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Abstract 
Summary: Mobile element insertion (MEI) is a major category of structure variations (SVs). The rapid 

development of long read sequencing provides the opportunity to sensitively discover MEIs. However, 

the signals of MEIs implied by noisy long reads are highly complex, due to the repetitiveness of mobile 

elements as well as the serious sequencing errors. Herein, we propose Realignment-based Mobile 

Element insertion detection Tool for Long read (rMETL). rMETL takes advantage of its novel chimeric 

read re-alignment approach to well handle complex MEI signals. Benchmarking results on simulated 

and real datasets demonstrated that rMETL has the ability to more sensitivity discover MEIs as well as 

prevent false positives. It is suited to produce high quality MEI callsets in many genomics studies. 

Availability and Implementation: rMETL is available from https://github.com/hitbc/rMETL. 
Contact: ydwang@hit.edu.cn 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

Mobile element insertion (MEI) represents about 25% of structure varia-

tions (SVs) in human genome, which are principally contributed by active 

mobile elements, such as Alu, L1 and SVA families (Stewart et al., 2011). 

Efforts have been made to detect MEIs with short reads (Gardner et al., 

2017), however, short read-based approaches could have limitations when 

dealing with highly repetitive mobile elements. 

Long reads have demonstrated their better ability to handle repeats and 

discover SVs (Sedlazeck et al, 2018a). However, with both of the repeti-

tiveness of mobile elements and serious sequencing errors, the signals of 

MEI implied by long reads are highly complex (a detailed discussion is in 

Supplementary Notes). State-of-the-art long read-based SV detection ap-

proaches (Sedlazeck et al, 2018b) use unified approaches to detect various 

kinds of SVs. This “one-fits-all” strategy may be not able to fully consider 

the characteristics of MEI to well handle the complex signals.  

Herein, we propose Realignment-based Mobile Element insertion de-

tection Tool for Long read (rMETL). rMETL takes advantage of its spe-

cifically designed chimeric read re-alignment approach to well handle the 

complex MEI signals to sensitively discover MEIs as well as prevent false 

positives. Benchmarking results demonstrate that rMETL can produce 

high quality callsets to improve long read-based MEI calling. 

2 Methods 

rMETL supports the reads produced by mainstream platforms such as Pa-

cific Biosciences (PacBio) and Oxford Nanopore Technology platforms. 

Using sorted BAM files as input, rMETL extracts and re-aligns chimeri-

cally aligned long reads to discover MEIs in four steps as following (sche-

matic illustrations are in Supplementary Figs.1 and 2). 

1) rMETL extracts chimeric reads (reads having split alignment, large 

clippings or large indels) from input files (Supplementary Fig. 2); 

2) rMETL clusters the chimerically aligned read parts with a set of spe-

cifically designed rules, to infer a set of infers putative MEI sites; 

3) rMETL realigns the clustered read parts to the consensus sequences 

of Alu, L1 and SVA families with a well-tuned read alignment approach; 

4) rMETL investigates the realignment results to find out the evidences 

to call MEIs as well as filter false positive candidates.  

Refer to Supplementary Notes for more detailed information. 
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3 Results 

We implemented rMETL on simulated and real datasets to assess its abil-

ity of MEI calling. A state-of-the-art long read-based SV calling approach, 

Sniffles (Sedlazeck et al, 2018b), is employed for comparison. The details 

of the implementation of the benchmarking is in Supplementary Notes.  

Four PacBio-like simulated datasets (mean read length: 8000 bp) in var-

ious sequencing depths (5X, 10X, 20X and 50X, respectively) are gener-

ated with an in silico donor human genome having 20,000 MEIs to make 

a baseline assessment. Both of rMETL and Sniffles achieved improving 

sensitivities with the increase of depths (Table 1 and Supplementary Table 

1), moreover, the sensitivity of rMETL is higher especially for the lower 

depth datasets (5X and 10X), where outperforms Sniffles 10-20%. More-

over, both of rMETL and Sniffles have few false positives.  

To further access the accuracy of rMETL, we generated another 50X 

PacBio-like simulated dataset from an in silico donor human genome hav-

ing 20,000 insertions which none of the inserted sequences are mobile el-

ements, but their lengths are similar to that of Alu, SVA or L1. On this 

dataset, rMETL make 366 calls, i.e., only 1.8% of the 20,000 events are 

false positively recognized as MEIs, suggesting that rMETL have good 

ability to prevent false positives.  

There are still a few cases that rMETL cannot work well, mainly due to 

abnormal read coverages and serious sequencing errors. A discussion is in 

Supplementary Notes. 

We further assess rMETL with a 55X PacBio dataset (Zook et al., 2014) 

and a 28X ONT dataset (Jain et al., 2018) from the well-studied CEPH 

sample NA12878. Due to lack of grand truth, four high quality short read-

based MEI callsets (Gardner et al., 2017; Lee et al., 2012; Thung et 

al.,2014 and Wu et al., 2014) are used as pseudo grand truth callsets.  

rMETL respectively called 6022 and 5439 MEIs on the PacBio and 

ONT datasets (Supplementary Table 2). It is observed from Venn dia-

grams (Fig.1 and Supplementary Fig.3) that, the callsets of rMETL can 

cover most of the MEIs which are supported by at least two short read-

based callsets. Considering that the calls supported by two or more inde-

pendent approaches have relatively high confidence to be true positive 

MEIs, this result suggest that rMETL may have high sensitivities. Moreo-

ver, it is also worthnoting that the callsets of rMETL covered most of 

MEIs in the 1000 Genomes Project callset (Sudmant et al., 2015). 

Sniffles respectively called 27772 and 63925 INS/DELs for the PacBio 

and ONT datasets. The high numbers of calls are also reasonable since 

Sniffles calls not only MEIs, but also other kinds of large insertions and 

deletions. However, for both of the two datasets, the corresponding call-

sets of Sniffles covered about 5%-6% less MEIs which have at least two 

short read-based callset supports than that of rMETL (Fig.1, Supplemen-

tary Fig.3 and Supplementary Table 2), indicating that the sensitivity of 

Sniffles could be lower. This is mainly due to that, with the generic design, 

Sniffles could have relatively poor ability to deal with the complex MEI 

signals. However, rMETL has its own advantage to use read realignment 

approach to transform the ambiguous and chimeric read alignments into 

more homogenous alignments, which produces strong evidences (Supple-

mentary Notes and Supplementary Fig.4).  

There are a proportion of MEI calls made by rMETL not supported by 

any of short read-based callsets (i.e., 3864 and 3287 calls for the PacBio 

and ONT datasets, respectively, Supplementary Table 2). However, this 

may not indicate serious false positives. It is observed that, 96% (PacBio) 

and 87% (ONT) of such calls are also in the callsets of Sniffles (Supple-

mentary Fig.3c-d). This indicates that most of these MEIs could be also 

plausible. We further investigated these short read-unsupported calls of 

rMETL, and found that most of them have strong MEI evidences, i.e., 

there are many chimeric read parts in local regions which can be confi-

dently aligned to the consensus sequences of mobile elements (Supple-

mentary Notes and Supplementary Fig.5).  

The runtimes and memory footprints were also assessed (Supplemen-

tary Table 3). For the PacBio and the ONT datasets, rMETL can accom-

plish the task in 2-3 hours with 8 CPU threads and 10-12 GB RAM, which 

is about 2 and 1.5 times faster than Sniffles, respectively.  

Overall, the benchmarking results suggest that rMETL has its own 

power to more sensitively discover MEIs. Due to the complexity of SVs, 

it could be non-trivial to well handle all kinds of SVs with a generic ap-

proach. We believe that rMETL is suited to be integrated into many pipe-

lines to play important roles in cutting-edge genomics studies. Please also 

refer to Supplementary Notes for more detailed discussions.  
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Fig 1. Venn diagrams of the four short read-based MEI callsets of NA12878 and the long 

read-based callsets respectively made by (a) rMETL and (b) Sniffles. 

Table 1. sensitivities of the callsets of rMETL and Sniffles on four simulated PacBio da-

tasets in various sequencing depths. 

 5X 10X 20X 50X 

rMETL 49.24% 78.64% 88.19% 93.79% 

Sniffles 28.06% 68.93% 86.19% 91.55% 
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