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Abstract

Motivation: Technologies that generate high-throughput omics data are flourishing, creating enor-

mous, publicly available repositories of multi-omics data. As many data repositories continue to

grow, there is an urgent need for computational methods that can leverage these data to create

comprehensive clusters of patients with a given disease.

Results: Our proposed approach creates a patient-to-patient similarity graph for each data type as

an intermediate representation of each omics data type and merges the graphs through subspace

analysis on a Grassmann manifold. We hypothesize that this approach generates more informative

clusters by preserving the complementary information from each level of omics data. We applied

our approach to The Cancer Genome Atlas (TCGA) breast cancer dataset and show that by integrat-

ing gene expression, microRNA and DNA methylation data, our proposed method can produce

clinically useful subtypes of breast cancer. We then investigate the molecular characteristics under-

lying these subtypes. We discover a highly expressed cluster of genes on chromosome 19p13 that

strongly correlates with survival in TCGA breast cancer patients and validate these results in three

additional breast cancer datasets. We also compare our approach with previous integrative cluster-

ing approaches and obtain comparable or superior results.

Availability and implementation: https://github.com/michaelsharpnack/GrassmannCluster

Contact: kunhuang@iu.edu or machiraju.1@osu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the past decade, the large consortium efforts of The Cancer

Genome Atlas (TCGA) and the International Cancer Genome

Consortium have pushed the boundaries of personalized medicine.

The prior understanding of tumor subtypes based on histology and

immunohistochemical markers has been complicated by the vast

amounts of high-throughput data available. While many of the

previous classifications based on clinical attributes are still useful,

methods that leverage the omics data produced by TCGA have the

potential to develop new clinically useful biomarkers and investigate

tumor biology simultaneously. This data can be used individually to

stratify tumors biologically and clinically; however, doing so is not

without its challenges. Methods that group tumors based on this

high dimensional data must separate useful signals from thousands

of noisy measurements. The problem is further compounded when
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integrating all of the diverse data types, such as microRNA, mRNA

and DNA methylation, available for each tumor.

Methods used to leverage multiple sources of high dimensional

biological fall into three broad categories: early integration, late inte-

gration and intermediate integration. Methods with early integration

fuze all data types into a single dataset and perform analytical meth-

ods directly on it (Fridley et al., 2012; Mankoo et al., 2010). In late

integration, separate models are applied independently to each data

type and the integration is conducted by assembling the results at the

end (Cancer Genome Atlas Research Network et al., 2012; Verhaak

et al., 2010). Intermediate integration combines multiple data types

after transforming each data type into an intermediate representation

(e.g. a graph or a kernel matrix) (Huang et al., 2012; Shen et al.,

2009; Speicher and Pfeifer, 2015; Wang et al., 2014).

Our proposed approach falls into the intermediate integration

paradigm. Given multiple types of omics data for the same set of

patients, we create a patient-to-patient similarity graph for each

data type as an intermediate representation and merge the graphs

through subspace analysis on a Grassmann manifold. This avoids

problems created by using data types with differing numbers of

measurements, as is the case in genomic data. The resulting combin-

ation can then be viewed as a lower-dimensional representation of

the original data. Subspace analysis on a Grassmann manifold has

been previously studied in the context of computer vision (Dong

et al., 2014) but has not been used for integrating genomic data.

Finally, we cluster the patients on this lower-dimensional subspace

to identify potential tumor subtypes.

Our approach has several advantages over the early and late inte-

gration: (i) intermediate representation preserves data-type-specific

properties; (ii) the intermediate integration approach is robust to dif-

ferent data measurement scales; (iii) this approach can be used to in-

tegrate many types of data, including continuous or categorical

values, as long as the data contain a unifying feature; (iv) unlike pre-

vious approaches, such as similarity network fusion (SNF; Wang

et al., 2014) and affinity aggregation for spectral clustering (Huang

et al., 2012), our method does not involve iterative optimization.

We timed our method on the TCGA breast cancer dataset using a

personal computer (8 gb memory, 2.3 GHz processor) on Matlab,

and found that it completed in 14 s. For results comparison, we

applied our method to the datasets analyzed by a recent work

(Wang et al., 2014). Our survival analysis results are comparable or

even better than those reported in Wang et al. (Wang et al., 2014).

Next, we applied our method to the TCGA breast cancer tumor

samples with matched RNA, microRNA and DNA methylation and

clinical follow-up data. We chose breast cancer because there is a rich

history of dividing breast cancer into clinically useful subtypes. RNA

expression panels such as PAM50 (Perou et al., 2000) and

OncotypeDX (Jackisch et al., 2009) use select genes to separate

patients into prognostic, biological and therapeutically distinct

groups. The success of the PAM50 to subtype breast cancer, in part,

likely reflects the fact that luminal type breast cancers and triple nega-

tive breast cancers are molecularly distinct cancers that happen to de-

velop in the same anatomical location. The utility of future classifiers

of breast cancer patients hinges on their ability to further separate the

four canonical subtypes of breast cancer into therapeutically and

prognostically useful groups. For example, OncotypeDX uses meas-

urements of 21 genes to calculate a recurrence score, which helps

physicians and patients decide whether or not to use adjuvant chemo-

therapy. The interpretability of this test is limited by the existence of

an intermediate result. We show that by integrating gene expression,

microRNA, and DNA methylation data, we produce clinically useful

subtypes of breast cancer, as well as investigate the molecular

mechanisms underlying these subtypes. Specifically, we find that a

group of patients with excellent prognosis shows high expression of a

large cluster of genes located on chromosome 19p13. We were able

to validate these findings on three additional datasets.

2 Materials and methods

2.1 Dataset and data pre-processing
We downloaded TCGA level 3 datasets containing gene expression,

miRNA expression and DNA methylation expression profiles from

441 primary tumors of breast cancer patients. Multiple platforms

for each data type are available via TCGA. We chose UNC-

Illumina-Hiseq-RNASeq platform for gene expression, BCGSC-

Illumina-Hiseq-miRNAseq platform for miRNA expression and

JHU-USC-Human-Methylation-450 k platform for DNA methyla-

tion expression profiles. Pertinent clinical data were also available

for all of these patients. The minimum follow-up duration is

3 months (91 days), and the median follow-up duration is 16 months

(492 days). We performed the following normalization for each data

type.

f̂ ¼ f � Eðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðf Þ

p (1)

where f is a feature any data type, f̂ is the corresponding feature

after normalization and E(f) and Var(f) represent the sample mean

and sample variance of f, respectively.

To validate our findings in breast cancer, we downloaded two

datasets from the NCBI Gene Expression Omnibus with the acces-

sion numbers GSE3143 and GSE1456. The NKI breast cancer gene

expression data was downloaded from ccb.nki.nl.

2.2 Construction of the patient-to-patient similarity

graph
Consider M types of omics data measurements fXmgM

m¼1 (each with

dimension of pm) collected from N patient samples, such that Xm is a

pm �N matrix. For each data type Xm, we construct a patient-to-

patient similarity graph Gm to model the local neighborhood relation-

ships between the samples. Let Gm ¼ ðVm;Em;WmÞ denote a patient

similarity graph for data type m, where Vm represents the vertex set,

Em represents the edge set and Wm represents the adjacency matrix.

The adjacency matrix Wm of the graph Gm is a symmetric matrix

whose entry wm
ij represents the edge weight if there is an edge be-

tween vertex vi and vj, or 0 otherwise. To construct this similarity

graph, we first compute a similarity matrix to measure the pairwise

similarity between each sample pair. Here, we use a heat kernel as

the similarity metric:

Sm
ij ¼ exp �

kxm
i � xm

j k
2

2t2

 !
; i ¼ 1; :::;N; j ¼ 1; ::::N: (2)

We then extract k-nearest neighbors graph from the similarity

matrix Sm: We denote Ni as a set of vi’s neighbors including vi and

size of Ni is k. The number of k normally depends on the sample

size. We then connect vi and vj with an undirected edge with edge

weight as Sij if vj 2 Ni [Equation (3)].

Wm
ij ¼

Sm
ij ; if vj 2 Ni:

0; otherwise:

�
(3)

Essentially we make the assumption that local similarities are

more reliable than remote ones. This is a mild assumption widely

adopted by other manifold learning algorithms.
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2.3 Construction of subspace representation
For each similarity graph Gm constructed from data type m, we first

compute the normalized graph Laplacian matrix Lm, which is

defined as Lm ¼ Dm�1
2ðDm �WmÞDm�1

2, where Wm and Dm denote

the adjacency matrix and degree matrix of Gm, respectively.

Once obtain the normalized graph Laplacian matrix from each

data type, we conduct the graph embedding to construct the sub-

space representation for each graph. The main purpose of graph

embedding is to find a low-dimensional subspace that preserves sim-

ilarities between the vertex pairs. In other words, the resulting sub-

space best captures the characteristics of each data types. We use Um

to denote the subspace representation of Gm. The optimal graph

embedding in k dimension is derived by minimizing the following

objective function:

min
Um2RN�k

trðUm 0LmUmÞ; s:t:Um 0Um ¼ I: (4)

By the Rayleigh–Ritz theorem (Horn and Johnson, 1985), the so-

lution to the problem of Equation (4) is given by the first k eigenvec-

tors of the Laplacian Lm, which can be computed using efficient

algorithms for eigenvalue problems.

2.4 Merge subspace representations on Grassmann

manifold
With the subspace representations UM

m¼1 construct from each data

type, we then merge them on a Grassmann manifold. The

Grassmann manifold is defined as a set of linear subspaces of a

Euclidean space, therefore each subspace representation. We use

G(k, n) to denote a Grassmann manifold with k-dimensional linear

subspaces in n dimensional Euclidean space RN. An element of G(k,

n) can be represented by an orthonormal matrix Y 2 Rn�k whose

columns span the corresponding k-dimensional subspace in Rn; it is

thus denoted as span(Y). A distance between two subspaces is

defined as the length of the shortest geodesic connecting the two cor-

responding points on the Grassmann manifold. However, there is a

more convenient and efficient way of defining distances using the

projection distance (Golub and Van Loan, 2012). For instance, the

projection distance between spanðY1Þ and spanðY2Þ (Y1;Y2 2 n� k)

is defined as follow:

d2
projðY1;Y2Þ ¼

Xk

i¼1

sin 2hi

¼ k�
Xk

i¼1

cos 2hi

¼ k� trðY1Y1
0Y2Y2

0Þ:

(5)

With the distance measurement defined above, we can capture

the similarity between the subspaces on Grassmann manifold and

subsequently enable us to merge the information from multiple

graphs in a meaningful manner. In the last section, we constructed

subspace representations fUmgM
m¼1 for M data type by the conduct

the spectral embedding on the patient-to-patient similarity graphs

fGmgM
m¼1. Each subspace representation fUmg defines a k-dimen-

sional subspace in Rn, where n is the number of patients and k is the

target number of clusters. To merge these subspaces, we want to

find an integrative subspace span(U), which is close to all the indi-

vidual subspaces spanðUmÞ, and at the same time the representation

U preserves the vertex connectivity in each Gm.

With the distance measurement defined in Equation (5), we can

define a summation of projection distance between the integrative

subspace U and M subspaces fUmgM
m¼1 as follow:

d2
projðU; fUmgM

m¼1Þ ¼
XM
m¼1

d2
projðU;UmÞ

¼
XM
m¼1

½k� trðUU0UmUm0Þ�

¼ kM�
XM
i¼1

trðUU0UmUm0Þ:

(6)

The subspace U which minimizes Equation (6) is close to all the

individual subspaces fUmgM
i¼1 in terms of the projection distance on

the Grassmann manifold. Since we also want U to preserve the ver-

tex connectivity in graphs from each data type. Therefore, we finally

propose to merge multiple subspaces by solving the following opti-

mization problem that integrates Equations (4) and (6):

Fig. 1. Workflow for integrating and merging cancer genomics datasets. A pa-

tient-to-patient similarity graph is constructed for each data type. The similar-

ity matrices are converted to subspaces and embedded in a Grassmann

manifold, where they are integrated into a single, representative subspace.

This subspace is then clustered to obtain the final integrative patient groups

Table 1. Comparison of Cox survival P-values from integrative clus-

tering on a Grassmann manifold with those from SNF

Cancer type SNF (nature.2014) Our method

GBM (3 clusters) 2:0� 10�4 4:3� 10�3

BIC (5 clusters) 1:1� 10�3 2:0� 10�4

KRCCC (3 clusters) 2:9� 10�2 2:8� 10�2

LSCC (4 clusters) 2:0� 10�2 1:6� 10�2
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min
U2Rn�k

XM
m¼1

trðU0LmUÞ þ a½kM�
XM
m¼1

trðUU0UmUm 0Þ�; s:t:U0U ¼ I

(7)

where Lm and Um are the graph Laplacian and the subspace repre-

sentation for Gm, respectively. Such a representation not only pre-

serves the structural information contained in the individual graph,

which is encouraged by the first term of the objective function in

Equation (7), but also keeps a minimum distance between itself and

the multiple subspaces, which is enforced by the second term. The

regularization parameter a balances the trade-off between the two

terms in the objective function. By ignoring constant terms and rear-

ranging the trace form in the second term of the objective function,

Equation (7) can be rewritten as:

min
U2Rn�k

tr½U0ð
XM
i¼1

Lm � a
XM
m¼1

UmUm 0ÞU�; s:t:U0U ¼ I: (8)

The Equation (8) shares the same form with Equation (4), and

the solution to the problem of Equation (8) is then the first k eigen-

vectors of the modified Laplacian Lmod in Equation (9), followed by

the Rayleigh–Ritz theorem (Horn and Johnson, 1985).

Lmod ¼
XM
m¼1

Lm � a
XM
m¼1

UmUm0: (9)

Finally, we can cluster resulting integrative subspace U using the

k-means algorithm.

2.5 Molecular basis of integrative clusters
We construct an integrated co-expression network by calculating

the feature-to-feature spearman correlation. After filtering nodes for

low expression and variance (removing the bottom quartile from

each omics data type), and edges for low correlation (Spearman

q < 0:7), we are left with a network composed of 9195 nodes and

257 703 edges.

Differential expression is calculated by a t-test with false discovery

rate (FDR) correction. Given the large numbers of patients in each

group and the strength of molecular differences between each group,

this method, in lieu of more complicated methods, was deemed suffi-

cient to detect a large portion of differential expression.

Genes contained in chr19p13 were downloaded from the molecular

signatures database (http://software.broadinstitute.org/gsea/msigdb).

Copy number variants (CNV) data for genes in chr19p13 were down-

loaded from cBioPortal (http://www.cbioportal.org) (Gao et al., 2013).

2.6 Method overview
Given multiple types of omics data for the same set of patients, we

first create a patient-to-patient similarity graph for each data type

(Fig. 1). In our breast cancer case study, this means that three unique

patient-to-patient graphs are created, one each for microRNA,

methylation and mRNA expression data. Prior to any further ana-

lysis, we remove edges with low similarity measures, which repre-

sent uncertain relationships between patients. To perform the

integrative analysis, the differences between these graphs must be

reconciled. Prior studies employ an iterative convergence approach

(Wang et al., 2014); in our work, we merge the graphs in two steps

via a mathematical construct, the Grassmann manifold.

In the first step, the structure of each patient-to-patient similarity

graph is captured by a subspace representation via spectral embed-

ding. Since each graph is reduced to its low-dimensional subspace

representation, computation is minimal and noise is reduced. In the

second step, each subspace representation is considered as a point

on a Grassmann manifold. Therefore, we can find a new representa-

tive subspace on the Grassmann manifold where the overall distance

between new representative subspace and the individual subspaces is

minimized. The result of this analysis is a subspace that summarizes

the desired merged graph, containing information from all data

types.

Finally, we clustered the patients in the resulting representative

subspace and conducted a post hoc analysis to evaluate the cluster-

ing results. We hypothesize that such a method will generate more

informative clusters by preserving the complementary information

from each level of omics data. For further details, see Materials and

methods.

2.7 Comparison with results from similarity network

fusion
To demonstrate the effectiveness of our methods, we applied our

method on multiple datasets analyzed by Wang et al. (2014) and

Fig. 2. Integrative clustering discovers clinically significant subtypes of can-

cer. Shown are Kaplan–Meier plots of the overall survival of integrative clus-

ters for breast invasive carcinoma (BIC) (a), kidney renal clear cell carcinoma

(KRCCC) (b), lung squamous cell carcinoma (LSCC) (c) and glioblastoma mul-

tiforme (GBM) (d). P-values are computed from the logrank test

Table 2. Clinical attributes of TCGA breast cancer subtypes

Group 1 (N¼ 83) Group2 (N¼ 76) Group3 (N¼ 103) Group4 (N¼ 111) Group5 (N¼ 68)

ER, (þ) 23 (27.7%) 55 (72.4%) 100 (97.1%) 103 (92.8%) 54 (79.4%)

(�) 59 (71.1%) 19 (25%) 3 (2.9%) 6 (5.4%) 13 (19.1%)

PR, (þ) 19 (22.9%) 51 (67.1%) 88 (85.4%) 95 (85%) 46 (67.6%)

(�) 63 (75.9%) 23 (30.3%) 15 (14.6%) 13 (11.7%) 20 (29.4%)

HER2 (þ) 4 9 11 12 7

(�) 46 41 50 62 40
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compared our results to those generated by their SNF method. The

cancer types include glioblastoma multiforme (GBM, N¼213),

breast invasive carcinoma (BIC, N¼ ), kidney renal clear cell carcin-

oma (KRCCC, N¼122) and lung squamous cell carcinoma (LSCC,

N¼106). The Cox survival P-values reported by Wang et al. (2014)

and our method are listed in Table 1. In order to ensure the compar-

ability of the results, we inherit Wang et al.’s (2014) choice of cluster

numbers for each cancer type. As can be seen in the table, in three

out of the four types of cancer studied our method provides more

significant differences between the survival times. In GBM, the P-

value is comparable to the P-value generated by SNF. Survival

plots for GBM, BIC, KRCCC and LSCC tumors are shown in Figure

2. Our proposed method can also be extended to improve the

survival rate prediction task. We trained random survival forest

with subspace representation generated from integrative subspace

and individual data types integrative subspace, respectively

(Supplementary Fig. S4) and found that our integrative approach

displayed superior performance in comparison to using only a single

data type.

2.8 Identification of integrative subtypes of breast

cancer
For decades, researchers have been developing methods to subtype

breast cancer. Gene signatures, such as PAM50 (Perou et al., 2000)

and the 70-gene signature (Van’t Veer et al., 2002) have been devel-

oped to subtype breast cancer patients. However, subtyping based

on other data sources, e.g. microRNA and DNA methylation lead to

incoherent results when compared to subtyping done using mRNA

data (Blenkiron et al., 2007; Stefansson et al., 2015; Yuan et al.,

2011).

In this paper, we obtained DNA methylation, mRNA expression

and miRNA expression data from 441 primary tumors of breast

cancer patients from TCGA (Cancer Genome Atlas Research

Network et al., 2012). Detailed clinical information for this cohort

is listed in Table 2. We applied the proposed method to this dataset

and partitioned the patient population into five integrative subtypes.

The choice of the number of clusters is determined by two factors:

(i) the silhouette scores reached a peak when the number of cluster is

5 (Supplementary Figs S1 and S2); (ii) the survival analysis Cox

Fig. 3. Integrative clustering of breast tumors produces prognostically relevant and biologically significant groupings. (a–c) The adjacency matrices of patient-to-

patient similarity graphs, produced from mRNA (a), microRNA (b) and methylation (c) datasets. (d) Integrative clustering of patients using all three datasets.

Color bars at left show the clusters of patients, and the heatmap to the left of each colorbar shows the eigenvector clustering results. (e–h) Survival analysis of pa-

tient stratification results using integrative and single-data-type clustering methods. Kaplan–Meier survival curves of clusters produced by: (e) integrative cluster-

ing, (f) gene expression alone, (g) miRNA expression alone, (e) DNA methylation alone, listed along with estimated P-values (logrank test)
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P-values obtained for each cluster size found a global minimum at

k¼5 (Supplementary Fig. S3).

Figure 3a–c shows the adjacency matrices and their corre-

sponding representative subspace for the patient-to-patient simi-

larity graphs from each data type. As shown in the plot, the

connectivity of the graphs varies considerably from each other. For

instance, group 2 (red) has high inner connectivity with the graph

generated by miRNA and DNA methylation, while the graph con-

structed with mRNA data better supports the connectivity in

group 4 (blue). Figure 3e–f compares clusters obtained from inte-

grative versus single-data-type analyses. Figure 3a shows the over-

all survival plot produced by integrative clustering, with an

estimated P-value<0.0001 (logrank test). While analyses of

mRNA (Fig. 3b) and miRNA (Fig. 3c) data independently yielded

significant clustering results (logrank test P¼0.0231 and 0.0286,

respectively), overall survival of the clusters is much more clearly

separated using integrative clustering. Supporting this finding, the

subspace representations shown in Figure 3a–d are most highly

separated in the integrative cluster, shown in Figure 3d. The clus-

tering produced from methylation data (Fig. 3d) was not signifi-

cantly prognostic (P¼0.2461).

Subtype 1 (black) largely contains patients negative for proges-

terone (PR), estrogen (ER) and epidermal growth factor 2 (HER2)

receptors, also known as triple negative (see Table 2). The vast ma-

jority of tumors in subtype 3 (green) and 4 (blue) are positive for ER

and PR, but patients in subtype 3 have a clear survival advantage

over patients in subtype 4. Similarly for groups 2 and 5, they have

similar ER, PR and HER2 statuses, yet different prognoses. These

differences may represent useful prognostic and, more importantly,

therapeutic opportunities. To investigate the molecular basis

of our subtyping, we further analyzed the differences in mRNA,

microRNA and methylation abundances.

2.9 Molecular basis of integrative breast cancer

subtypes
We have shown that our method produces subtypes with clinically

relevant prognoses, yet of equal importance are the molecular altera-

tions associated with these differences in prognoses. To assess the

biological significance of our clustering results, we look for differen-

tially activated groups of nodes in an integrative co-expression net-

work, where each node is an mRNA gene, methylation site or

microRNA species (see Supplementary Methods). Our first observa-

tion was that group 1, clinically identified as the triple-negative

breast cancer (TNBC) subtype, indeed contains the molecular hall-

marks previously associated with TNBC. For example, we observed

that MYBL2, CENPA, AURKB and KIF2C are all overexpressed in

group 1 (P-value<0.001, FDR-corrected), which is consistent with

previous results on the TNBC subtype (Sparano et al., 2009)

(Supplementary Fig. S5). Also consistent with prior studies, patients

in group 1 have relatively poor overall survival.

Of particular interest are the molecular alterations that might

cause tumors with similar hormone receptor statuses to have differing

prognoses. For example, groups 3 and 4 have nearly identical hor-

mone receptor statuses (Table 1), yet in contrast to group 4, no

patients in group 3 die during the follow-up period. In our co-expres-

sion network we noticed that there was a large, highly coexpressed

module of genes located on chr19p13 (Fig. 4a). Remarkably, a large

subset of these genes were overexpressed in group 3 compared to

other groups. We found that chr19p13 gene expression can clearly

separate patients in the TCGA dataset into good and poor prognoses

(Fig. 4b). To validate our findings, we further tested our 19p13 signa-

ture on three additional publicly available validation datasets [NKI

(Van’t Veer et al., 2002), Fig. 4c, GSE3141 (Bild et al., 2006), Fig. 4d

and GSE1456 (Pawitan et al., 2005), Fig. 4e]. Of note, all four data-

sets were created using different expression platforms, which shows

Fig. 4. Density of differentially expressed genes on chromosome 19p13 are shown in (a). (b–e) Survival curves and clustered heatmaps produced by separating

four datasets based on expression of genes on chr19p13. Kaplan–Meier survival curves, clustered heatmaps and accompanying P-values (logrank test) generated

from the training dataset from TCGA are shown in (b). Results generated from three validation sets are shown in (c–e): Netherlands Cancer Institute (NKI) in (c),

GSE3143 in (d) and GSE1456 in (e)

1658 H.Ding et al.

Deleted Text: p
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty866#supplementary-data
Deleted Text: Fig. 3(a-c) show
Deleted Text: y
Deleted Text: Fig. 3(e-
Deleted Text: )
Deleted Text: vs.
Deleted Text: .
Deleted Text: p
Deleted Text:  < 
Deleted Text: log rank
Deleted Text: log rank
Deleted Text: p
Deleted Text: Fig. 3(a-
Deleted Text: )
Deleted Text: .
Deleted Text: p
Deleted Text: ),
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: See Online
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty866#supplementary-data
Deleted Text: ,
Deleted Text: p
Deleted Text:  < 
Deleted Text: . (
Deleted Text: ))(
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty866#supplementary-data
Deleted Text: coexpression
Deleted Text: (
Deleted Text: . (
Deleted Text: )),
Deleted Text: . (
Deleted Text: )),
Deleted Text: ,
Deleted Text: . (
Deleted Text: )),
Deleted Text: ).


that our signature is platform independent. In addition, it has been

reported that low SAFB, a gene present on chr19p13, expression is

associated with worse outcome in breast cancer patients (Hammerich-

Hille et al., 2010), which is consistent with our finding.

We further sought to investigate possible molecular alterations

associated with chr19p13 overexpression. We first hypothesized

that copy number changes in chr19p13 could explain the expression

differences; however, an analysis of the corresponding CNV data

showed that only a minority of the variation is explained by dele-

tions or amplifications on chr19p13 (Supplementary Fig. S6).

Next, we searched the methylation data for an explanation, but

there was no clear upregulation or downregulation of methyl sites

located on chr19p13. Further experiments are necessary to identify

a single gene, microRNA or methylation site responsible for the

observed changes in chr19p13 expression. This search is compli-

cated by the fact that numerous known tumor suppressors and onco-

genes are located in this region. Another possible explanation is a

large chromosomal event that is not easily detected in high-through-

put sequencing data.

3 Conclusion

In this paper, we propose a novel method to perform efficient integra-

tive patient stratification. Our approach aggregates information from

multiple molecular expression data through a subspace analysis on

the Grassmann manifold. We applied our method to stratify the breast

cancer patient cohort datasets collected from TCGA by integrating

gene expression, DNA methylation and miRNA expression data. The

result demonstrates our method can leverage information from differ-

ent omics data into clinically relevant subtypes. Also, through our sub-

typing results, we uncovered a group of genes located on chromosome

19p13 with strong prognostic power. We further validate our finding

on three independent datasets. Future follow-up studies on this gene

set are necessary to reveal its biological implication.

Since the integration step in our method is independent of the

properties of data source, the input data types are not limited to gen-

omic data. With appropriate similarity measurements, our method

can be extended to applications in which integration of clinical cat-

egorical information and image datasets for which clustering is

needed. Nonetheless, our approach can also be applied to other

tasks that require integration of multiple types of features.
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