
Systems biology

Drug Gene Budger (DGB): an application for

ranking drugs to modulate a specific gene based

on transcriptomic signatures

Zichen Wang , Edward He, Kevin Sani, Kathleen M. Jagodnik,

Moshe C. Silverstein and Avi Ma’ayan *

Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Knowledge

Management Center for Illuminating the Druggable Genome, Mount Sinai Center for Bioinformatics, Icahn 10

School of Medicine at Mount Sinai, New York, NY 10029, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on May 10, 2018; revised on July 27, 2018; editorial decision on August 24, 2018; accepted on August 29, 2018

Abstract

Summary: Mechanistic molecular studies in biomedical research often discover important genes that

are aberrantly over- or under-expressed in disease. However, manipulating these genes in an attempt

to improve the disease state is challenging. Herein, we reveal Drug Gene Budger (DGB), a web-based

and mobile application developed to assist investigators in order to prioritize small molecules that are

predicted to maximally influence the expression of their target gene of interest. With DGB, users can

enter a gene symbol along with the wish to up-regulate or down-regulate its expression. The output

of the application is a ranked list of small molecules that have been experimentally determined to pro-

duce the desired expression effect. The table includes log-transformed fold change, P-value and q-

value for each small molecule, reporting the significance of differential expression as determined by

the limma method. Relevant links are provided to further explore knowledge about the target gene, the

small molecule and the source of evidence from which the relationship between the small molecule

and the target gene was derived. The experimental data contained within DGB is compiled from signa-

tures extracted from the LINCS L1000 dataset, the original Connectivity Map (CMap) dataset and the

Gene Expression Omnibus (GEO). DGB also presents a specificity measure for a drug–gene connection

based on the number of genes a drug modulates. DGB provides a useful preliminary technique for

identifying small molecules that can target the expression of a single gene in human cells and tissues.

Availability and implementation: The application is freely available on the web at http://DGB.cloud and

as a mobile phone application on iTunes https://itunes.apple.com/us/app/drug-gene-budger/id1243580241?

mt¼8 and Google Play https://play.google.com/store/apps/details? id¼com.drgenebudger.

Contact: avi.maayan@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent high-throughput genome-wide expression-based drug screening

have generated large collections of drug-induced transcriptomic signa-

tures. The LINCS L1000 (Subramanian et al., 2017) dataset, and its

precursor the original Connectivity Map (CMap) (Lamb et al., 2006),

have systematically profiled the transcriptomic response of several

human cell lines to treatment with over 20 000 small molecules that in-

clude almost all FDA-approved drugs and many preclinical com-

pounds. Crowdsourcing efforts have also been made to curate

hundreds of drug-induced gene expression signatures from the Gene
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Expression Omnibus (GEO) (Wang et al., 2016). By integrating and

analyzing these datasets, we can prioritize small molecules that are

found to significantly modulate single genes. Herein, we present Drug

Gene Budger (DGB), a web-based and mobile application utilizing the

large collections of aforementioned drug-induced transcriptomic signa-

tures for prioritizing drugs and small molecule compounds to maximal-

ly influence the expression of a target gene of interest. DGB provides

users with straightforward user interface to select a target gene, and

interact with the ranked list of small molecules returned as the query

results. Small molecules are ranked by different methods that quantify

the previously observed change in mRNA expression of the gene by the

application of the drug. We also benchmarked different methods to

provide recommendations for selecting the most appropriate methods.

2 Materials and methods

2.1 Processing of transcriptomic datasets into

signatures
To identify differentially expressed genes (DEGs) before and after

drug treatment, batch effects were removed. ComBat (Johnson et al.,

2007) was used for processing the original CMap dataset (Lamb et al.,

2006) as well as the LINCS L1000 dataset (Subramanian et al., 2017).

SVA (Leek et al., 2012) was applied to remove batch effects for the

datasets curated from GEO (Wang et al., 2016). The reason for using

two different methods is because for the original CMap and LINCS

L1000, the batches are known, whereas for the signatures from GEO

the batches are unknown. Next, Limma (Ritchie et al., 2015) was

applied to evaluate the statistical significance (P-value) of differential

expression for each gene. P-values were corrected using the

Benjamini–Hochberg procedure to yield q-values adjusted for multiple

hypothesis testing. Genes with q-values less than 0.05 were kept as

DEGs. The specificity of a drug–gene association in each experiment is

defined as the inverse of the number of identified DEGs for the drug.

2.2 Benchmarking small-molecule prioritization methods
The various prioritization methods were benchmarked using drug-

target and protein–protein interactions (PPIs) background knowledge.

Briefly, the known protein targets of the drugs were retrieved from

DrugBank (Law et al., 2014). PPIs of the protein targets are identified

from an updated version of the low-content PPI network aggregated

from multiple high-quality resources (Clarke, 2018). To set up the

benchmark, for each gene queried, we sorted the drug–gene associa-

tions by the different methods and recorded the ranks for drugs that

are known to target the gene product protein of the queried gene, or

its direct PPIs. The ranks of the expected drugs were scaled between 0

and 1, and then aggregated across different query genes. The cumula-

tive distribution of such scaled ranks were used to evaluate how well

each method performs in prioritize drugs for up- or down-regulating

their known targets, or the PPI neighborhood around the target.

2.3 Development of DGB web and mobile applications
The DGB web application and mobile applications use Python Flask

web framework as the backend. Custom object-relation mappings

(ORMs) were written to query the drug–gene associations stored in

a MySQL database. The frontend of DGB uses the Bootstrap

HTML framework. The mobile version of the application is devel-

oped with the React Native framework.

3 Results

After the processing of drug-induced transcriptomic datasets from

the three resources: Original CMap, LINCS L1000 and GEO,

we obtained 4810 drugs and small molecule compounds and

36 523 017 significant drug–gene associations. To quantify the

strength of the up-/down-regulation relationships between a drug and

a gene, we implemented the following methods: fold change, P-value

and q-value computed by limma, and the specificity. Benchmarking

these methods with prior knowledge about drug targets and PPIs, we

observed that q-values best prioritize the expected drugs for a given

query gene, followed by P-value, specificity, and FC for both up- or

down-regulated query genes (Supplementary Figs S1 and S2). The

DGB web application landing page enable users to enter a gene sym-

bol (Fig. 1, left). The result page outputs six tables corresponding to

the results from the three processed datasets in both up- and down-

regulations. Each table contains a list of small molecules that produced

the respective expression effect sorted by the descending order of their

q-values (Fig. 1, right). Metadata about the compounds and signatures

are also provided with external links to acquire more information

about the compounds. To demonstrate DGB, we query it with tumour

suppressor genes to find drugs and compounds that up-regulate those

genes. Many cancer drugs show up on top, for instance, doxorubicin

is predicted to up-regulate BRCA1; dabrafenib and GDC-0879 are

predicted to up-regulate VHL; and homoharringtonine and triamter-

ene are predicted to up-regulate TP53.
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Fig. 1. (Left) DGB search engine. (Right) Example result page for user-submitted

query for AKT1
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