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Abstract

Motivation: Short-read accuracy is important for downstream analyses such as genome assembly

and hybrid long-read correction. Despite much work on short-read correction, present-day correc-

tors either do not scale well on large datasets or consider reads as mere suites of k-mers, without

taking into account their full-length sequence information.

Results: We propose a new method to correct short reads using de Bruijn graphs and implement it

as a tool called Bcool. As a first step, Bcool constructs a compacted de Bruijn graph from the reads.

This graph is filtered on the basis of k-mer abundance then of unitig abundance, thereby removing

most sequencing errors. The cleaned graph is then used as a reference on which the reads are

mapped to correct them. We show that this approach yields more accurate reads than k-mer-spec-

trum correctors while being scalable to human-size genomic datasets and beyond.

Availability and implementation: The implementation is open source, available at http://github.

com/Malfoy/BCOOL under the Affero GPL license and as a Bioconda package.

Contact: antoine.limasset@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Why correct reads?
Genome sequencing is a fast-changing field. Two decades have

seen three generations of sequencing technologies: Sanger electro-

pherograms (a.k.a. first-generation sequencing), short reads from

second-generation sequencing (SGS) and long, error-prone reads

from third-generation sequencing (TGS). Albeit powerful, these

technologies all come with stochastic errors, and for some, non-

stochastic ones. Stochastic errors are usually corrected using a con-

sensus approach leveraging the high coverage depth available in

most genome projects, whereas non-stochastic errors can be elimi-

nated by ‘polishing’ the sequences, generally post-assembly, using

reads obtained from a different sequencing technique and/or sophis-

ticated error models (Loman et al., 2015).

Most de novo assemblers following the overlap–layout–consen-

sus (OLC) paradigm handle the stochastic errors present in the reads

during the consensus step toward the end of the assembly process. In

contrast, tools following the de Bruijn graph (DBG) paradigm gener-

ally attempt to filter out erroneous k-mers by considering only k-

mers present at least a minimal number of times in the reads to be

assembled. Both paradigms may benefit from a preliminary error-

correction step. In the case of DBG assemblers, lowering the error

rate in the reads to be assembled makes it possible to use a larger k-

mer size, paving the way for a more contiguous assembly. With

OLC assemblers, a lower error rate allows more stringent alignment

parameters to be used, thereby improving the speed of the process

and reducing the amount of spurious overlaps detected between

reads.
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Beyond de novo assembly, other applications that require map-

ping, such as SNP calling, genotyping or taxonomic assignation, may

also benefit from a preliminary error-correction step aimed at increas-

ing the signal/noise ratio and/or reducing the computational cost of

detecting errors a posteriori (DePristo et al., 2011; Li et al., 2009).

1.2 On the use of short reads as long reads are rising
Although long-read technologies from TGS, marketed by Pacific

Biosciences (PacBio) and Oxford Nanopore Technologies (ONT),

are on the rise for many purposes such as genome assembly [as TGS

reads are order of magnitude longer and TGS assemblers are there-

fore less sensitive to repeats (Nagarajan and Pop, 2009)], there are

reasons to think that SGS will still be broadly used in the next dec-

ade. This is because SGS reads remain considerably cheaper and

their accurate sequences make them highly valuable when haplo-

types or highly similar paralogs are to be distinguished. Besides, re-

cent methods are able to deliver long-distance information based

on short-read sequencing. Chromosome conformation capture

(Dekker et al., 2002; Flot et al., 2015) provides pairs of reads that

have a high probability of originating from the same chromosome,

whereas Chromium 10� (Kitzman, 2016) uses a droplet mechan-

ism to ensure that a pack of reads comes from a single DNA frag-

ment of up to hundreds of thousands base pairs. Both of these

techniques have been shown to produce assembly continuity com-

parable to TGS assemblies (Marie-Nelly et al., 2014; Schwager

et al., 2017; Yeo et al., 2017). SGS reads are also used jointly with

long reads to compensate the latter’s high error rate [and systematic

homopolymer errors in the case of ONT reads (Jain et al., 2016)] in

a cost-efficient way (Wick et al., 2017). These different applications

make it worth investing effort in improving short-read correctors

beyond the current state of the art, in the hope that near-perfect

reads will positively impact all downstream analyses that require

accurate sequences.

1.3 k-mer-spectrum techniques
k-mer-spectrum techniques are conceptually the simplest correction

method and remain broadly used. The underlying intuition is that

true genomic k-mers will be seen many times in the read set, whereas

erroneous k-mers originating from sequencing errors will be com-

paratively much rarer. The first step to correct reads using this ap-

proach is therefore to choose an abundance threshold [above which

k-mers are called ‘solid’ and below which they are called ‘weak’

(Pevzner et al., 2001)]. k-mer-spectrum correctors aim to detect all

weak k-mers in the reads and correct them by turning them into

solid ones.

One of the best k-mer-spectrum correctors available to date

(Akogwu et al., 2016) is Musket (Liu et al., 2013); however, its

memory consumption is high on large genomes because of its

indexing structure. Another tool, Bloocoo (Benoit et al., 2014),

achieves a comparatively lower memory footprint, even on

genomes comprising billions of bases (such as the human one),

by using a Bloom filter to index k-mers. Lighter (Song et al.,

2014) also uses Bloom filters but bypasses the k-mer-counting

phase by only looking at a subset of the k-mers in a given dataset,

therefore achieving greater speed. One problem with these tools

is that they rely on local k-mer composition with a bounded k-

mer size (<¼ 32), which limits correction power on complex

datasets. A less ‘local’ approach is implemented in the BFC (Li,

2015) corrector, which attempts to correct each read as a whole

by finding the minimal number of substitutions required for a

read to be entirely covered by solid k-mers.

1.4 Other read correction techniques
Other correction techniques rely either on suffix arrays [allowing the

use of substrings of various sizes instead of only fixed k-length words

(Schröder et al., 2009)] or on multiple-read alignments (Salmela and

Schröder, 2011). Despite their methodological appeal, these techni-

ques are resource-expensive and do not scale well on large datasets.

Moreover, benchmarks suggest that they perform significantly worse

than state-of-the-art k-mer-spectrum correctors (Yang et al., 2013).

Another approach for correcting reads, pioneered by LoRDEC

(Salmela and Rivals, 2014) then by LoRMA (Salmela et al., 2017), is

to use DBGs instead of strings as a basis for correction. In the

LoRDEC approach, this DBG is built from highly accurate short reads

and used to correct long reads. In LoRMA, the DBG is built from the

very same long reads that the program is attempting to correct. Both

of these tools are geared toward correcting long reads, but another

program, Rcorrector (Song and Florea, 2015), uses abundance-

annotated DBGs to correct Illumina reads with a focus on RNA-seq

data. Still, these three DBG-based approaches use comparatively small

k-mer sizes (by default 19 for LoRDEC and for Rcorrector), making

them likely to confound errors in repeated regions.

Here, we implement a DBG-based corrector that uses large

k-mer sizes (up to the length of the reads). We then show that this

corrector, dubbed Bcool, vastly outperforms state-of-the-art k-mer-

spectrum correctors and existing DBG-based approaches while

being both scalable and resource-efficient.

2 Materials and methods

The intuition behind k-mer-spectrum correction is that k-mers, once

filtered according to their abundance, represent a reference that can

be used to correct reads. The idea that a DBG provides a better refer-

ence than a k-mer set might be surprising at first glance since a DBG

is equivalent to its set of k-mers. However, a novelty of our ap-

proach is that we build a compacted DBG, that is, a DBG in which

non-branching paths are turned into unitigs. We are therefore able

to remove erroneous k-mers by relying on the topology of the graph

rather than on their abundance alone. This results in a better distinc-

tion between erroneous and genomic k-mers. The second novelty is to

perform whole-read alignments on this cleaned graph, thereby achiev-

ing a global correction of each read and allowing the use of high k-

mer sizes for improved correction of repetitive and/or large genomes.

After briefly reviewing several limitations of k-mer-spectrum

correction (Section 2.1), we describe the key parts of our workflow

while detailing how our proposed approach tackles these issues

(Section 2.2).

2.1 k-mer-spectrum limitations
In this section we identify four sources of miscorrection in k-mer-

spectrum approaches, as represented in Figure 1. As mentioned pre-

viously, k-mer-spectrum correctors infer a set of solid k-mers

that are used to correct reads. Erroneous k-mers (i.e. k-mers contain-

ing at least one sequencing error) can be filtered out by keeping only

k-mers above a given abundance threshold, called the solidity

threshold. As mentioned earlier, k-mers with an abundance higher

than or equal to this threshold are called ‘solid’, whereas k-mers that

are less abundant are called ‘weak’.

2.1.1 Weak genomic k-mers

Depending on the solidity threshold chosen, random variations in

sequencing depth may cause some genomic k-mers to fall below the

threshold and be erroneously filtered out. This kind of k-mer creates
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a situation such as the one represented in Figure 1.1, where an iso-

lated weak k-mer is flagged as a putative error on a read that is actu-

ally correct. Since at least k successive weak k-mers are expected to

be seen when there is a sequencing error, k-mer-spectrum-based cor-

rectors normally consider isolated weak k-mers as likely to be simply

missed genomic k-mers and do not attempt to correct them.

2.1.2 Solid erroneous k-mers

Conversely, setting the solidity threshold too low may lead to the in-

clusion of some erroneous k-mers in the trusted set of solid k-mers

(Fig. 1.2). As a result, the errors in the reads harboring such k-mers

are not corrected and may also propagate to other reads if these

k-mers are used for correction.

2.1.3 Errors covered by solid k-mers

If a sequencing error in a read is covered partly or entirely by gen-

omic k-mers originating from other regions of the genome, the error

may not be detected and it may be difficult to correct it as the

remaining isolated weak k-mers will be hard to distinguish from the

pattern in point 1 above. Such situations are likely to occur in

repeated or quasi-repeated genome regions, leading to complex sit-

uations where genomic sequences may have several contexts.

2.1.4 Nearby errors

Accurate correction is also complex when multiple errors occur

nearby each other (i.e. less than k bases apart). In such situations,

the number of errors and their positions cannot be easily estimated,

and k-mer-spectrum correctors have to perform a very large number

of queries to correct them. Musket uses an aggressive greedy heuris-

tic that tries to replace the first weak k-mer encountered by a solid

one then checks whether the next k-mers became solid as a result.

But, as shown in Figure 1.4, this heuristic is inefficient if the k-mers

that follow contain other sequencing errors.

2.1.5 k-mer size

All the issues highlighted above boil down to a central problem

when using k-mer-spectrum correctors: the size of k. If a too large

k-mer size is used, most k-mers contain at least one sequencing error

and many of them actually contain several errors. In those cases,

k-mer-spectrum correctors may be unable to locate errors and to

perform correction as they rely on genomic k-mers to find possible

candidates to replace weak ones. On the contrary, if k is too

small, most k-mers are solid and almost no correction is performed.

As k-mer-spectrum correctors are usually geared toward correcting

SGS reads, they use a k-mer size around 31 that is well suited for

the error rate of Illumina data. Choosing a larger k results in sub-

optimal correction or even in a failure of the program to run (see

Supplementary Materials). This limitation may be a problem when

addressing large and repeat-rich genomes, as a large number of

k-mers are repeated in various contexts throughout the genomes and

large k-values are required to distinguish them.

2.2 DBG-based read correction
In this section, we describe our proposal, called Bcool (which stands

for ‘de Bruijn graph-based read correction by alignment’). The basic

idea is to construct a DBG from the read set, to clean it, and then to

map the reads on the DBG. Reads that map with less than a threshold

number of mismatches are corrected using the graph sequence, which

is supposed to be almost error-free. An important feature of Bcool is

that the graph is constructed by filtering out low-coverage k-mers and

additionally by discarding unitigs according to topological informa-

tion (see Section 2.2.2), yielding an almost perfect reference graph.

We present in Figure 1 some simple examples illustrating how

our DBG-based read correction handles the problems listed above.

Our proposal differs from k-mer-spectrum techniques in that our ref-

erence is a cleaned compacted DBG (Chikhi et al., 2015) instead of a

set of k-mers, and that we map the reads onto the graph instead of

looking at all k-mers contained in the reads. With high-coverage data

(typically above 50� coverage depth), our approach also allows the

use of large k-mer sizes up to read length, thereby improving the cor-

rection of reads originating from complex, repeated genome regions.

Bcool’s workflow is depicted in Figure 2. Each of its components

is either an independent tool already published or an independent

Fig. 1. Four issues with k-mer-spectrum methods, and how Bcool handles them (blue half-arrows represent the paths of the graph on which given reads map). (1)

Genomic k-mers may be appear weak because of their low abundance: by using a very low k-mer abundance threshold coupled with a unitig abundance threshold,

Bcool retains low-abundance k-mers and manages to correct the reads that contain them. (2) Erroneous k-mers may appear solid because of their high abundance:

Bcool detects the tip pattern produced by such solid erroneous k-mers and is therefore able to discard them (other erroneous k-mers are detected at the unitig filter-

ing step). (3) Sequencing errors may be validated by genomic k-mers originating from other parts of the genome: by considering mappings globally, Bcool chooses

the best path for each read, i.e. the one on which it maps with the smallest number of mismatches. (4) Multiple errors may occur on a k-mer, resulting in a large

weak region: by using unitigs instead of k-mers to correct reads, Bwise is able to correct properly reads that contain several nearby errors
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module that could be reused in other frameworks. We describe

below the different key steps of the workflow.

2.2.1 k-mer size selection

We aim to use the highest possible k-value to resolve as many

repeats as possible (up to k length), thereby improving the correction

as shown in Figure 3. However, choosing a k-value too large would

yield a fragmented graph. Therefore, we implemented an automated

tool, somewhat similar to k-merGenie (Chikhi and Medvedev,

2014), that uses ntCard to estimate the k-mer spectrum of the data-

set for several values of k. Our approach detects the first local min-

imum for each k-mer spectrum then selects the highest k-value for

which this minimum is above the unitig threshold. This way, we ex-

pect to keep most genomic k-mers that are more abundant than the

unitig threshold. This approach is more conservative and simpler

than the one implemented in k-merGenie, which attempts to fit the

k-mer spectrum on a haploid or diploid model with the aim of find-

ing the k-value most suitable for assembling the reads.

2.2.2 DBG construction and cleaning

In Bcool, the DBG is constructed using Bcalm2 (Chikhi et al., 2016),

a resource-efficient method to build a compacted DBG. In a com-

pacted DBG, nodes are not composed of single k-mers but of

unitigs (i.e. maximal simple paths of the DBG) of lengths larger than

or equal to k.

A novelty of this work, made possible by the compacted graph

representation, is the way we clean up the reference DBG before

using it to correct reads. In this context we propose and use the no-

tion of unitig abundance, defined as the mean abundance of all the

constituent k-mers of a given unitig.

The DBG is initially constructed with a very low abundance

threshold (by default 2, i.e. k-mers that occur only once are consid-

ered as probable errors and discarded). This very low threshold

value decreases the probability of missing genomic k-mers, but as a

consequence, many erroneous k-mers are not filtered out. A first

step to deal with those is to remove short dead-ends (a.k.a. ‘tips’)

from the graph. Formally, we define a tip as a unitig of length infer-

ior to 2 � ðk� 1Þ that has no successor at one of its extremities. Such

dead-ends mainly result from sequencing errors occurring on the

first or last k nucleotides of a read.

By contrast, errors located at least k nucleotides away from the

start or the end of a read form bubble-like patterns: in a second step,

we tackle these remaining erroneous k-mers by taking a look at uni-

tig abundance. We choose a unitig abundance threshold (higher

than the k-mer abundance threshold used previously) and when a

unitig has an abundance lower than this threshold, we discard it

completely. Intuitively, averaging the abundance across each unitig

makes it possible to ‘rescue’ genomic k-mers with low abundance

(that tend to be lost by k-mer-spectrum techniques, see Fig. 1.1) by

detecting that they belong to high-abundance unitigs, and these gen-

omic k-mers can then be used for correction. Conversely, erroneous

k-mers are likely to belong to low-abundance unitigs that are filtered

out. This unitig abundance threshold can be user-specified or can be

selected automatically by looking at the unitig abundance distribu-

tion and choosing the first local minimum.

These two cleaning steps are applied several times in an iterative

manner to handle complex scenarios where error patterns are

nested. This strategy allows us to address the issues depicted in

Figures 1.1 and 2. This DBG-cleaning strategy is implemented

in a tool named Btrim (https://github.com/Malfoy/BTRIM).

Compared with a strategy based only on k-mer abundance, our ap-

proach keeps more low-abundance genomic k-mers while removing

more erroneous k-mers. As shown in Figure 4, the filtering strategy

used by Bcool produces a graph with less erroneous (false positive)

k-mers and less missed genomic (false negative) k-mers than the sole

k-mer-abundance threshold used by k-mer-spectrum correctors,

resulting in a better set of k-mers. Detailed evaluation of the tipping

and unitig-filtering strategies is provided in the Supplementary

Materials.

2.2.3 Read mapping

In contrast to k-mer-spectrum-based techniques, Bcool uses an expli-

cit representation of the DBG. Although in its current implementa-

tion this entails a higher memory usage and computational cost than

k-mer-spectrum correctors, doing so provides an efficient way to fix

the issues depicted in Figures 1.3 and 4. Each read is aligned in full

length on the graph, and the correction is made on the basis of the

most parsimonious path on which the read maps in the graph.

For mapping reads on the DBG, we use an improved, yet unpub-

lished, version of Bgreat (Limasset et al., 2016) called ‘Bgreat2’

(https://github.com/Malfoy/BGREAT2). The description of this

method is out of the scope of this paper but we provide here the

main characteristics of the new implementation. The main improve-

ments are that Bgreat2 has no third-party dependencies (in contrary

to the published version) and that it outputs the optimal alignment

of each read (instead of returning its first valid alignment). The

alignment procedure uses a classical seed-and-extend process.

To achieve good mapping performances and to avoid overcorrection

of poorly mapped reads, we limit the amount of mismatches allowed

according to a parameter (10 by default). Using the graph, the exten-

sion phase maps a read on several potential paths, and among all

valid alignments, only those minimizing the number of mismatches

are considered, using a ‘best-first’ approach similar to the BFC

search. If several different optimal alignments exist, by default the

read is not mapped. This choice can optionally be modified to out-

put one of the optimal mappings.

We highlight the fact that knowing the graph structure from the

unitig set allows efficient graph exploration. Graph traversal based

on a k-mer set would require to query the existence of all possible

Fig. 2. Bcool workflow. The white boxes are FASTA files and the grey boxes

represent the tools that process or generate them. ntCard (Mohamadi et al.,

2017) is used to select the best-suited k-mer size. A compacted DBG is then

constructed using Bcalm2 (Chikhi et al., 2016). The Btrim module cleans the

graph, and the reads are finally mapped back on the DBG using Bgreat2

Fig. 3. Using a large k-mer size simplifies the graph by lowering the amount

of unsolved repeats. In this example a repeat of size 10 is present in the gen-

ome in different contexts. With k ¼ 5, we are not able to correct the penulti-

mate nucleotide of the read represented by an arrow. But with k ¼ 13 we

have determined the context of the repeat and know that only two possible

paths exist. This way we are able to safely correct the read
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successors of every k-mer, whereas our proposal needs only to query

the index when the end of an unitig is reached. To keep a low mem-

ory usage, Bgreat2 uses a minimal perfect hash function (Limasset

et al., 2017) for indexing seeds. Moreover, it is possible to sub-

sample seeds for indexation. For instance, by indexing only one out

of five seeds, we were able to run Bgreat2 on a human dataset using

around 20 GB of RAM at the price of only a slight decrease in cor-

rection efficiency (see Table 1).

3 Results

We present results based on simulated datasets as well as on real

ones. Simulations make it possible to precisely evaluate correction

metrics (Section 3.2) and to assess their impact on downstream as-

sembly (Section 3.3). Correction evaluation was performed using

simulated reads from several reference genomes: Caenorhabditis ele-

gans, the human chromosome 1, and the whole human genome. In

contrast, the results presented in Section 3.4 aim to validate our ap-

proach using real data. All experiments were performed on a cluster

node with a Xeon E5 2.8 GHz 24-core CPU, 256 GB of memory

and a mechanical hard drive.

In what follows, false negatives (FN) stand for non-corrected

errors, whereas false positives (FP) are erroneous corrections and true

positives (TP) are errors that were correctly corrected. The correction

ratio is defined as ¼ ðTPþ FNÞ=ðFNþ FPÞ; it is the ratio of the num-

ber of errors prior to correction (TP þ FN) versus after correction (FN

þ FP). The higher the correction ratio, the more efficient the tool.

We compared the results obtained using Bcool with several state-

of-the-art short-read correctors: Bloocoo (Benoit et al., 2014),

Musket (Liu et al., 2013), BFC (Li, 2015) and Lighter (Song et al.,

2014). We also tested LoRDEC and Rcorrector (since these correc-

tors rest on a principle similar to Bcool) but they performed rather

poorly on our datasets. In the case of LoRDEC the correction ratio

obtained was below 10, which may have been expected since this

program was designed with long reads in mind and had never been

tested on Illumina reads before. In the case of Rcorrector, we could

only run it on our C.elegans dataset and the correction ratio

obtained was about 10. This poor scalability can be explained by

the memory-expensive data structure used by this corrector geared

toward RNA-seq data, whereas the low correction ratio probably

results from its conservative stance toward low-coverage k-mers.

3.1 Performance benchmark
Before presenting qualitative results, we first compare the perform-

ance of the correctors included in our benchmark. We evaluated the

resources used by the different correctors on datasets simulated

from the C.elegans and human genomes. We present here the mem-

ory used, the wall-clock time and the CPU time reported by the Unix

time command. Our results, presented in Table 1, show that that

Bcool has a higher RAM footprint and is slower than the other tools

we tested, except Musket. This is due to Bcool’s explicit graph repre-

sentation and its indexation scheme. However, Bcool scales well

with genome size, as shown in Table 1. Moreover, it is possible to

reduce the memory footprint by sub-sampling during indexation the

seeds used for read mapping. This results in a greatly reduced mem-

ory footprint at the price of a slight decrease in correction perform-

ance. In the human experiment, graph creation took about 8h30 and

read mapping took about 3h30. As discussed below, there is clearly

room for performance improvements both during the graph-con-

struction phase and the read-mapping phase.

3.2 Correction ratios on simulated datasets
Our results on simulated haploid data are presented in Figure 5. They

show that Bcool obtained a correction ratio an order of magnitude

above the other tested tools. Note that as shown in Supplementary

Materials we tested several other conditions (longer reads, lower cover-

age, lower error rate), all leading to the same conclusion. In each of our

experiments, Bcool had a better correction ratio together with a better

precision and recall. The correction precision is critical, as a corrector

should not introduce new errors. Our experiments showed a good preci-

sion for all the tools we tested (even on a human genome), with a net

advantage for Bcool though. For instance, our human-genome experi-

ment with 100� coverage of 150-bp reads yielded a precision of

95.33% for Bloocoo, 96.74% for Lighter and 99.61% for Bcool.

3.2.1 Diploid correction

To assess the impact of heterozygosity, we tested these correctors on

simulated human diploid genomes. To obtain a realistic distribution

of SNPs and genotypes, we used SNPs predicted from real human

individuals and included them in the reference genome. Our results

show that, on these datasets, the result quality of all tested correc-

tors remains almost identical to those obtained on haploid simula-

tions. The details and results of this experiment are presented in the

Supplementary Material.

3.3 Impact of the correction on assembly
To evaluate the impact of the correction on assembly, we ran the

Minia assembler (Chikhi and Rizk, 2013) on uncorrected reads and

on read sets corrected with each of the correctors included in our

benchmark. For each assembly, we tested several k-values (the main

parameter of Minia) from k ¼ 21 to k ¼ 141 with a step of 10. For

each corrector, only the best result is presented here. These results,

presented in Figure 6, show that the N50 assembly metric is better on

data corrected by Bcool. This can be explained by the fact that with a

better read correction, a higher k-value can be selected, leading to a

more contiguous assembly. As an example, for the C.elegans genome

with 250-bp reads the best k-mer size was 91 for the raw reads, 131

Fig. 4. Impact of the solidity threshold on k-mer correction according to the

strategy used. The vertical axis shows the number of errors (in a log scale).

Errors are either erroneous k-mers that are retained in the k-mer set (false

positives FP, represented with circles) or genomic k-mers that are discarded

(false negatives FN, represented with squares). In this experiment, we used k

¼ 63 on a 50� coverage of 150-bp reads simulated from the C.elegans refer-

ence genome. The errors produced by Bcool are represented with full lines

while those produced by k-mer-spectrum correctors are represented with

dashed lines. For k-mer-spectrum techniques, the solidity threshold applies

to k-mers, whereas for Bcool it applies to the unitigs constructed from non-

unique k-mers. We observe that the proposed graph-cleaning operations are

able to retain more genomic k-mers and remove more erroneous k-mers than

the raw k-mers abundance threshold
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for reads corrected using Lighter or Musket, 141 for reads corrected

using Bloocoo and 171 for reads corrected using Bcool.

3.4 Real datasets
In this section, we evaluate the impact of the correction on assembly

continuity using several real datasets: a C.elegans Illumina HiSeq

2500 run with 79.8 million reads of length 150 bp amounting to 12

Gb (DRR050374) (�120� coverage); and a Arabidopsis thaliana

Illumina MiSeq run with 33.6 million reads of length 250 bp amount-

ing to 8.4 Gb (ERR2173372) (�60� coverage). For this benchmark

we used the string graph assembler fermi (Li, 2012) given its efficiency

and robustness. Assembly reports provided by Quast (Gurevich et al.,

2013) are presented in Tables 2 and 3 using contigs larger than 1000

nucleotides. We see that on both datasets Bcool obtains the most con-

tiguous assembly in terms of N50 as well as N75 statistics.

4 Perspective

4.1 Perspectives regarding short reads
We have shown how to construct and clean a reference graph that can

be used to efficiently correct sequencing errors. This approach is not

to be compared with multiple-k assembly as here we only apply a

conservative correction to the graph without trying to remove variants

nor to apply heuristics to improve the graph continuity: only k-mers

that are very likely to be erroneous are removed in this process. Such

conservative modifications on an intermediate graph used as a refer-

ence appears a promising approach to better exploit the high accuracy

of short reads. The use of a high k-mer size is critical to address the

correction problem on large, repeat-rich genomes, and the impossibil-

ity for k-mer-spectrum correctors to use a large k-mer size is a major

limitations of such approaches. By contrast, our DBG-based solution

uses a large k-mer size and therefore yields a more efficient correction

on large, repeat-rich genomes. The resulting error-corrected reads are

nearly perfect and can be assembled using an overlap-graph algorithm

or may be used for other applications, such as variant calling.

Several propositions can be made to further improve Bcool. The

read-mapping step could make use of the quality values available in

FASTQ files or provide other types of correction, such as read trim-

ming. Adding the capacity to detect and correct indels during the map-

ping step could allow Bcool to correct other types of sequencing data,

such as Ion torrent or PacBio CCS reads. The performance of the pipe-

line could also be globally improved. The DBG construction could im-

plement techniques similar to the sub-sampling used by Lighter to

reduce its disk usage and therefore improve its running time. Besides,

our mapping method is still naive, and implementing efficient heuris-

tics such as the ones used by BWA (Li and Durbin, 2009) and

Bowtie2 (Langmead and Salzberg, 2012) could greatly improve the

throughput of Bcool without decreasing the quality of the alignment.

The mapping step could also take into account the read-pairing infor-

mation to provide more precise alignments. From a more theoretical

viewpoint, a study of whether using successively multiple k-mer sizes

provides an even better correction (albeit at the price of a longer run-

ning time) would be an interesting perspective. Last but not least, an-

other possible development could look into applications to datasets

with highly heterogeneous coverage, as observed in single-cell, tran-

scriptome or metagenome sequencing data.

4.2 Perspectives regarding long reads
Surprisingly, the idea of aligning reads on a DBG was applied to

long, noisy reads before short, accurate ones. The efficiency of

LoRDEC (Salmela and Rivals, 2014) and Bcool, respectively on

long and short reads, suggests that such DBG-based correction is a

general approach that can be applied to various kinds of datasets.

Short reads can also be used in conjunction with long reads, as for

correcting systematic errors such as ONT homopolymers (Jain et al.,

2016).

Table 1. Performance comparison on C.elegans and human simulated 250-bp reads with 1% error rate and 100� coverage using 20 cores

Corrector RAM used (GB) Wall-clock time (h:min) CPU time (h:min) Correction ratio

C.elegans

Bloocoo 5.462 0:07 2:02 30.28

Lighter 0.627 0:06 1:40 31.16

Musket 24.755 0:56 16:44 90.33

BFC 8.390 0:13 4:29 14.58

Bcool 12.449 0:21 4:25 183.53

Human

Bloocoo 10.500 9:31 90:10 6.79

Lighter 14.121 4:22 60:06 5.65

Bcool 48.081 11:41 129:39 23.84

Bcool -i 5 19.724 15:56 194:41 22.621

Note: Bcool was run with a fixed k-mer size, k ¼ 63. Bcool -i 5 indexed only one out of every five seeds to reduce memory usage. BFC and Musket were not

able to correct the full human datasets. The best results among correctors are in bold.
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Fig. 5. Correction ratios (top) and percentage of erroneous reads after correc-

tion (bottom) for different correctors on our three simulated haploid datasets.

We simulated 100� of 150-bp reads with a 1% error rate. BFC and Musket ran

out of memory on all full human datasets
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Using nearly perfect short reads as those corrected by Bcool may

improve long-read correction. To test this, we simulated both short

and long reads from the C.elegans reference genome and compared

the amount of errors still present in the long reads after LoRDEC

hybrid correction by mapping them on the reference using BWA.

A coverage of 100� of short reads of 150 bp were simulated along

with long reads with a 12% error rate using PBSIM (Ono et al.,

2013). Applying LoRDEC using non-corrected short reads lead to a

3.04% error rate on corrected long reads. When the short reads

were first corrected using Bcool, the error rate on the corrected long

reads fell to 2.33% (a 30.5% improvement). Additional work will

be required to explore this idea further.

Last but not least, in the current context of decreasing error rates

for long reads, we may soon reach a point at which k-mer or DBG-

based techniques will manage to perform efficient de novo

reference-based correction using long reads alone. LORMA

(Salmela et al., 2017) is a first such attempt at using DBG created

from long reads to perform pure correction in an iterative manner.

This suggests that DBGs still have a bright future in bioinformatics.
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