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Abstract

Motivation: Expression quantitative loci (eQTL) are being used widely to annotate and interpret

GWAS hits. Recent studies have demonstrated that individual gene expression is often regulated

by multiple independent cis-acting eQTL. Diverse methods, frequentist and Bayesian, have already

been developed to simultaneously detect and fine-map such multiple eQTL, but most of these ig-

nore sample relatedness and potential population structure. This can result in false positives and

disrupt the accuracy of fine-mapping. Here we introduce PolyQTL software for identifying and

estimating eQTL effects. The package incorporates a genetic relatedness matrix to remove the in-

fluence of population structure and sample relatedness, while utilizing a Bayesian multiple eQTL

detection pipeline to identify the most plausible candidate causal variants at one or more independ-

ent loci influencing abundance of a transcript.

Results: Simulations demonstrate that our approach improves the rate of discovery of causal var-

iants relative to methods that do not account for relatedness.

Availability and implementation: The software is written in Cþþ, and freely available for download

at https://github.com/jxzb1988/PolyQTL.

Contact: greg.gibson@biology.gatech.edu

1 Introduction

Genome-wide association analysis of gene expression leads to detec-

tion of eQTL (Albert and Kruglyak, 2015; Cheung et al., 2005;

GTEx Consortium, 2017). More than 100 human studies have been

performed, most assuming parsimoniously that each eQTL region

contains a single eQTL. However, genes tend to be regulated by nu-

merous regulatory elements often located several hundred kilo-bases

from the transcription start site, and consequently multiple regula-

tory polymorphisms are now thought to contribute to the variance

in expression of most genes.

A common approach to causal variant discovery is to first calcu-

late marginal association statistics for each variant, and then perform

stepwise conditional analysis including lead associations as covariates

in each successive model (Yang et al., 2012). Investigators can then

focus on the on the top ranked independent variants for follow-up

studies. Bayesian methods have also been shown to be powerful for

performing association analysis and fine-mapping, and multiple

packages are available, including CAVIAR (Hormozdiari et al.,

2014), CAVIARBF (Chen et al., 2015), FINEMAP (Benner et al.,

2016), FMQTL (Wen et al., 2015), and DAP (Wen et al., 2016).

However, a major caveat that precludes their use on many datasets is

that they use only summary statistics, ignoring any population struc-

ture and relatedness, or require external ancestry information to con-

trol for population structure in meta-analysis. Here we present

PolyQTL, a software package for association analysis and fine map-

ping that addresses the limitations of these existing methods.
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2 Materials and methods

Estimation of genetic contributions to a trait is biased in the pres-

ence of genetic covariance, due both to population structure (dark

shading in quadrants of Figure 1A imply individuals in lower left

and upper right are more genetically similar) and familial relatedness

(diagonal lines represent identical twins as an extreme case). To re-

move the influence of relatedness, we transform the phenotype and

genotype with the square root of the covariance computed from a

genetic relatedness matrix (Abney et al., 2002), resulting in uncorre-

lated phenotype residuals (Fig. 1B, Supplementary Methods).

Subsequently, a Bayesian algorithm extending previous methods is

used to compute a posterior inclusion probability (PIP) for each vari-

ant, allowing ranking of candidate causal variants in a QTL interval

(Fig. 1C).

Since cis-regions encompassing 1 Mb around the transcription

start site can contain thousands of variants, we also provide an op-

tion implementing GEMMA’s mixed linear regression method

(Zhou and Stephens, 2012), firstly performing sequential stepwise

regression to isolate independent cis-eQTL at a locus, allowing par-

allel evaluation of the importance of all variants in each LD block

surrounding peak variants. PolyQTL applies a Cþþ OpenMP li-

brary to compute the causal state posterior probabilities, running

the computations in parallel when multiple CPUs are available.

We conducted simulations to demonstrate the advantages of our

method. Two subpopulations were simulated, with ancestral allele

frequencies � for causal variants uniformly distributed on [0.1, 0.9],

with subpopulation allele frequencies sampled from a beta distribu-

tion with parameters x(1 – Fst)/Fst and (1 – x)(1 – Fst)/Fst, where

Fst is the population differentiation index (Yang et al., 2014) over

the range of 0.2 to 0.01. To mimic LD structure in real data, 100

variants in the cis-regulatory regions of randomly chosen genes were

sampled from the 1843 non-African individuals in the 1000

Genomes Project (Auton et al., 2015), from which two eQTL each

explaining 4%–8% of the variance of a standard normal trait were

simulated.

3 Results

We compared the performance of PolyQTL with the established

Bayesian method, DAP, exploring the influence of three factors:

heritability of gene expression, population structure and

relatedness (0% or 20% of samples related as identical twins),

resulting in a grid of eight different cases, each tested by 600

simulations. Statistical power was evaluated as the PIP score for

the modeled causal variant at three different PIP cutoffs (0.1, 0.3

and 0.5).

Supplementary Figure S1 illustrates the general improvement in

performance with PolyQTL relative to DAP for simulations in the

presence of considerable population structure (Fst¼0.2) and two

cis-eQTL per transcript. The cumulative distribution curves for

PolyQTL are consistently below that of DAP, implying that more

causal variants are discovered at lower PIP cutoffs. For example,

with low background genetic contribution (heritability¼0.3),

73.5% of the causal variants have PIP greater than 0.1 with

PolyQTL compared with only 66.8% in DAP (Supplementary Fig.

S1A). Slight improvements are seen as heritability increases to 0.6

(Supplementary Fig. S1C) and if relatedness is introduced

(Supplementary Fig. S1B), in each case improving the gains relative

to DAP, with up to �10% more variants included at all PIP cutoffs

(Supplementary Fig. S1D). The enhancement due to PolyQTL was

more limited in the presence of a single causal variant per trait, or in

the presence of more subtle population structure (Supplementary

Figs S2 and S3). Simulating lesser relatedness (siblings rather than

identical twins) did not markedly affect the results Supplementary

Fig. S4). In addition, we find that PolyQTL also provides superior

control of Type 1 error relative to DAP.

In summary, our simulation results demonstrate that PolyQTL con-

trols population structure and relatedness, improving statistical power to

include true causal variants in the list of high probability eQTL SNPs.
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