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Abstract

Motivation: Computational methods for protein post-translational modification (PTM) site predic-

tion provide a useful approach for studying protein functions. The prediction accuracy of the exist-

ing methods has significant room for improvement. A recent deep-learning architecture, Capsule

Network (CapsNet), which can characterize the internal hierarchical representation of input data,

presents a great opportunity to solve this problem, especially using small training data.

Results: We proposed a CapsNet for predicting protein PTM sites, including phosphorylation, N-

linked glycosylation, N6-acetyllysine, methyl-arginine, S-palmitoyl-cysteine, pyrrolidone-

carboxylic-acid and SUMOylation sites. The CapsNet outperformed the baseline convolutional

neural network architecture MusiteDeep and other well-known tools in most cases and provided

promising results for practical use, especially in learning from small training data. The capsule

length also gives an accurate estimate for the confidence of the PTM prediction. We further demon-

strated that the internal capsule features could be trained as a motif detector of phosphorylation

sites when no kinase-specific phosphorylation labels were provided. In addition, CapsNet gener-

ates robust representations that have strong discriminant power in distinguishing kinase sub-

strates from different kinase families. Our study sheds some light on the recognition mechanism of

PTMs and applications of CapsNet on other bioinformatic problems.

Availability and implementation: The codes are free to download from https://github.com/duolin

wang/CapsNet_PTM.

Contact: xudong@missouri.edu or wangdu@missouri.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein post-translational modification (PTM) is a key mechanism

to regulate protein functions by the covalent addition of chemical

groups or proteins. Over 400 types of PTMs have been identified

(Khoury et al., 2011), and they influence almost all aspects of cell

biology and pathogenesis. Therefore, identifying and understanding

PTMs are critical in the studies of biology and diseases. In contrast

to experimental methods, computational prediction of PTMs

provides a fast and low-cost strategy for proteome annotation and

experimental design. The PTM site prediction can be formulated as

a classification problem, where machine learning can be applied.

Some machine-learning methods have been developed for PTM site

prediction. Support vector machine (SVM) was used in Musite (Gao

et al., 2010) for general and kinase-specific protein phosphorylation

site prediction using the K nearest neighbor score, disorder scores

and amino acid frequencies as features. ModPred, a sequence-based
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PTM site predictor for 23 different modifications, applies logistic re-

gression models using three types of features: sequence-based fea-

tures, physicochemical properties and evolutionary features (Pejaver

et al., 2014). The random forest algorithm was also applied in this

area, such as the recently published tool PhosPred-RF for phosphor-

ylation site prediction, which uses the evolutionary information fea-

tures from position specific soring matrices (Wei et al., 2017).

Sulfinator used hidden Markov models to predict sulfotyrosine sites

in protein sequences (Monigatti et al., 2002). In our previous work,

we presented MusiteDeep (Wang et al., 2017), the first deep-

learning framework for predicting general and kinase-specific phos-

phorylation sites, which took raw protein sequences as input and

achieved significant improvement over other well-known tools on

the benchmark data. Even though MusiteDeep has demonstrated

that deep learning has a prominent advantage in automated complex

feature extraction from raw sequences for PTM site prediction, chal-

lenges remain, especially in small sample training and model inter-

pretation. Except for a few PTMs, such as phosphorylation,

glycosylation and acetylation, known annotations for most other

PTMs are limited. The main building block of MusiteDeep is the

traditional convolutional neural network (CNN) with scalar neu-

rons, which may not characterize hierarchical relationships between

simple and complex features using such small training data.

To address the problems of scalar neurons, a novel deep-learning

architecture, known as Capsule Network (CapsNet) was introduced

(Sabour et al., 2017). The main building block of CapsNet is the

capsule (Hinton et al., 2011), which is a group of neuron vectors,

whose activity vector represents the ‘instantiation parameters’ of a

specific type of entity. The length of the vector represents the prob-

ability of an entity’s existence while the orientation of the vector

represents the state of the entity. Taking digit image classification as

an example, the length of a digit capsule represents the probability

that the digit exists while the orientation can represent various prop-

erties, such as the width, scale and thickness of that digit. Capsule

provides a unique and powerful deep-learning building block to bet-

ter model the diverse relationships inside internal representations of

a neural network.

CapsNet has not been exploited in many deep-learning applica-

tions, especially not at all for protein PTM site prediction. We found

that some properties of CapsNet can benefit the PTM site prediction

problem although it is highly non-trivial to exploit the application

of CapsNet in biological sequence analyses. Three primary benefits

set CapsNet apart from previous deep learning methods:

First, capsules are suitable feature representations for PTM sub-

strates. Taking phosphorylation as an example, the sequences sur-

rounding the phosphorylation sites have different patterns

corresponding to various catalyzing kinases. As shown in

Supplementary Figure S1, amino acids in these flanking sequences

have certain patterns for each subgroup, while sequences in the

negative groups (without phosphorylation) do not have these pat-

terns. These patterns include one-dimensional sequence profiles and

two-dimensional correlated mutations, as well as higher dimensional

correlations among amino acids, which are not shown in the figure.

The ‘instantiation parameters’ of a capsule enable characterization

of all these relationships for distinct kinase families in the feature

space (in contrast to 2D image space in the original application of

CapsNet). Specifically, the capsule length can represent the prob-

ability that the PTM of interest exists, and the capsule orientation

can represent the specific sequence properties of substrates as char-

acteristics of PTM subtypes.

Second, CapsNet has outstanding performance for small-sample

learning (Sabour et al., 2017). The unique representation capacity of

capsule––the change of ‘instantiation parameters’ by a correspond-

ing amount as the viewpoint changes (the ‘equivariant’) while the

probability of the sought-after entity being present is invariant

(Hinton et al., 2011). This changeability feature makes CapsNet ef-

fective in learning from a small fraction of training data since it does

not need to see as many samples to generate appropriate representa-

tions as other neural networks. For PTM applications, the ‘equivar-

iant’ property will also work. Through the routing-by-agreement

learning mechanism (dynamic routing), a prediction capsule for a

PTM of interest (positive or negative) becomes activated when its

prediction agrees with the specific amino acid relationships, i.e. the

specific ‘instantiation parameters’ iteratively defined from the over-

represented patterns in the cohort substrates. This property is par-

ticularly in demand in PTM site prediction and could be applied to

many other biological sequence analysis problems, since known

annotations are often limited.

Third, the dynamic routing mechanism can be viewed as a paral-

lel attention mechanism (Bahdanau et al., 2014). In PTM site predic-

tion, this allows the network to attend to some internal capsules

related to the prediction. The dynamic routing process is transpar-

ent, which helps users identify key features relevant to the PTM rec-

ognition mechanism.

Here, we proposed a CapsNet with a multi-layer CNN for pro-

tein PTM site prediction, including phosphorylation, N-linked gly-

cosylation, N6-acetyllysine, methyl-arginine, S-palmitoyl-cysteine,

pyrrolidone-carboxylic-acid and SUMOylation. Our experiments

showed that CapsNet outperformed the baseline CNN architecture

MusiteDeep and other well-known tools in most cases, especially in

almost all cases involving learning from small training samples.

Besides the superior performance in PTM site prediction, CapsNet

showed outstanding properties that can explore the internal data

distribution related to biological significance. For example, internal

capsules could learn features related to kinase families and discover

novel kinase-specific motifs when no kinase-specific phosphoryl-

ation labels were provided; the robust representations generated by

CapsNet have a strong discriminant power in distinguishing kinase

substrates from different known or unknown kinase families. We

believe that the proposed architecture can also address other modifi-

cations with limited annotations better than previous methods. Our

study provides an early example use-case of CapsNet in a biological

sequence analysis, and may also shed some light on other biological

sequence analysis and prediction problems.

2 Materials and methods

The PTM site prediction can be formulated as a binary classification

problem, i.e. each potential site can be classified as either the PTM

site of interest or not. In particular, a 33-length peptide is extracted

from each residue of interest (16 residues at each side). The first step

is to convert the input amino acid peptides into real-number vectors

by a coding method. Next, a supervised model will be trained on the

benchmark training set. Finally, the trained model will be used to

predict PTM sites for the benchmark testing set, and its performance

will be evaluated by comparing with other methods.

2.1 Benchmark dataset
We built a benchmark dataset by collecting annotations from

UniProt/Swiss-Prot (August 2017 release) (Bairoch et al., 2005). In

this work, we only trained PTM models for animal species

(Metazoa) that were extracted according to the NCBI taxonomy

database (Wheeler et al., 2007). For each interested PTM, all the
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residues annotated by Uniprot/Swiss-Prot with the same type of

PTM were used as positive sites, while the residues with the same

amino acids excluding the PTM annotations were regarded as the

negative sites. The statistics of the data are shown in Table 1.

2.2 Input sequence coding
In our previous work, MusiteDeep, a 33-length peptide was coded

by the one-of-K coding method, which is a discrete representation

with value 1 at the index corresponding to the amino acid in the

peptide and 0 at all other positions. In this work, we coded each

amino acid by a quantitative representation method proposed by

(Venkatarajan and Braun, 2001), which used the multi-dimensional

scaling of 237 physical-chemical properties to derive quantitative

representations for all 20 naturally occurring amino acids. In their

method, five principal components were used to reproduce the main

variations of the 237 properties for the 20 amino acids. Here, a 6D

vector is used to represent each amino acid, wherein the first 5D rep-

resents the five principal components as shown in Table 1 of

(Venkatarajan and Braun, 2001). The additional 1D is used to repre-

sent a gap in the position, where there is no amino acid at the pos-

ition within the 33-length fragment. When there was a gap in the

position, the first 5D values were all set as 0 and the last 1D was set

as 1. On the other hand, the last 1D was set as 0 when there was no

gap. The new quantitative representation was constructed by con-

sidering the original high-dimensional physical-chemical property

space and provided a small dimension of input data, which was

thought to be a more efficient representation than the one-of-K cod-

ing. The results in Section 3.4 showed that this quantitative repre-

sentation was slightly better in distinguishing kinase substrates from

different families than the one-of-K representation.

2.3 Architecture design
The architecture of the proposed CapsNet, as shown in Figure 1,

consists of three 1D convolutional layers (Conv1, Conv2 and

PrimaryCaps) and one fully connected layer (PTMCaps). The first

two layers are the conventional convolutional layers. They convert

the input peptide from its initial representation to the intermediate-

level features, which are then fed into the PrimaryCaps and

PTMCaps for further feature abstraction. The first two layers were

designed to increase the representation power of CapsNet.

The Conv1 and Conv2 were constructed with similar hyper-

parameters like those in MusiteDeep, since they were selected by the

Bayesian optimization method (Snoek et al., 2012). Specifically, the

first layer (Conv1) has 200 size-1 1D convolution kernels with a stride

of 1, and a ReLU activation function (Nair and Hinton, 2010). The

first layer also has a dropout technique (Srivastava et al., 2014) with a

neuron dropping rate 0.75. The second layer (Conv2) has 200 size-9

1 D convolution kernels with a stride of 1, a ReLU activation function

and a dropout technique with a neuron dropping rate 0.75. In other

studies, the 1 x 1 convolution kernel provides a more efficient way for

dimension reduction and allows for deeper and wider networks (Lin

et al., 2013; Szegedy et al., 2015). In our case, the size 1 1D convolu-

tion kernels in Conv1 serve as a ‘feature filter’, which sum-pools fea-

tures across the six physical-chemical channels into single scalar

features. The high neuron dropping rate (0.75) applied in the dropout

technique was used to prevent the model from over-fitting and to opti-

mize the model generalization capacity.

The PrimaryCaps is the convolutional capsule layer, as

described by (Sabour et al., 2017). In our case, one can see the

PrimaryCaps as a 1D convolutional layer, which has 60 channels

of convolutional capsules. Each capsule in the PrimaryCaps con-

tains eight convolutional units, each of which was the result of a

size 20 1D convolution kernel with stride of 1. The first valid di-

mension of Conv1 was 33, i.e. 33 (fragment length) – 1 (kernel

size) þ 1; the first valid dimension of Conv2 was 25, i.e. 33 (first

dimension of Conv1)—9 (kernel size) þ 1 and finally the first valid

dimension of PrimaryCaps was 6, i.e. 25 (first dimension of

Conv2)—20 (kernel size) þ 1; In total, the PrimaryCaps layer has

[6, 60] 8D vector capsules and each capsule in the [6, 1] grid

shares its weight with others; 8 is the dimension of capsule vectors

in the PrimaryCaps used in the original CapsNet (Sabour et al.,

2017). Since the length of a capsule represents the probability that

the entity presented (Sabour et al., 2017), the convolutional units

in the capsule layers need a new activation function, which is

called the squashing function, to scale the lengths of capsules to

[0, 1] as follows:

vj ¼
ksjk

1þ ksjk2

sj

ksjk
(1)

where vj is the vector output of capsule j and sj is its input. Besides

the PrimaryCaps layer, the squashing activation function will be

applied to capsules in the following PTMCaps layer.

Table 1. Benchmark dataset

PTM typesa # of residuesb # of non-redundant

residuesc

Phosphorylation (S/T) 123 631 (2 468 434) 36 395 (12 177)

Phosphorylation (Y) 8417 (89 316) 2141 (826)

N-linked glycosylation (N) 64 374 (449 108) 10 218 (6564)

N6-acetyllysine (K) 19 884 (265 234) 6376 (1907)

Methyl-arginine (R) 4585 (109 580) 2241 (455)

S-Palmitoylation-cysteine (C) 2589 (16 133) 572 (266)

Pyrrolidone-carboxylic-acid (Q) 1407 (11 070) 623 (154)

SUMOylation (K) 996 (20 910) 334 (108)

aThe amino acids in parentheses represent the modified residues for each

PTM.
bNumbers outside the parentheses represent the numbers of positive resi-

dues; numbers in parentheses represent the numbers of all the candidate

residues.
cTaking the first fold to illustrate the scale of the modified residues in the

training sets after removing the redundant sequences (numbers outside the

parentheses) and the scale of the modified residues in the testing sets (numbers

in the parentheses).

Fig. 1. Architecture of the proposed CapsNet. The input is a 33-length peptide

in the 6D quantitative coding. The first two layers are two 1D convolutional

layers, each with 200 channels, as well as with size 1 and 9 convolution ker-

nels, respectively. The PrimaryCaps layer is the convolutional capsule layer,

which has size 20 convolution kernels and 60 channels of 8D capsules, as

described in (Sabour et al., 2017). The PTMCaps layer has two 10D capsules

to represent two states of the input peptides—whether the input has the inter-

ested PTM site or not. The L2-norm of each capsule vector was calculated

indicating the probability of each state

2388 D.Wang et al.



The PTMCaps layer contains two 10D capsules to represent two

states of the input peptides: positive and negative (representing

whether the input has the interested PTM site or not). This layer

accepts inputs from all the capsule outputs in the PrimaryCaps layer.

The computation between the PrimaryCaps and PTMCaps was illus-

trated in Figure 2. We used the same symbols as in the original

CapsNet paper (Sabour et al., 2017) wherever possible but displayed

the specific parameters used in our experiments. mi, i 2 [1, 360] is an

8D capsule in PrimaryCaps. Wi, j is the weight matrix that conducts

the affine transformation. There are two capsules (Vj, j 2 [1, 2]) in

the PTMCaps, each of which receives inputs from all the capsule

outputs in the PrimaryCaps. Vj is a 10D vector which is produced by

a weighted sum (sj) over all outputs (l̂jji) from PrimaryCaps and

then through the squashing function [Equation (1)]. Here, the ci, j

are coupling coefficients that are summed to 1 over the two capsules

in PTMCaps, i.e. ci; 1 þ ci; 2 ¼ 1 and determined by the iterative dy-

namic routing process. Please refer to Supplementary Material S1

for the complete dynamic routing algorithm.

The length of the positive capsule in the PTMCaps layer indi-

cates the probability that the PTM of interest exists, while the length

of the negative capsule indicates the probability that the PTM of

interest does not exist. Therefore, the L2-norms of the positive and

negative capsule vectors were calculated, respectively, and following

(Sabour et al., 2017) a separate margin loss function was applied as

follows:

Lc ¼ Ycmaxð0; 0:9� jjvcjjÞ2 þ 0:5ð1� YcÞmaxð0; jjvcjj � 0:1Þ2

(2)

where, Yc¼1 if the PTM of interest exists. For other hyper-

parameters, we used the suggested values 0.9, 0.1 and 0.5 as in

(Sabour et al., 2017). The total number of parameters of the whole

CapsNet in this work was 3 078 694.

In the prediction process, both positive and negative capsule

lengths were calculated, and then the labels were assigned to the

query sites according to which one had the larger length.

2.4 Model training
In each experiment, all the deep-learning models were trained using

identical training strategies. Training and testing data were gener-

ated according to a particular experiment. From one specific train-

ing data, 10% of samples were extracted as validation data. To

address the unbalanced issues during training, the same bootstrap-

ping method as in Musitedeep (Wang et al., 2017) was applied for

CapNet and MusiteDeep. Particularly, given one training data, the

models were trained on several balanced training subsets and several

independent classifiers were generated. The final results were calcu-

lated by averaging the results from all the classifiers. During the

training iteration, the early stopping strategy was used; specifically,

when the loss of validation did not reduce in some numbers of

epochs (one forward and backward pass over the entire training

set), the training procedure would be stopped. We used the Adam

stochastic optimization method (Kingma and Ba, 2014) with the

following parameters: learning rate 0.001, decay rate for the first-

moment estimates 0.9 and exponential decay rate for the

second-moment estimates 0.999. To train the CapsNet by dynamic

routing, we followed the suggestion in (Sabour et al., 2017), i.e.

three routing iterations and the same margin loss function with the

suggested hyper-parameters. All the deep-learning models were

implemented using Keras 2.1.1 and TensorFlow 1.3.0. Model train-

ing and testing were performed on a workstation with Ubuntu

16.04.3 LTS system and equipped with GPU Nvidia GTX 1080Ti.

3 Results

3.1 Performance of CapsNet for small training data
To explore the advantage of CapsNet in effective learning from

small training data, we compared the performance of CapsNet on

different fractions of training samples with MusiteDeep, as well as

with a CNN model that has a similar architecture and complexity

only excluding the capsule form by converting the PrimaryCaps into

a standard CNN and the PTMCaps into a fully connected layer with

10 � 2 neurons. This set of experiments only focuses on phosphoryl-

ation of S/T.

To evaluate the performance of these models without the effect

of the unbalanced data issue and the issue of similar fragments in

the training, validation and testing datasets, we built two balanced,

fragment-level non-redundant datasets according to two sequence-

similarity conditions. One dataset contained fragments that have no

more than 40% sequence similarities. The other dataset contained

fragments that have no more than 50% sequence similarities. Each

dataset was generated by first randomly selecting an equal size of

negative fragments from the raw dataset of phosphorylation (S/T)

(Table 1, Column 2) to build the balanced dataset and only one frag-

ment candidate from each homologous sequence cluster of frag-

ments with sequence similarities higher than 40% or 50% remained

by CD-HIT (Li et al., 2001). Then, we applied a 10-fold cross-

validation method to each dataset. For each fold, we extracted

increasing fractions of the training samples according to a series of

ratios (0.5%, 1%, 2%, 5%, 10%, 20%, 50%, 90%) and then

trained models of CapsNet and other two deep-learning models on

the same data fractions and evaluated the performances on the same

testing data. Taking the first fold of the dataset with under 40%

fragment-level redundancy as an example, the numbers of the ex-

periment series of training samples were 181, 363, 726, 1816, 3632,

7264, 18 160, 32 688 and the number of testing samples was 4036.

Other folds contained similar size data. For a fair comparison, to all

the compared methods we applied the same quantitative coding

method. We noticed that these distinct models have model-specific

optimal training processes. It is difficult to train models by their op-

timal training processes for every experiment; therefore, we applied

one consistent and general training strategy for all the models in all

these experiments, which is the Adam stochastic optimization

method and stopping the training processes after 100 epochs.

Fig. 2. Computation between the PrimaryCaps and PTMCaps. There are 360

8D capsules (each mi is an 8D vector) in PrimaryCaps û j ji , j 2 [1, 2]. Each is pro-

duced by multiplying mi by a weight matrix Wi, j (8�10). Capsule Vj (10D vec-

tor and j 2 [1, 2]) in PTMCaps is produced by a weighted sum over all û j ji and

the squashing non-linear activation function. The parameter ci, j was deter-

mined by the iterative dynamic routing process
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We also considered the model variation out of different runs.

Therefore, besides the 10-fold cross-validation, each method was

trained 10 times using the same fold of training sets but different

starting model parameters and it was evaluated by the same fold of

testing sets, resulting 100 independent models for each method at

each ratio. The distributions of the accuracies of the 100 models at

each ratio were displayed by boxplots, as shown in Figure 3. The ex-

perimental results show several advantages of CapsNet: (i) Under

the small training sample conditions (number of samples below

10 000), CapsNet outperformed other methods significantly (P-

value < 0.01 by t-test compared with MusiteDeep), while in large

training sample conditions, CapsNet achieved a comparable per-

formance (P-value > 0.01 by t-test compared with MusiteDeep) in

all these conditions; (ii) CapsNet had smaller variations and fewer

outliers than the other two deep-learning methods, especially in

small training sample conditions; (iii) the capsule design in CapsNet

improved the performance compared with similar CNN architecture

only without the capsule form. All these advantages indicate that

CapsNet is more robust in training and more effective in learning

from small training data. The comparisons of training and predic-

tion time among different methods are shown in Supplementary

Table S1.

3.2 Assessment of prediction reliability
According to the design of CapsNet, the capsule length in the output

layer can be used to represent the probability that the predicted en-

tity exists. However, the relationship between the capsule length

and the prediction confidence was not demonstrated by real data.

Here, we tested whether the capsule length in PTMCaps (positive/

negative capsule lengths) can reflect the prediction reliability for a

specific PTM. The experiments were conducted on the balanced 10-

fold cross-validation phosphorylation (S/T) dataset. Specifically,

given one fold of the testing data, after the corresponding lengths of

the positive/negative capsules in PTMCaps were obtained, we div-

ided these lengths ranging from 0 to 1 into equal-size bins (the size

of each bin is 0.05). Next, we used two measures to evaluate the pre-

diction reliability of each bin: (i) the precision (positive predictive

value, i.e. the percentage of true PTM sites whose positive capsule

lengths were in the interval of the bin) and (ii) the FDR (false discov-

ery rate, i.e. the percentage of false PTM sites whose negative cap-

sule lengths were in the interval of the bin). As shown in Figure 4,

the length of the positive capsule and the average precision of 10-

fold cross-validation had a very high positive correlation (Pearson

correlation 0.97, P-value ¼ 6.4 e–11), while the length of the nega-

tive capsule and the average FDR of the 10-fold cross-validation

also had a very high positive correlation (Pearson correlation 0.96

P-value ¼ 2.6 e–11), demonstrating that the length of positive/nega-

tive capsule alone is a good estimator of the prediction reliability.

Then, we used a non-linear least square fitting (function nls in R) to

estimate the non-linear regression parameters of each type of cap-

sule, respectively. The estimated analytic mapping from the

positive capsule length (x) to the assessed precision (y) is shown in

Equation (3).

y ¼ 1:115x2 (3)

The estimated analytic mapping from the negative capsule length

(x) to the assessed FDR (y) is shown in Equation (4).

y ¼ 1:079x2 (4)

Interestingly, these two regressions were very close to y ¼ x2. In

practical use, for a given protein with a predicted positive/negative

capsule length, we can assess its prediction/FDR reliability by substi-

tuting it in Equations (3) and (4).

3.3 Comparing the performance of CapsNet in several

PTM site predictions with other methods
To demonstrate the performance of CapsNet in practical use, we

compared CapsNet with other existing PTM site prediction models.

However, these models used different training data and most of

them did not provide standalone tools, thereby making it difficult to

provide a direct comparison. Also, in this paper, the main objective

is to demonstrate the advantages of applying CapsNet in PTM site

prediction, rather than developing a comprehensive prediction tool.

Therefore, we only chose to compare with several representative

machine-learning methods with available tools. The tools we chose

to compare were MusiteDeep, Musite and ModPred. Here,

MusiteDeep was used as a baseline model of deep learning, Musite

Fig. 3. Accuracies of CapsNet, MusiteDeep and CNN for phosphorylation (S/

T) trained by different sizes of training samples represented in boxplots. The

x-axis represents the sampling ratio of the total training samples. The y-axis

represents the accuracies of 10-fold cross-validation with each fold trained 10

times. At each ratio, each method generated 100 independent models. For

each sampling ratio, we draw three boxplots beside each other for the three

methods in the order of CapsNet, MusiteDeep and CNN. The line in the mid-

dle of the box represents the median; the box edges represent the 25th and

75th percentiles; the flattened arrows extending out of the box represent the

reasonable extremes of the data (the 1.5 times interquartile ranges from the

middle 50% of the data) and the open circles beyond the flattened arrows rep-

resent outliers for each experiment. (A) and (B) show results of the datasets

with fragment-level sequence similarities less than 50% and 40%,

respectively

Fig. 4. Prediction reliability versus capsule length. (A) Precision versus posi-

tive capsule length. (B) FDR versus negative capsule length. The x-axis repre-

sents the center of each length-bin of the positive/negative capsule in

PTMCaps. The y-axis represents the precision/FDR of the corresponding bin.

The circles and the bars represent the average precision/FDR and the SD, re-

spectively, for a given capsule length bin from 10-fold cross-validation

results. The dashed line represents the non-linear (quadratic) regression of

the precision/FDR from a capsule length, which can be used to estimate the

prediction reliability for a PTM of interest [Equations (3)–(4)]
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was used as a baseline model of the SVM algorithm and ModPred

was used as a baseline model of a logistic regression algorithm

which provides many types of PTM site predictions in a standalone

package. For each PTM, we applied the 10-fold cross-validation on

the benchmark dataset described in Table 1 (Column 2) and

removed sequences that have more than 30% sequence identity with

the testing set from the training set by Blast (Altschul et al., 1990), as

shown in Table 1 (Column 3) Since MusiteDeep and Musite provided

the customized model training, we used the same training data to train

these models. ModPred did not provide the customized model train-

ing, and hence we used their pre-trained model as is to predict for all

the folds of testing data. We used the areas under ROC curves and the

areas under the precision-recall (PR) curves to evaluate the perform-

ance. The average areas for each measure and their SD calculated

from 10 folds are shown in Table 2. The corresponding ROC and PR

curves are shown in Supplementary Figures S2 and S3.

It is important to note that we used a very strict non-redundant

dataset construction procedure in this experiment, wherein for

CapsNet, MusiteDeep and Musite, the training sequences had no

more than 30% identity with the testing sequences. However, the

testing set could be involved in the training procedure of ModPred,

so that the performance could be overestimated. From the compari-

son results, CapsNet outperformed other methods in most cases. In

particular, CapsNet outperformed MusiteDeep for PTMs with small

annotation data, such as methyl-arginine with 2241 annotations, S-

palmitoyl-cysteine with 572 annotations, pyrrolidone-carboxylic-

acid with 623 annotations and SUMOylation with 334 annotations,

which were consistent with the results in Section 3.1 that CapsNet

learned better than other methods using small training samples. We

further investigated the reason why ModPred achieved the signifi-

cantly outstanding ROC and PR for S-palmitoylation-cysteine and

superior ROC for phosphorylation (Y). Because 99% (1509 out of

1524) testing sequences of S-palmitoylation-cysteine, 99% (4555

out of 4596) testing sequences of phosphorylation (Y) were created

in UniProt/Swiss-Prot before the year 2012 and ModPred used

UniProt/Swiss-Prot 2012 to train their models; hence, these testing

data had a significant chance in the training data of ModPred.

3.4 Interpretation of what was learned by capsules
We took the phosphorylation site prediction as an example to present

possible biological meanings of the capsules. For this purpose, the

annotations of kinase families collected from RegPhos (Lee et al.,

2011) were employed to the phosphorylation sites. Eighty-six kinase

families contained more than one sample in our dataset, of which 10

kinase families each contained more than 100 samples. Since only the

positive capsule in PTMCaps relates to phosphorylation peptides, only

the positive capsule in PTMCaps and its coupled primary capsules

were considered in the following experiments.

A widely adopted hypothesis for kinase recognition is that the

kinases in the same group or family recognize similar sequence pat-

terns of substrates for modification (Brinkworth et al., 2003;

Linding et al., 2007; Obenauer et al., 2003). In this phosphorylation

example, one intuitive assumption is that substrates catalyzed by the

kinases in the same family activate a specific group of capsules. The

dynamic routing of CapsNet provides an indication of this assump-

tion. The coupling coefficients ci, j calculated during dynamic rout-

ing can be viewed as probabilities of lower-level capsules (in

PrimaryCaps) that should be coupled to the higher-level capsules (in

PTMCaps) activated by the particular input peptide. By viewing the

patterns of the coupling coefficients, we can see the usage of capsu-

les by the inputs. We selected kinase families PKA, CK2, Src and

MAPK to represent kinase families from distinct kinase groups. We

fed all the peptides that had the annotation in one of these four kin-

ase families to the CapsNet and calculated the coupling coefficients

ci,j (i 2 [1, 360] and j¼1) between the lower-level capsules in

PrimaryCaps and the positive capsule in PTMCaps. In this way, we

obtained a 360D vector (the value of each element is from 0 to 1)

for a given input peptide. Figure 5 shows a heatmap presented by

clustering the coupling coefficients of the four kinase families, indi-

cating that substrates from the same kinase families automatically

tend to activate the same group of capsules. A further analysis of

some subgroups is shown in Supplementary Figure S4.

Next, to investigate the features learned by individual capsules in

PrimaryCaps, we generated sequence logos according to the capsu-

les’ responses to the input peptides. Specifically, we fed all the pepti-

des through all the capsules in PrimaryCaps (360 capsules in total),

and we aligned the peptides in responses to a particular positive cap-

sule in PTMCaps with a capsule length larger than 0.55 (slightly

above the 0.5 threshold that corresponds to the capsule in

PrimaryCaps equally coupled to the positive and negative capsules

in PTMCaps). Then we generated position frequency matrixes for

these aligned peptides and transformed them into sequence logos

(motifs) (Ou et al., 2018). Interestingly, some of the motifs con-

verted by the internal capsules are very similar to the ground truth

motifs of some kinase families that were constructed by aligning all

the peptides from the same kinase families. Three examples of these

similar motifs are shown in Figure 6. The P-values of these matches

were calculated by aligning the motifs learned by the internal capsu-

les to the constructed ground truth kinase family motifs through the

Table 2. Performances on benchmark datasets

PTM types Areas under the ROCa Areas under the PR

CapsNet MusiteDeep Musite ModPred CapsNet MusiteDeep Musite ModPred

Phosphorylation (S/T) 0.8470 6 0.003 0.8629 6 0.003 0.7983 6 0.010 0.7973 6 0.002 0.3437 6 0.010 0.3422 6 0.010 0.2155 6 0.011 0.2018 6 0.011

Phosphorylation (Y) 0.7171 6 0.011 0.7224 6 0.009 0.6942 6 0.013 0.7331 6 0.007 0.2620 6 0.017 0.2595 6 0.019 0.2195 6 0.019 0.2425 6 0.011

N-linked glycosylation (N) 0.9808 6 8.0e–4 0.9821 6 0.001 –– 0.7916 6 0.004 0.8382 6 0.009 0.8416 6 0.010 –– 0.2750 6 0.006

N6-acetyllysine (K) 0.7280 6 0.009 0.7266 6 0.006 –– 0.6757 6 0.008 0.1970 6 0.013 0.1939 6 0.009 –– 0.1456 6 0.008

Methyl-arginine (R) 0.9891 6 0.007 0.9874 6 0.006 –– 0.8004 6 0.018 0.9352 6 0.042 0.8564 6 0.047 –– 0.2150 6 0.055

S-palmitoylation-cysteine (C) 0.7806 6 0.022 0.7713 6 0.026 –– 0.8553 6 0.001 0.5003 6 0.070 0.4873 6 0.056 –– 0.5973 6 0.043

Pyrrolidone-carboxylic-acid (Q) 0.9256 6 0.042 0.9229 6 0.0386 –– 0.9113 6 0.037 0.8333 6 0.063 0.7772 6 0.064 –– 0.6470 6 0.076

SUMOylation (K) 0.8680 6 0.023 0.8675 6 0.025 –– 0.8227 6 0.015 0.5717 6 0.062 0.5146 6 0.058 –– 0.3001 6 0.047

aThe average and the SD of the areas under the ROC and PR were reported from 10-fold cross-validation. The bold font represents the best performance in the

highest value of the PTM type.
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TOMTOM algorithm (Gupta et al., 2007) and are 2.09e–42 for

PKA, 0.0 for CK2 and 6.52e–31 for CDK. It is worth mentioning

that the internal capsules were trained using the general phosphoryl-

ation site data only, without using any labels of kinase families.

From this experiment, we see that the internal capsules in the phos-

phorylation site prediction model may be used as kinase family

motif detectors.

To show that the PTMCaps capsule learns a more robust repre-

sentation for phosphorylation, we fed all the peptides that have kin-

ase family annotations to the CapsNet and projected the 10D vector

of the positive capsule in PTMCaps to a 2D plot (Fig. 7) by t-SNE

(Maaten and Hinton, 2008). As a comparison, the raw quantitative

coding representations and the merged representations [H’ in

Equation (1) of (Wang et al., 2017)] from MusiteDeep are also

shown. Figure 7 shows that representation of kinase substrates from

the same kinase family tend to group together for all the methods.

To quantitatively evaluate the discriminant power for these repre-

sentations, we calculated the between/within class scatter ratio (B/W

ratio) (Johnson and Wichern, 2002) from the representations in their

original dimension of each method and their t-SNE transformed 2D

representations. For all the kinase families, the B/W ratio was 0.06

(0.19 for 2D t-SNE) for the raw quantitative coding representations,

0.20 (0.27) for the MusiteDeep representations and 0.54 (0.63) for

the capsule representations. To make a clearer display, we also

regenerated these t-SNE representations for only four selected kinase

families (PKA, CK2, Src and MAPK) and abstained the correspond-

ing B/W ratios: 0.04 (0.21 for 2D t-SNE), 0.19 (0.28) and 0.78

(0.96) for each method, respectively. Strikingly, CapsNet generated

much better representations with stronger discriminant power in dis-

tinguishing kinase substrates from different kinase families than

other representation methods. This is remarkable given that no label

of kinase families except for the labels of general phosphorylation

was used to guide the training procedure. In addition, we calculated

the B/W ratios for the one-of-K coding representation, which is 0.05

(0.16) for all the kinases and 0.03 (0.14) for the selected kinases.

Compared with the one-of-K coding, the quantitative coding repre-

sentations are slightly better in terms of the discriminant power of

kinase families. Note that both MusiteDeep and CapsNet use the

quantitative coding method for input peptides to generate each high-

level representation in Figure 7. In Supplementary Figure S5, the

same representations were generated by feeding one-of-K coded pep-

tides to each model. The conclusion did not change, it just obtained

lower B/W ratios for both methods compared with coding in the

quantitative coding method, indicating that one-of-K coding is less

effective than the quantitative coding in this application.

4 Conclusions and discussion

CapsNet introduces a new building block to the deep-learning fam-

ily, which has presented advantages in modeling hierarchical rela-

tionships inside of internal representations beyond scalar neural

networks in image recognition. In this paper, we proposed a

CapsNet for protein PTM site prediction and presented some out-

standing properties of capsules in characterizing biologically mean-

ingful features. We used the same network architecture for several

PTM types, including phosphorylation, N-linked glycosylation, N6-

acetyllysine, methyl-arginine, S-palmitoyl-cysteine, pyrrolidone-car-

boxylic-acid and SUMOylation. The comparative results show that

the proposed CapsNet outperformed the previous deep-learning

method MusiteDeep and other well-known tools in most cases, and

it provides promising results for practical use, together with the esti-

mated confidence of the predicted label. Although it needs more

training time compared with traditional CNN, CapsNet has a simi-

lar prediction time, which only takes seconds for thousands of

samples.

To test the performance of the proposed CapsNet on small sam-

ple data, we compared it with two other deep-learning models con-

structed using traditional convolutional layers on a series of

experiments by gradually increasing protein-sequence training data

size. To reduce the over-fitting, all these methods applied very high

Fig. 5. Heatmap of the coupling coefficients for kinase. Rows are samples and

columns are the coupling coefficients calculated during dynamic routing. The

side colors of rows represent the kinase families. The rows and columns are

clustered by a hierarchical clustering method on the coupling coefficients

Fig. 6. Examples of motifs converted from capsules compared with the

ground truth motifs. The left sequence logos show the ground truth motifs

for kinase families PKA CK2 and CDK, which were generated by aligning all

the peptides with annotations of these kinase families. The right sequence

logos show the corresponding motifs converted from capsules 55, 2 and 83
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dropout ratios, e.g. 75%. From the results in 10-fold cross-

validation, we found that under such a high dropout ratio, the other

two deep-learning models may not converge in some trials; however,

this phenomenon rarely occurred in the CapsNet, indicating that

CapsNet is a hyper-parameter robust network. In these experiments,

CapsNet showed a better performance under the small training sam-

ple conditions and a comparable performance under the large train-

ing sample conditions against two other deep-learning models.

To explore the biological meanings of the capsules, we con-

ducted three experiments. In the first experiment, by displaying the

distribution of coupling coefficients for four selected kinase families

from distinct kinase groups, we showed that substrates catalyzed by

kinases in the same family would activate a specific combination of

internal capsules (Fig. 5). In the second experiment, we showed that

the internal capsules could be used as motif detectors (Fig. 6). This

procedure is similar to converting convolution kernels into motifs

through aligning the sequences that passed the ReLU activation

threshold used in DNA function predictions (Alipanahi et al., 2015;

Quang and Xie, 2016). The main difference in the method of

Alipanahi et al. (2015) or Quang and Xie (2016) is that they either

trained a multi-class model or single models with different labels, by

which they forced the convolution kernels to learn specific DNA

motifs. But in our case, the training procedure of capsules was total-

ly free from kinase labels. Our third experiment showed that the ‘in-

stantiation parameters’ for protein sequences generated from high-

level capsules were more robust and had stronger discriminatory

power in distinguishing kinase substrates from different kinase fami-

lies than other representations (Fig. 7). The first and second

experiments together showed how internal capsules were activated

according to specific types of substrates, i.e. how dynamic routing

worked on PTM prediction. The third experiment showed the con-

sequence of the first two experiments demonstrating the effective-

ness of the dynamic routing for PTM predication, which indicates

the resulting ‘instantiation parameters’ are well suited for protein

substrate representations. In contrast to image recognition, capsules

learned for protein phosphorylation can be used more than an atten-

tion mechanism and likely characterize more complex relationships

among amino acids at different sequence positions.

Taken together, CapsNet not only has an outstanding perform-

ance in small sample learning but also has a capacity in exploring in-

ternal data distribution related to biochemical significance. As a

new method in computer vision, CapsNet needs to be further

exploited in more deep-learning application domains and much

more work should be carried out to understand the characteristics of

CapsNet and make it to train more effectively. We believe that

CapsNet has a great potential in other biological sequence analysis

and prediction problems. With its attention capacity, CapsNet is a

valuable tool for biologists to gain a better understanding of under-

lying biological processes, as shown as the example of the phosphor-

ylation site prediction through the in-depth study of internal

capsules.
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