBS). A) Unique reads mapped, B) Types of reads mapping to con-

ventional chromosomes, C-E) Relationship between bases used for calling and sequence input, variants called after filters and CpGs passing filters. 

(Datasets from publically available sources for 3 different species (Project: ENCODE (HsE), Roadmap (HsR); Studies: Okae et al. (2017) (HsO), Lister 

et al. (2012) (MmL), Miura et al. (2012)(Mml), Lee et al. (2015) (GgL))). 

 

 

followed by PBAT data from Miura et al. (2012) and Okae and Arima 

(2016) with ~62% and an average of 73% unique mappings, respectively. 

RRBS data from the Roadmap project yielded particular low rates (32%), 

due to mapping issues for very short read lengths (29bp) (see Figure 3A). 

Filtering the mapped reads additionally for wrong orientation of read pair, 

insert size and duplicates (except RRBS) reduces the number of reads used 

for genotype calling depending on the dataset to 36-72% (Figure 3B). Alt-

hough, there are clear differences in the types of artefacts for each data 

type and their proportion may vary substantially, the number of bases left 

after filtering is still highly correlated with the initial sequencing depth. 

Variant calling is most efficient at high coverages (>50Gb post-filtered 

bases) as is detecting CpGs (Figure 3D-E). 

 

SNP calls from BS-Seq data are mainly used to determine cytosine context 

correctly (CpG and non-CpG). Nevertheless, they can also be used to iden-

tify allele specific methylation or as a quality check to identify sample 

mix-ups. To assess the accuracy of SNP calls from gemBS (BScall), we 

used a sample from the 1000 genomes dataset (NA12878) that has been 

extensively genotyped by multiple approaches, and for which high quality 

public sequencing datasets are available. We first analyzed the original 

dataset using both gemBS and FreeBayes, and then performed in silico 

bisulfite conversion on the same data set (supplement for details). The >12 

million SNPs that form the phase 3 genotype calls  

served as gold standard for comparing the output. To assess the impact of 

sequencing depth, we also subsampled the original data taking at random 

50%, 25% and 12.5% of the read pairs.  An in silico bisulfite-converted 

dataset was generated from each of the sub-sampled datasets, and both the 

genomic and bisulfite-converted datasets were analyzed using gemBS. 

Using the original dataset, gemBS produced confident genotype calls 

(passing standard filtering) on 96.92% of the SNP panel, with a discord-

ancy rate when compared to the 1000 genomes gold standard of 0.30% 

(see Table 3). FreeBayes had similar figures after filtering out sites with 

genotype quality (GQ) < 20 (matching the filtering used for gemBS), with 

a call rate of 95.55% and a discordancy rate of 0.38%.  With the in silico 

bisulfite converted dataset the call rate dropped to 94.74%, while the dis-

cordancy rate stayed low at 0.32%.  Comparing the gemBS genotype calls 

from the original and bisulfite converted datasets gave a discordancy per-

centage of 0.03%, while comparing the calls from FreeBayes (using the 

original data) and gemBS gave discordancy rates of 0.03% and 0.04% re-

spectively for the original and bisulfite converted datasets. The discrep-

ancy between SNPs called from genomic data and simulated bisulfite data 

increased with decreasing sequencing depth as in practice only half of the 

reads from bisulfite data can be used for genotype calling. The discon-

cordancy rate with the phase3 gold standard SNP calls, however, remained 

at similar levels. 

We conclude that gemBS can accurately call SNPs from genomic and BS 

data, and as a key feature of gemBS proves the utility of gemBS above 

other currently available analysis tools. 

 



Table 3. Number of SNP calls by Freebayes and BScall compared to SNP calls from 1000 Genome Project  

 

Sample1 Sample2 Sample_1 

typed 

Sample_2 

typed 

Both typed Concordant % typed 1 % typed 2 % discordant 

1000g Freebayes 12513267 11955900 11955900 11910953 99,989% 95,535% 0,376% 

1000g BScall 100 12513267 12129210 12128302 12092106 99,989% 96,920% 0,298% 

1000g BScall 100 BS 12513267 11856511 11855613 11818244 99,989% 94,741% 0,315% 

1000g BScall 50 12513267 12037064 12036093 11997425 99,989% 96,184% 0,321% 

1000g BScall 50 BS 12513267 11418888 11417945 11381715 99,989% 91,244% 0,317% 

1000g BScall 25 12513267 11499437 11498405 11461191 99,989% 91,888% 0,324% 

1000g BScall 25 BS 12513267 8707530 8706711 8677565 99,989% 69,579% 0,335% 

1000g BScall 12.5 12513267 7852793 7851963 7823090 99,989% 62,749% 0,368% 

1000g BScall12.5 BS 12513267 3186102 3185739 3168250 99,989% 25,459% 0,549% 
 

BS= simulated bisulfite data, concordant = SNPs called in both data sets identically, discordant= SNP called with different genotype 

 

 

4 Conclusion 
 

Here we present gemBS, a bioinformatics pipeline for BS mapping and 

genotype and methylation calling. gemBS is fast, efficient and easy scal-

able for large data sets. Due to its flexible architecture it allows for mod-

ular processing and the incorporation of third party applications. It can be 

run on a single workstation, a computer cluster with shared file system or 

a distributed system without shared file systems. Contemporary features 

include the distribution/installation through Singularity or as a Docker im-

age. 

gemBS produces accurate results and robustly handles different data types 

while exceeding current popular tools in performance and functionality. 

gemBS has been the BS analysis pipeline for the BLUEPRINT project and 

has been recently adopted as the standard processing pipeline for bisulfite 

sequencing within the IHEC consortium. We therefore believe gemBS has 

the potential to become the standard analysis tool for BS-Seq analysis. 
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DETAILS OF GENOTYPE AND METHYLATION MODEL

1. Outline of approach

At a given genomic position, the bases covering that position are recorded. Consider-
ing only single base polymorphisms there are 10 possible genotype at site; we calculate
the probability of each genotype given the observed bases, taking into account the se-
quencing error rate, the methylation rate and the estimated bisulfite conversion rates.
Given the calculated genotype probabilities, we can select the most likely genotype and
calculate the support for the call. For the 7 genotypes that contain at least one C or G
allele (AC, AG, CC, CG, CT, GG, GT), we calculate the maximum likelihood estimate
of the methylation conditional on each genotype in turn, and this methylation estimate
is then used to calculate the genotype probabilities.

2. Model

The observed bases can be split into two groups, those that have been subject to the
bisulfite conversions process and those that have not. The first group provide informa-
tion about the methylation rate whereas the second group provide the majority of the
information about the genotype call. If we consider reads that map to the C2T converted
reference, and after converting the reads to the forward direction on the top strand, the
bases C and T have been subject to bisulfite conversion while the bases A and G have
not. Similarly, if we consider reads that map to the G2A converted reference, the bases
A and G have been subjected to bisulfite conversion while C and T bases have not. For
the following development of the model the potentially converted bases will be written
in lower case and the other bases will be written in upper case. Reads mapping to the
C2T strand will therefore provide the bases A, c, G, t while reads mapping to the G2A
strand will provide the bases a, C, g, T (again, after placing all reads on the top strand
in the forward direction).

Let the frequencies of the 4 possible bases be given by F = (fA, fC , fG, fT ). Rather
than using F directly, we parameterize F in terms of (w, p, q) where:

w = fC + fT

p =

{
fC/(fC + fT ) if w > 0,

0 if w = 0.

q =

{
fG/(fG + fA) if w < 1,

0 if w = 1.

Each genotype can now be described in terms of (w, p, q), e.g., F (AC) = (1/2, 1, 0), F (GG) =
(0, 0, 1). Let ε be the sequencing error rate, µ the methylation rate, λ the probability
that a non-methylated C is converted to T, and τ the probability that a methylated C is
converted to T. If we assume the simple model that methylation, conversion and errors

1



2 DETAILS OF GENOTYPE AND METHYLATION MODEL

operate independently for each observed base, then taking as example an observed c
base, the possible paths that could lead to the observation are shown below:

wp
C

1−
wp

(A,G, T )

µ
Cm

1−
µ

C

ε/3
C

1− τ C

τ

T

1− λ C

λ

T

1− ε
C

ε/3
C

1− ε
C

ε/3
C

The probability of the observation can then be calculated as the sum of the probabil-
ities of the paths therefore:

p(c) = wp(µ((1− τ)(1− ε) + τε/3) + (1− µ)((1− λ)(1− ε) + λε/3)) + (1− wp)ε/3

=
1

3

(
(3− 4ε)wp(µ(λ− τ) + 1− λ) + ε

)

In a similar way, for an observed t base the probability graph and function would be
as follows:

w
p

C

w(1− p)
T

1−
w

(A,G)

µ
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1−
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1− ε
T
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T
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T
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λ

T

ε/3
T

1− ε
T

ε/3
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DETAILS OF GENOTYPE AND METHYLATION MODEL 3

p(t) = wp(µ((1− τ)ε/3 + τ(1− ε)) + (1− µ)((1− λ)ε/3 + λ(1− ε))) + w(1− p)(1− ε) + (1− w)ε/3

=
1

3

(
(3− 4ε)(wp(λ− µ(λ− τ)) + w(1− p)) + ε

)
Using the substitutions z = µ(λ− τ)+ 1−λ and κ = ε/(3− 4ε), the two probabilities

can be written more concisely as:

p(c) =
3− 4ε

3
(wzp+ κ)

p(t) =
3− 4ε

3
((w(1− zp) + κ)

We note that methylation can be detected on both strands, c and t bases give infor-
mation about methylation on the positive strand and g and a bases give information
about methylation on the negative strand. If the genotype at a given site is CG then
methylation could be observed on both strands. In this case it is reasonable to consider
that the methylation process is independent on the two strands, so the values of µ and
z are strand specific; in the following equations we use + and - subscripts to distinguish
the strand specific variables (i.e., m+ is the methylation on the + strand).

The sequencing error probabilities, ε (and therefore κ) vary between observations as
they derive from the individual base quality scores assigned during sequence generation.
Observation specific errors can be accounted for in the model, however it is more con-
venient to consider a common error rate for all bases of a particular type (A, C, G, T,
a, c, g, t) that are estimated from the geometric average of the individual error rates
(or, equivalently, the arithmetic average of the phred scaled sequencing quality scores).
For a base type x, therefore , we have common values for εx and κx). The log likelihood
of the set of base counts (nA, nC , nG, nT , na, nc, ng, nt) can then be written as follows
(where K is a constant that doesn’t depend on any of the unknown variables):

L =K+

nA log((1− w)(1− q) + κA) + nC log(wp+ κC)+

nG log((1− w)q + κG) + nT log(w(1− p) + κT )+

nc log(wpz+κc) + nt log(w(1− pz+) + κt)+

ng log((1− w)qz− + κg) + na log((1− w)(1− qz−) + κa)

3. Methylation and genotype estimation

Genotype estimation is performed by calculating the log likelihood for each of the
10 possible genotypes and selecting the that with the highest likelihood. For geno-
types where fC > 0 or fG > 0 then it an estimate of the relevant methylation rate is
required. Conditional on genotype, expressions for the maximum likelihood estimates
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of the methylation rates can be obtained by setting the partial derivatives of the log
likelihood to zero:

ẑ+ =
nc(w − κt)− ntκc

(nc + nt)wp
,

ẑ− =
ng(1− w − κa)− naκg

(ng + na)(1− w)q
,

m̂+ =
ẑ+ − 1 + λ

λ− τ
,

m̂− =
ẑ− − 1 + λ

λ− τ
.

If m̂+ or m̂− is less than zero or more than 1 then the estimate is truncated to zero
or one respectively. We note that for homozygous C or G in the absence of sequencing
errors and with perfect conversion (so λ = 1, τ = 0) then the estimator above reduces
to the commonly used formulae for methylation:

m̂+ =
nc

(nc + nt)
, m̂− =

ng

(ng + na)

4. Goodness of fit test

We implement a goodness of fit test where we first maximize the likelihood allowing
w, p, q,m+,m− to vary independently between 0 and 1; this we call the free model as
there are no constraints imposed on (w, p, q). The goodness of fit statistic is then the
difference between the log10 likelihoods of the free model and the best genotype model.
This log likelihood ratio statistic is large if the data do not fit well a diploid model (for
example, if there is evidence of >2 alleles or if the allelic ratio in heterozygotes is skewed
from 1/2).



 1 

 

SUPPLEMENT 

 

 

 

1. Benchmark of GEM3 and BScall against other analysis tools 

 

 
We used a publically available dataset from the BLUEPRINT consortium (dataset: 

EGAD00001002322, sample: EGAN00001170522), namely a plasma cell sample extracted from 

the bone marrow (2x101bp, 58X genome coverage, additionally down sampled to 27X). All 

software was run with default parameters according to the authors specification on nodes of 2 

x Xeon E5-2680v3 (12cores each) with 2.5 GHz and 256 GB of main memory using a Linux 

operative system (Red Hat 6.7). Mapping was performed against human genome assembly 

GRCh38.  

 

 

Table S1. Software and parameters used in this study 

 

 
Task Software 

(Version) 

Components 

(Version) 

Parameter settings Reference 

Read  

align 

ment 

Bismark 

(0.16.1) 

bowtie2 

(2.2.9) 

 -p 4 Krueger et al. (2011), 

Langmead et al (2012) 

BSMAP 

(2.9.0) 

BSMAP 

(2.9.0) 

 -w 2 -q 20 -z 33 -p 8 -r 0 Xi et al. (2009) 

Novoalign 

(3.5.1) 

Novoalign 

(3.5.1) 

 -t 20,2.5 --hlimit 7 -b2 -H 20 http://www.novocraft.com/ 

Bwa-meth  

 (0.10) 

BWA  

(0.7.7-r441*) 

 -t 24 Pedersen (2014), Li (2013) 

gemBS 

(3.0) 

GEM3  

(3.1.0) 

 -p -r -m 1 -M 4 Marco-Sola et al. (2012), 

Marco-Sola (2017) 

SNP 

and 

methy 

lation 

calling 

gemBS 

(3.0) 

BScall  

(2.1) 

 -L5 -p   

Bis-SNP 

(0.82.2) 

Bis-SNP 

(0.82.2) 

(1)-maxQ 40  
(2)-stand_call_conf 20 -mbq 0 

   -stand_emit_conf 0 -mmq 30 

Liu et al. (2012) 

MethylExtr

act (1.8.2) 

MethylExtract 

(1.8.2) 

flagW=99,147 flagC=83,163 

p=24 FirstIgnor=5 

Barturen et al (2013) 

 
(1) Table Recalibration (Mills and 1000 Genome Gold standard indels, dbsnp v.138)  

(2) SNP genotyper  

 

  



 2 

 

Table S2. Read alignments  

 

Cov Mapper Bases aligned % Quality > 20 % 

Read Pairs 

Mapped % 

Read Pairs 

Uniquely 

Mapped % 

27X 

Bismark 72.260.168.008 80% 69.732.899.548 77% 776.609.162 87% 715.449.606 80% 

BSMAP 76.588.875.760 85% 76.588.875.760 85% 737.709.554 82% 737.709.554 82% 

Bwa-meth 87.788.193.351 97% 73.369.620.896 81% 869.922.674 97% 755.131.135 84% 

GEM3 87.631.005.316 97% 77.255.445.602 85% 831.555.476 93% 748.962.640 84% 

Novalign 77.397.811.626 86% 76.602.297.580 85% 856.003.322 96% 786.633.096 88% 

58X 

Bismark 150.550.722.614 80% 145.284.706.844 77% 1.618.021.532 87% 1.490.606.206 80% 

BSMAP 159.567.965.437 85% 159.567.965.437 85% 1.536.961.596 82% 1.536.961.596 82% 

Bwa-meth 182.936.003.960 97% 152.757.232.094 81% 1.812.656.124 97% 1.572.235.855 84% 

GEM3 182.573.758.778 97% 160.959.781.503 85% 1.732.454.186 93% 1.560.450.802 84% 

Novalign 161.253.221.507 86% 159.595.406.636 85% 1.783.428.846 96% 1.638.898.342 88% 

 

 

 

 

 

 

Table S3. SNPs called by different callers based on alignments from multiple mappers 

 

Coverage Caller Mapper SNPs 

27X 

Bis-SNP 

Bismark 2.392.513 

BSMAP 2.855.296 

GEM3 2.716.501 

BScall 

Bismark 5.157.821 

BSMAP 7.284.116 

GEM3 5.872.541 

MethylExtract 

Bismark 4.093.287 

BSMAP 4.887.502 

GEM3 4.780.534 

58X 

Bis-SNP 

Bismark 2.909.705 

BSMAP 3.448.045 

GEM3 3.182.798 

BScall 

Bismark 5.138.678 

BSMAP 7.948.014 

GEM3 6.051.209 

MethylExtract 

Bismark 4.438.764 

BSMAP 5.714.662 

GEM3 5.049.129 
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Table S4. Number and methylation level of CpGs detected (58X coverage) 

 

CpG BScall Bis-SNP MethylExtract 

Unmethylated  

(0-30%) 5.666.889 5.360.912 7.277.673 

Intermediate methylated  

(30-70%) 6.670.084 6.498.758 7.835.127 

High methylated  

(70-100%) 14.304.843 13.469.834 14.876.963 

Total 26.641.816 25.329.504 29.989.763 

 

 

 

 

 

Table S5. Bis-SNP/BScall and MethylExtract/BScall pairwise comparison. 

Number and methylation levels of shared CpGs (58X coverage) 

 

CpG 

Shared 

Equal 

Methylated 

Shared 

Different 

Methylated 

Private  

Bis-SNP 

Private 

BScall 

Unmethylated 
5.093.653 

(21,32%) 
 286.807 

(23,64%) 

415.006 

(21,85%) 

Intermediate 

methylated 

5.841.360 

(24,45%) 
 326.378 

(26,9%) 

471.822 

(24,84%) 

Methylated 
12.953.795 

(54,22%) 
 599.670 

(49,44%) 

1.012.272 

(53.30%) 

Total 
23.888.808 

(85,76%) 

853.908 

(3,06%) 

1.212.855 

(4,35%) 

1.899.100 

(6,81%) 

 

 

CpG 

Shared 

Equal 

Methylated 

Shared 

Different 

Methylated 

Private 

MethylExtract 

Private 

BScall 

Unmethylated 
5.684.621 

(21,53 %) 
 

1.573.343 

(45,83 %) 

66.618 

(78,40 %) 

Intermediate 

methylated 

6.853.342 

(25,96 %) 
 860.520  

(25,06 %) 

10.650 

(12,53 %) 

Methylated 
13.856.699 

(52,49 %) 
 999.052  

(29,02 %) 

7.700  

(9,06 %) 

Total 
26.394.662 

(87,76 %) 

162.186 

(0,53 %) 

3.432.915 

(11,41 %) 

84.968 

(0,28 %) 
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2. gemBS across multiple BS-Seq protocol 

 

Publically available data for different bisulfite sequencing protocols was downloaded 
through the SRA (see Table S7) and processed with standard gemBS configurations. 
 

 

Table S6. Standard gemBS configurations for different BS-Seq protocols 

 

gemBS 

task 

Parameter WGBS RRBS PBAT 

mapping non_stranded:1 FALSE FALSE TRUE 

 remove_individual_bams: TRUE TRUE TRUE 

 mapq_threshold: 10 10 10 

calling qual_threshold: 13 13 13 

 reference_bias: 2 2 2 2 

 left_trim: 3 5 5 5 

 right_trim:3 0 0 0 

 keep_improper_pairs: FALSE FALSE TRUE 

 keep_duplicates: FALSE TRUE FALSE 

 haploid: FALSE FALSE FALSE 

 conversion: auto  auto auto 

 remove_individual_bcfs: TRUE TRUE TRUE 

 contig_pool_limit: 25000000 25000000 25000000 

 mode: strand_specifc strand_specifc strand_specifc 

extract phred_threshold:5 10 10 10 

 
1 selects the proper C->T and G->A read conversions for directional and non-directional 

libraries  
2 weight given to the reference genotype 
3 bases clipped from the respective end of a read (pair) to remove artificial introduced cytosines 
4 conversion rate unmethylated cytosine = 95%, methylated cytosine = 0.01% 
5 phred scaled genotype quality score 

 

 

3. gemBS across multiple BS-Seq protocol 
 

Validation for gemBS SNP calls was performed using data from the 1000 Genomes 

Project (sample: NA12878, run: SRR622457 (2 x 101bp, 88X genome coverage)). 

Simulated WGBS data was generated by in silico bisulfite conversion using the 

methylation profile from the plasma cell sample as a template and with values for the 

bisulfite conversion rates similar to those seen in the same sample (99% conversion rate 

for non-methylated cytosines; 5% conversion for methylated cytosines).  Sub-sampling 

was performed by randomly selecting read-pairs prior to the alignment stage.  gemBS 

was run with the standard parameters and filters. FreeBayes was run with the standard 

parameters except that the –genotype-qualities flag was set (to allow generation of the 

GQ fields for filtering) and the -@ option was used to force FreeBayes to produce output. 
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for all SNP sites in the reference panel, whether the sites were variant or not in the test 

samples. 
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