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Abstract 
Motivation: The development of computational tools exploiting -omics data and high-quality genome-

scale metabolic networks for the identification of novel drug targets is a relevant topic in Systems Med-

icine. Metabolic Transformation Algorithm (MTA) is one of these tools, which aims to identify targets 

that transform a disease metabolic state back into a healthy state, with potential application in any 

disease where a clear metabolic alteration is observed. 

Results: Here, we present a robust extension to MTA (rMTA), which additionally incorporates a worst-

case scenario analysis and minimization of metabolic adjustment (MOMA) to evaluate the beneficial 

effect of gene knockouts. We show that rMTA complements MTA in the different datasets analyzed 

(gene knockout perturbations in different organisms, Alzheimer’s disease and prostate cancer), bring-

ing a more accurate tool for predicting therapeutic targets. 

Availability: rMTA is freely available on The Cobra Toolbox: https://opencobra.github.io/cobra-

toolbox/latest/. 
Contact: fplanes@tecnun.es  

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

With the release of high-quality human genome-scale metabolic networks, 

together with the increasing –omics data availability, the use of constraint-

based models in the drug discovery process is expanding, particularly for 

the elucidation of novel and better targets (Oberhardt et al., 2013). Early 

approaches have focused on cancer and bacterial infections, namely by 

directly targeting the growth of target cells (Apaolaza et al., 2017; Folger 

et al., 2011; Plata et al., 2010). A more general approach, termed Meta-

bolic Transformation Algorithm (MTA), was presented in Yizhak et al. 

(2013), aiming to identify targets that transform a disease metabolic state 

into a healthy one, with potential application in any disease where a clear 

metabolic alteration is observed. In that work, Ruppin and co-workers ap-

plied MTA to ageing, and was later used in Alzheimer’s disease (Stempler 

et al., 2014). Importantly, this work opened new avenues to systematically 

target cellular metabolism in human disease. 
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In the present study, we show that the MTA scoring procedure consti-

tutes a best-case scenario, which may over-estimate the beneficial effect 

of a particular perturbation, typically gene knockouts or drugs, to trans-

form a disease phenotype into a healthy one. We propose a more robust 

approach, which takes into account a worst-case scenario and results from 

the minimization of metabolic adjustment (MOMA) (Segre et al., 2002). 

We term our approach Robust Metabolic Transformation Algorithm 

(rMTA).  

To illustrate our approach, we first applied rMTA to gene knockout ex-

periments in different organisms and Alzheimer’s disease (AD) data, pre-

viously analyzed with MTA (Stempler et al., 2014; Yizhak et al., 2013), 

showing that rMTA effectively enhances and improves MTA.  In addition, 

we applied rMTA to a recently published gene expression dataset in pros-

tate cancer, where the role of the metabolic co-regulator PGC1α in tumor 

progression and metastasis was analyzed (Torrano et al., 2016). 

2 Methods 

2.1 Metabolic Transformation Algorithm (MTA) 

MTA only requires two inputs: gene expression levels of the target 

(healthy) and source (disease) states, as well as a genome-scale metabolic 

reconstruction. Full details of the algorithm can be found in Yizhak et al. 

(2013). Here, we summarize the most relevant steps of MTA. 

1. Using a three-level classification of reactions based on absolute 

expression data, network contextualization of the source state is carried 

out using iMAT (Shlomi et al., 2008). Flux sampling techniques are then 

applied to generate a mean flux distribution at the source state, denoted as 

vref. 

2.  Determination of changed and unchanged reactions based on vref, 

differential gene expression analysis and gene-to-reaction mappings. The 

aim here is to define the subset of reactions whose flux should change in 

the forward (RF) and backward (RB) direction to transform the source state 

into the target state. To that end, we first categorize reactions as elevated 

or reduced based on differential gene expression data and gene-to-reac-

tions mappings. Then, reaction i is in RF if vi
ref > 0 and it is elevated or if 

vi
ref < 0 and it is reduced. Similarly, reaction i is in RB if vi

ref < 0 and it is 

elevated or if vi
ref > 0 and it is reduced. The rest of reactions (RS) are un-

changed and their flux should be similar in both states.  

3. Selection of a threshold for each reaction, εi, from which a signif-

icant flux deviation from vref in the direction of the target (healthy) state is 

achieved.  

4. Upon gene knockout, determination of the maximum number of 

significant flux alterations in the desired direction while respecting the 

flux of unchanged reactions. This is done via mixed-integer quadratic pro-

gramming (MIQP) using the following objective function and mathemat-

ical constraints: 

min  (1 − 𝛼) ∑ (𝑣𝑖
𝑟𝑒𝑓

− 𝑣𝑖)2
𝑖∈𝑅𝑆

 +
𝛼

2
∑ 𝑦𝑖 +𝑖∈𝑅𝐹

𝛼

2
∑ 𝑦𝑖𝑖∈𝑅𝐵

       (1)  

s.t. 

𝑣𝑖
𝑚𝑖𝑛 ≤   𝑣𝑖  ≤ 𝑣𝑖

𝑚𝑎𝑥,         𝑖 ∈ 𝑅    (2) 

𝑆 ∙ 𝑣 = 0             (3) 

𝑣𝑖 − 𝑦𝑖
𝐹 ∙ (𝑣𝑖

𝑟𝑒𝑓
+ 𝜀𝑖) − 𝑦𝑖 ∙ 𝑣𝑖

𝑚𝑖𝑛  ≥ 0, 𝑖 ∈ 𝑅𝐹          (4) 

𝑦𝑖
𝐹 +  𝑦𝑖 = 1, 𝑖 ∈ 𝑅𝐹           (5) 

𝑣𝑖 − 𝑦𝑖
𝐵 ∙ (𝑣𝑖

𝑟𝑒𝑓
− 𝜀𝑖) − 𝑦𝑖 ∙ 𝑣𝑖

𝑚𝑎𝑥  ≤ 0, 𝑖 ∈ 𝑅𝐵        (6) 

𝑦𝑖
𝐵 +  𝑦𝑖 = 1, 𝑖 ∈ 𝑅𝐵          (7) 

Eq. (2) integrates thermodynamic, gene knockout and growth medium 

constraints, where v are the reaction fluxes, while vmin and vmax their asso-

ciated lower and upper bounds, respectively. The mass balance constraint 

is enforced in Eq. (3), where S represents the stoichiometric matrix. In 

Eqs. (4)-(5), y and yF are binary variables associated with changed reac-

tions in the forward direction RF. With these constraints, we guarantee for 

a particular reaction i in RF that, if yi=0 (or yi
F=1), its associated flux is 

significantly altered in the desired forward direction, i.e. vi ≥ vi
ref + εi. Sim-

ilarly, Eqs. (6)-(7) guarantee for reaction i in RB that, if yi=0 (or yi
B=1), its 

associated flux is significantly altered in the desired backward direction, 

i.e. vi ≤ vi
ref - εi. α in Eq. (1) is a trade-off parameter. The resulting flux 

distribution is termed v
res.  

5. Calculation of the Transformation Score (TS), as in Eq. (8), 

which captures the transformation upon gene knockout from the source to 

the target state: 

∑ 𝑎𝑏𝑠[(𝑣𝑖
𝑟𝑒𝑓

− 𝑣𝑖
𝑟𝑒𝑠)] −𝑖∈𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠

∑ 𝑎𝑏𝑠[(𝑣𝑖
𝑟𝑒𝑓

− 𝑣𝑖
𝑟𝑒𝑠)]𝑖∈𝑅𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠

∑ 𝑎𝑏𝑠[(𝑣
𝑖
𝑟𝑒𝑓

− 𝑣𝑖
𝑟𝑒𝑠)]𝑖∈𝑅𝑆

     (8)  

where Rsuccess and Runsuccess denote fluxes in vres involving an alteration in 

the desired and undesired direction, respectively. MTA algorithm ranks 

gene knockouts according to their TS (Eq. (8)) by using the transformed 

flux distribution (vres) obtained after solving Eqs. (1)-(7). The more posi-

tive the TS is, the greater the capacity of the related intervention to move 

in the target (healthy) direction. 

2.2 Robust Metabolic Transformation Algorithm (rMTA) 

As explained above, the MTA algorithm ranks gene knockouts according 

to their TS (Eq. (8)) by using the transformed flux distribution (vres) ob-

tained after solving Eqs. (1)-(7). In our view, this scoring procedure con-

stitutes a best-case scenario, since it minimizes the number of unsuccess-

ful changes, providing knockouts with maximum capacity to move in the 

target direction. Best-case TS (bTS) can be either positive or negative, 

namely the more positive, the more capacity to move in the desired (target) 

direction.  

However, one may question whether a particular gene knockout could also 

reinforce the source state, particularly by evaluating the maximum capac-

ity to further move in the source direction. To that end, for each gene 

knockout, we propose to swap RF and RB subsets and recalculate Eqs. (1)-

(7) and Eq. (8), resulting in what we term worst-case TS (wTS). For a 

given gene knockout, similar to the best-case TS, the more positive the 

wTS is, the more capacity to further move the flux distribution in the 

source (disease) direction. In terms of drug targets, we are certainly inter-

ested in those knockouts having a positive bTS and a negative wTS (see 

Figure 1A). In cases where we have both a positive bTS and wTS, the 

interpretation is unclear and the algorithm cannot clearly distinguish the 

beneficial effect of the knockout. An illustrative example of an underde-

termined scenario can be found in Figure 1B, where bTS=wTS.  

As shown in Figure 1C, where bTS>wTS (both being positive), we can 

have less extreme situations, with values of bTS and wTS differing signif-

icantly. In these cases, the use of minimization of metabolic adjustment 

(MOMA) can be informative and constitutes the most realistic approach 

to decide whether a particular gene knockout pushes metabolism into the 

healthy or disease direction. This is equivalent to fixing α=0, including the 

whole set of reactions (not only RS) in the first term of Eq. (1) and resolv-

ing Eqs. (1)-(3) and recalculating (8), resulting in what we term MOMA 

TS (mTS). Note here that we also evaluated ROOM (regulatory on/off 
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minimization of metabolic flux changes) (Shlomi et al., 2005). However, 

we found ROOM significantly more computationally demanding than 

MOMA with no increase in accuracy (see Supplementary Table 1 for de-

tails). 

 

Figure 1: Illustration of the problem addressed by rMTA. A) Transformation Scores 

(TS) after gene knockout are skewed to the healthy direction in both the best-case (bTS) 

and worst-case scenario (wTS); B) TSs are similar in value and skewed to the opposite 

direction in the best-case and worst-case scenario and, therefore, under-determination 

arises; C) The same as B, but TS is higher in the best-case scenario and skewed to the 

healthy direction when MOMA is applied (mTS>0). Under-determination is resolved here 

using mTS. 

Gene expression datasets and analysis As shown in Figure 1C, where 

bTS>wTS (both being positive), we can have less extreme situations, with 

values of bTS and wTS differing significantly. In these cases, the use of 

minimization of metabolic adjustment (MOMA) constitutes the most re-

alistic approach to decide whether a particular gene knockout pushes me-

tabolism into the healthy or disease direction. This is equivalent to fixing 

α=0, including the whole set of reactions (not only RS) in the first term of 

Eq. (1) and recalculating Eq. (1) and (2), resulting in what we term 

MOMA TS (mTS). Note here that we also evaluated ROOM (regulatory 

on/off minimization of metabolic flux changes) (Shlomi et al., 2005). 

However, we found ROOM significantly more computationally demand-

ing than MOMA with no increase in accuracy (see Supplementary Table 

1 for details).  

In order to account for these different factors, we propose in Eq. (9) a uni-

fied score (rTS), which integrates bTS, wTS and mTS, providing a more 

robust approach: 

𝑟𝑇𝑆 = 𝑚𝑇𝑆 ∙ (𝑘 ∙ (𝑏𝑇𝑆 − 𝑤𝑇𝑆))𝑎  (9) 

where a=1 if bTS>0, mTS>0 and wTS<0, a=0 otherwise; k is a big posi-

tive number, here k=100. As reflected in Figure 1, our aim is to rank higher 

perturbations skewed to the target direction, i.e. bTS>0, mTS>0 and 

wTS<0, and, in these situations, rTS=mTS*k*(bTS-wTS). We included k 

in Eq. (9) to guarantee that rTS>mTS, i.e. k*(bTS-wTS)>1, when a=1. In 

the rest of the cases (a=0), we rely on MOMA and fixed rTS=mTS (see 

Supplementary Figure 1). We call this extension robust Metabolic 

Transformation Analysis (rMTA).  

The value of our rMTA approach is analyzed in three different cases: gene 

knockout predictions in E. coli, mouse and human samples, Alzheimer’s 

disease and prostate cancer (see Results section). Below, we provide the 

technical details of our implementation of MTA and rMTA. 

2.3 Implementation of MTA and rMTA 

For studies using human cells, we used the genome-scale metabolic net-

work reconstruction Recon1 (Duarte et al., 2007), while for those using 

mouse models, we used the available reconstruction that is based on Recon 

1 (Sigurdsson et al., 2010). This was done to compare our approach with 

the results presented in Stempler et al. (2014) and Yizhak et al. (2013).  

n addition, for each of the dataset analyzed here, we simulated the same 

growth medium that was used in the experiment. In human brain data from 

AD patients, in which the growth medium is unknown, we assumed the 

most general unconstrained case where all nutrients are available. In the 

prostate cancer study, based on human cell lines, DMEM medium was 

simulated. In the case of gene knockout experiments with mouse and hu-

man cells, RPMI, DMEM or general unconstrained media were simulated 

depending on the case considered (Supplementary Table 2). For flux sam-

pling, we used optGpSampler (Megchelenbrink et al., 2014), an extension 

of GpSampler (Schellenberger and Palsson, 2009) that converges up to 

500 faster in large networks. 2000 different flux distributions were deter-

mined and averaged to obtain vref. 

As noted above, a flux is significantly altered in the desired direction 

(yi=0) if vi
res

 ≥ vi
ref + εi if i ϵ RF, or if vi

res ≤ vi
ref - εi if i ϵ RB. Following the 

methodology described in Yizhak et al. (2013), for studies using mouse 

and human cells, we fixed a different parameter εi for each reaction. How-

ever, we set a minimum εi of 0.001 to avoid numerical issues. In addition, 

we set the trade-off parameter α in Eq. 1 to 0.66, as done in Yizhak et al. 

(2013). We also conducted a sensitivity analysis on the α and ε parameters, 

finding that the main results shown in the Results section are stable for 

different values (Supplementary Figure S2-S7). 

2.4 Gene expression datasets and analysis 

Alzheimer’s Disease study. Illumina microarrays data was obtained from 

the Gene Expression Omnibus (GEO) database (Barrett et al., 2012), par-

ticularly GSE15222, which involves data from 363 cortical samples of 

Alzheimer’s and control patients’ post-mortem brains (Webster et al., 

2009). Data was processed with the R statistical framework. Data was log2 

transformed and quantile normalized using the lumi package (Du et al., 

2008). Summarized gene-level intensities were obtained using the limma 

package (Ritchie et al., 2015).   

For the absolute classification of genes into highly, moderately and lowly 

expressed required for iMAT analysis, for each different AD sample, we 

selected as highly expressed those having a larger expression value than 

the mean expression + δ SD and as lowly expressed those having a lower 

expression than the mean expression - δ SD. We fixed δ=0.3, as done in 

Stempler et al. (2014). The rest of the genes were considered as moder-

ately expressed. A consensus gene classification in AD was then deter-

mined, particularly genes were classified as highly/lowly expressed if this 

outcome was obtained in at least β% of AD samples, with β=100. We used 

gene-protein-reaction rules available in Recon1 to convert highly, moder-

ately and lowly expressed genes into high, medium and low activity reac-

tions, as required for the iMAT analysis. We conducted a sensitivity anal-

ysis on δ and β, finding that vref was not significantly altered (see Supple-

mentary Figure S8).  

In order to determine differentially expressed genes between control pa-

tients and AD, as required for the calculation of TS scores, we again used 

the limma package. We selected those genes having a probability of being 

differentially expressed greater than 0.95 (B statistic greater than 4.25) and 

being up-regulated or down-regulated in healthy subjects vs. AD patients 

by at least a fold change of ±20%. Genes not satisfying these restrictions 

were classified as unchanged. Up-regulated, unchanged and down-regu-

lated genes were converted into elevated, unchanged and reduced activity 

reactions using gene-protein-reaction rules. Note that the threshold for dif-

ferential expression defined above was selected to obtain 100-200 
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changed reactions, as suggested in Yizhak et al. (2013) in order to guar-

antee a tractable running time. As noted above, in conjunction with vref, 

this information was used to determine RF and RB.  

Prostate cancer study. Illumina microarray data was obtained from 

Torrano et al. (2016), which includes 3 samples of wild-type prostate can-

cer cell line PC3, where tumor suppressor PGC1α is repressed (source 

state, metastatic phenotype), and 3 samples of engineered PGC1α-

expressing PC3 (target state, non-metastatic phenotype). This data is also 

accessible in GEO under reference number GSE75193.  

For absolute gene expression classification, we used the same procedure 

as in the AD study. However, given the limited number of samples, we 

fixed a stricter threshold to obtain highly and lowly expressed genes in the 

source state, namely δ=0.7 (see Supplementary Figure S9). For the differ-

ential expression analysis between the source and target states, we again 

used the limma package and selected those genes with an adjusted (FDR) 

p-value < 0.05, which again resulted in a number around 100-200 of al-

tered reactions.  

Gene knockout experiments. In the case of human cells, we considered 

the same 2 experiments reported in (Yizhak et al., 2013), namely the 

knockout of SDHB in the hepatocellular carcinoma cell line Hep3B 

(Cervera et al., 2008) and the mutation of SDHA in acute quadriplegic 

myopathy patients (Bakay et al., 2006). Gene expression data for these 

two cases is accessible in GEO under reference numbers GSE10289 and 

GSE3307. In addition, we added 2 more recently published cases that 

knocked out RRM1 and RRM2 in the Multiple Myeloma cell line H929 

(GEO accession number GSE93425) (Sagawa et al., 2017). With respect 

to mouse cells, we only considered 1 out of 2 experiments reported in 

Yizhak et al, 2013, (GKD knockout, GEO accession number GSE12748) 

(MacLennan et al., 2009). Microarray data of the other experiment (FH1 

knockout) was not available. However, we used a very similar experiment 

with the same gene knockout (GEO accession number GSE10989). 

All these experiments have been carried out using Affymetrix microar-

rays. Data was processed with RMA, available in aroma-affymetrix 

(Bengtsson et al., 2008). Log2 normalized signals were summarized to the 

gene-level. For the absolute gene expression classification, we used the 

same procedure as in the AD study, with β=100%, but with δ=0.7-1, de-

pending on the distribution of intensities of metabolic genes and the num-

ber of samples for each scenario.  

For the differential expression analysis, we used the limma package. As 

noted above, we varied the filter of p-value, FDR and B-statistic in order 

to obtain around 100-200 altered reactions, as suggested in Yizhak et al. 

(2013). 

3 Results 

3.1 Comparison of rMTA and MTA in different organisms  

To examine the performance of rMTA, we first applied it to predict the 

effects of gene knockouts in E. Coli, as previously done in Yizhak et al. 

(2013). We used gene expression data measured before and after a specific 

metabolic gene knockout, which allows us to evaluate whether rMTA is 

able to rank high the gene knockout causing the metabolic transformation 

from the wild-type into the knockout state. We fixed the same parameters 

used in Yizhak et al. (2013) (α=2/3, εi=0.01) and applied rMTA in the 

same conditions (vref
, RF, RB, RS) (data provided by the authors). Our ap-

proach was compared with the results obtained with MTA. Results are 

shown in Table 1 and Supplementary Data 1. 

Table 1. Comparison of rMTA and MTA in E. coli 

Experiment 

number 

Gene 

name 

Sign of: Gene Ranking 

bTS mTS wTS rMTA MTA 

1 pgi + + - 4 4 

2 pgi + + - 8 8 

3 ppc - + + 13 50 

4 ppc + + + 14 10 

5 tpiA + + - 4 3 

6 tpiA + + - 9 10 

bTS represents a best-case transformation score (TS); mTS is the TS score obtained 

using MOMA; wTS represents the worst-case TS; rMTA is Robust MTA and ranks 

gene knockout according to robust TS. The column entitled ‘MTA’ includes the re-

sults reported in Yizhak et al. (2013). Experiments 1 and 2 represent two different 

gene expression studies that knocked out pgi. The same for ppc in experiments 3 and 

4 and tpiA in experiments 5 and 6.  

We can observe in Table 1 that the ranking of the gene knockout causing 

the perturbation is similar in both rMTA and MTA: it is better ranked in 

rMTA in experiments 3 and 6, while the opposite happens in experiments 

4 and 5; in the other 2 cases we have the same position with both ap-

proaches. In 4 out of 6 cases (experiments 1, 2, 5 and 6), the true gene 

knockout does have a positive bTS and mTS, with a negative wTS. As 

shown in Figure 1, gene knockouts with this pattern constitute the most 

natural candidates to revert to the original scenario. However, in these 4 

cases, rMTA could not improve the performance of MTA and both pro-

vided very good results. In contrast, this pattern of signs is not followed in 

experiments 3 and 4: wTS>0 in both cases and bTS<0 in experiment 3. In 

these 2 cases, rMTA (now based on MOMA, see Eq. (9)) provided very 

good results, particularly in the case of experiment 3, where ppc is better 

ranked in rMTA than in MTA (see Supplementary Data 1 for full details).  

The effect of rMTA was more clearly observed when we replicated the 

study of Alzheimer’s Disease reported in Stempler et al. (2014), where 

MTA was used to predict drug targets (see Methods section for details). 

Figure 2A displays bTS and wTS for the different gene knockouts simu-

lated in the AD study. The gene knockout ranked first in rMTA, SLC5A8 

(Solute Carrier Family 5, Member 8), is far from the best-ranked positions 

in MTA (position 313). However, it is the gene knockout with the most 

negative wTS, which implies that this gene knockout, even in the worst-

case scenario, leads metabolic fluxes into the healthy direction. In addi-

tion, mTS is also the highest for this gene knockout (Figure 2B). This re-

sult shows that rMTA may significantly alter the ranking obtained with 

MTA. Of course, we found cases where rMTA and MTA obtained similar 

results, for example SLC5A3 and SLC5A11, which were ranked first and 

second in MTA and in the top 20 in rMTA. However, a remarkable num-

ber of gene knockouts were ranked at very distant positions in rMTA and 

MTA, e.g. SLC6A5.  

In summary, Figure 2 shows that some genes ranked high in rMTA are not 

found in the top positions of the MTA ranking, showing that integrating a 

worst-case scenario and MOMA with MTA (as done in rMTA) do have 

an impact in the ranking of the most relevant gene knockouts to transform 

a metabolic state into a healthy state. Full details of our AD study can be 

found in Supplementary Data 2. 
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Figure 2: Comparison of rMTA and MTA in the Alzheimer’s Disease study. A) Best-

case Transformation Score (bTS) vs worst-case transformation score (wTS) for different 

gene knockouts analyzed. Source and target states are AD patients and healthy controls, 

respectively; B) bTS vs MOMA TS (mTS) for different gene knockout analyzed. 

Given the results in AD, we conducted a similar analysis to the one in 

Table 1 (known gene knockout perturbations) with human and mouse cells 

(see Methods section for details), as done in Yizhak et al. (2013). The 

benefit of using rMTA can now be clearly observed, as we always rank 

the gene knockouts that cause the perturbation significantly higher (one-

sided Wilcoxon signed-rank test, p-value=0.016). The pattern of signs in 

experiments 1 and 2 follows the one discussed in E. coli. The rest of cases 

presents under-determination, but it is importantly smoothed by rMTA. 

Full details can be found in Supplementary Data 3. 

Table 2. Comparison of rMTA and MTA in human and mouse cells 

Exp. 

num-

ber 

Gene 

name 

Organ-

ism 

Sign of: Ranking 

bTS mTS wTS rMTA MTA 

1 RRM1 
Homo 

Sapiens 
+ + - 28 353 

2 RRM2 
Homo 

Sapiens 
+ + - 36 372 

3 SDHA 
Homo 

Sapiens 
+ + + 119 546 

4 SDHB 
Homo 

Sapiens 
+ + + 88 402 

5 FH1 

Mus 

Muscu-

lus 

+ + + 11 575 

6 GKD 

Mus 

Muscu-

lus 

+ + + 92 453 

bTS represents a best-case transformation score (TS); mTS is the TS score obtained 

using MOMA; wTS represents the worst-case TS; rMTA is Robust MTA and ranks 

gene knockout according to robust TS. The column entitled ‘MTA’ includes the 

ranking provided when bTS was only considered. The metabolic model of Homo 

Sapiens (Recon1) and Mus Musculus (iMM1415) contain 1496 and 1375 genes, re-

spectively. 

 

 

 

3.2 rMTA in prostate cancer 

In a recent work (Torrano et al., 2016), it was shown that the master met-

abolic co-regulator PGC1α suppresses prostate cancer progression and 

metastasis. They proved that reconstituting the expression of PGC1α in 

different prostate cancer cell lines leads to a decrease in growth, prolifer-

ation and metastasis. In order to evaluate the transcriptomic changes me-

diated by the induction of PGC1α, they compared the gene expression data 

between wild-type and engineered PGC1α-expressing PC3 prostate can-

cer cell line (see Methods section).  

Here, we apply rMTA to identify gene knockouts that transform PC3 cells 

(source state) into a less aggressive state, which is defined by those ex-

pressing PGC1α (target state). Results are shown in Figure 3A. It can be 

observed that the best-ranked gene knockouts in MTA show a high level 

of under-determination, since they have an even larger value for wTS (e.g. 

SLC12A3), which once again emphasizes the limitations of MTA.  In-

stead, the best-ranked genes in rMTA have a reduced transformation score 

(Figure 3B), but they are biased towards the healthy direction, e.g. 

MTHFD1L. Full details can be found in Supplementary Data 4. 

 

Figure 3: rMTA application to prostate cancer. A) Best-case TS (bTS) vs worst-case TS 

(wTS) to transform wild-type into engineered PGC1α-expressing PC3 cells for different 

gene knockouts analyzed; B) Zoomed-in Figure3a to highlight top-ranked genes in rMTA; 

C) Expression of MTHFD1L in wild-type into engineered PGC1α-expressing PC3 cells; 

D) Expression plot of PGC1α (horizontal axis) and MTHFD1L (vertical axis) in prostate 

cancer samples from TCGA.   

Whether top-ranked gene knockouts in rMTA are sufficient to recapitulate 

the effect of PGC1α is debatable and requires further experimental valida-

tion. Among them, we have several genes involved in folate metabolism: 

MTHFD2, MTHFD1 and MTHFD1L. This is particularly interesting, 

since a recent work provided evidence that the PGC1α/ERRα axis regu-
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lates folate metabolism in breast cancer (Audet-Walsh et al., 2016). Par-

ticularly, they showed that PGC1α and MTHFD1L have an inverse and 

significant correlation at the expression level, which is also observed in 

our prostate cancer study (Figure 3C) and in primary prostate cancer sam-

ples from CANCERTOOL (Cortazar et al., 2018). Figure 3D shows the 

expression of PGC1a and MTHFD1L in primary prostate cancer samples 

from TCGA, but the same result is found in three additional prostate can-

cer datasets available in CANCERTOOL (Supplementary Figure S10). On 

the other hand, the knockdown of MTHFD1L in hepatocellular carcinoma 

significantly decreased proliferation and growth (Lee et al., 2017). Based 

on our data, we propose the inhibition of MTHFD1L as a promising target 

to recapitulate (at least part of) the effect of PGC1α as a tumor suppressor 

in prostate cancer.   

4 Discussion 

A key challenge in Systems Medicine is the development of computational 

methods, driven by –omics data, capable of predicting novel and more ef-

fective therapeutic strategies in different diseases. Existing in-silico ap-

proaches to target cellular metabolism, based on the constrained-based 

modeling paradigm, have mainly concentrated on cancer and parasitology 

(Apaolaza et al., 2017; Plata et al., 2010). Certainly, cellular growth and 

proliferation are clear phenotypes relevant in these diseases, which have 

been typically analyzed by constraint-based models (through the biomass 

reaction). These methods could hardly be applied, if at all, for diseases 

where a clear targetable metabolic phenotype is unknown.  

Ruppin and co-workers overcame this issue with the release of MTA. The 

logic behind MTA is the construction of data-driven metabolic objectives 

that can be systematically analyzed through constraint-based models. This 

was done based on differential expression analysis, namely by defining a 

list of reactions that need to be up/down regulated in order to transform a 

disease phenotype into a healthy one. The first applications of MTA to 

different diseases, reported in Yizhak et al. (2013) and Stempler et al. 

(2014), were encouraging and promising for the field of Systems Medi-

cine. 

In order to complement the path opened by MTA, we here present a more 

robust formulation, termed rMTA, aimed to more accurately quantify the 

capacity of selected perturbations to transform a disease phenotype into a 

healthy one. To that end, we pondered three different scores: best-case TS 

(bTS), the one given by MTA; worst-case TS (wTS), which results from 

swapping RF and RB in MTA and recalculating transformation scores, 

and MOMA TS (mTS), a more realistic scenario that minimizes the dis-

tance to reference fluxes upon perturbation. The rMTA score ranks high 

perturbations satisfying that 1) mTS>0 and 2) bTS>0 and wTS<0, as we 

showed in the different cases analyzed in the Results section.  

A crucial insight that our rMTA approach uncovered was that most of the 

best-ranked gene knockouts in MTA suffer from under-determination, i.e. 

they have a similar capacity to move in the desired and undesired direc-

tion. Thus, users should be cautious with the results from MTA (bTS) and 

apply more restrictive filters, as we proposed here using bTS, wTS and 

mTS. In the controlled gene knockout experiments with human and mouse 

samples (Table 2), the benefit of using the score proposed by rMTA over 

MTA is clearly observed.  

We believe that this intrinsic under-determination can only be broken by 

adding more experimental data. The integration of metabolomics data and 

isotope labeling data will allow us to more accurately define the reference 

fluxes in the source state. A better definition of references fluxes is a key 

point in both MTA and rMTA, but it is not the only question to be ad-

dressed. A second challenge, perhaps more relevant, is to disentangle in-

ternal rules and regulatory constraints as to how cells accomplish their 

metabolic adaptation after perturbations. Overall, the rational study of 

these questions will allow us to identify better therapeutic strategies to 

target aberrant metabolism in human disease. 
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