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Abstract

Summary: Nowadays large sequencing projects handle tens of thousands of individuals. The huge files
summarizing the findings definitely require compression. We propose a tool able to compress large colle-
ctions of genotypes as well as single samples in such projects to sizes not achievable to date.
Availability and Implementation: https://github.com/refresh-bio/GTShark
Contact: sebastian.deorowicz@polsl.pl
Supplementary information: Supplementary data are available at publisher’s Web site.

1 Introduction
Rapid decrease of genome sequencing costs allows many sequencing pro-
jects to grow to impressive sizes. The numbers of individuals covered by
the Haplotype Resource Consortium (McCarthy et al., 2016) or Exome
Aggregate Consortium (Layer et al., 2016) projects are counted in tens of
thousands and even lager projects are on the go.

The aggregate results of such projects are usually stored in the Variant
Call Format (VCF) files (Danecek et al., 2011), in which the genome vari-
ations occupies successive rows. Each tab-separated row contains nine
mandatory fields describing the variant and some (possibly large) num-
ber of optional values representing genotypes. The sizes of VCF files
are huge, so gzip is a common solution partially resolving the storage
and transfer problems. Nevertheless, a lot of effort was made to provide
even better compression and sometimes speeding up the accession to the
data. The most remarkable attempts were TGC (Deorowicz et al., 2013),
PBWT (Durbin, 2014), BGT (Li, 2015), GTC (Danek and Deorowicz,
2018). The first of them focused just on the compression ratio, while the
remaining aimed at the rapid queries support with good compression ratios.

In this article, our goal is to provide the best compression ratio for a
collection of genotypes. Moreover, the compressed database can serve as
a knowledge base, which allows to astonishingly reduce sizes of files of
newly sequenced individuals.

Our tool, GTShark, is based on the Positional Burrows–Wheeler Tran-
sform (PBWT) introduced in (Durbin, 2014). The key idea of PBWT is to
permute a vector of genotypes for each single variant to order the samples
according to the genotypes of previous variants. Due to the linkage dis-
equilibrium property the neighbor genotypes (after the permutation) are
likely to be the same. Thus, the permuted vector of genotypes is usually
composed of a few runs of 1s (presence of alternate value) and 0s (presence
of the referential value). PBWT and BGT (Li, 2015) store the run lengths

using a simple run encoding scheme. BGT preserves also a permutation
of samples each 8192nd variant to allow fast random access queries.

2 Methods
In GTShark, we essentially follow the same way. Nevertheless, there
are several differences. First, we use a generalized PBWT (designed for
non-binary alphabets in (Deorowicz et al., 2018)) to directly support multi-
alleles and unknown genotypes. Second, since we aim at the compression
ratio, we do not store the intermediate permutations. Third, we employ
an entropy coder (namely range coder) with special contextual modeling,
which improves the compression ratio more than 2-fold. Fourth, we sligh-
tly modify the generalized PBWT, i.e., we resign from permuting vectors
of samples for extremely rare (or frequent) variants. The experiments show
that this improves the compression ratio by up to 10 percent.

A unique feature of GTShark is the ability to compress external, single-
sample, VCF files with a use of the compressed collection as a reference.
Such a scenario can appear, for example, in large sequencing projects,
like the UK Biobank (Bycroft et al., 2018), in which the genotypes are
determined using microarrays, when a set of variants is fixed. To compress
such sample we traverse the compressed collection and for each genotype
we determine the position in the permuted vector in which this genotype
would be placed if the sample were a part of the collection. We make use of
the found neighborhood to predict and store the genotype compactly. More
details of the algorithms can be found in the Supplementary Material.

The compressor was implemented in the C++14 language and is distri-
buted under GNU GPL 3 licence. It is slightly parallelized: the PBWT
making and the remaining parts are executed in separate threads. Thus, the
maximal parallelization gain is 2-fold but in practice it is much smaller.
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Table 1. Comparison of compressors of VCF files for HRC collection (40.40 M
variants, 27,165 samples, 4310 GB of VCF, 69.7 GB of gzipped VCF).

C-size [MB] C-time [s] C-RAM [GB] D-time [s]

TGC 2,386 1,090,940 76.8 2,442
PBWT 3,693 134,065 0.8 33,499
BGT 6,717 146,178 0.008 25,610
GTC 3,731 142,474 5.0 2,082
GTShark 1,678 97,716 1.6 20,563

Hardware configuration: two AMD Opteron 6348 CPUs (2.8 GHz, 12 cores each),
128 GB of RAM. Column description: ‘C-size’ — compressed size, ‘C-time’ —
compression time, ‘D-time’ — decompression time, ‘C-RAM’ — RAM usage in the
compression stage. Bold font denotes the best results.

3 Results
For evaluation we used two H.sapiens datasets: the 1000 Genome Project
Phase 3 (1000GP3: 2504 samples, 84.80 M variants) and the Haplotype
Reference Consortium (HRC: 27,165 samples, 40.40 M variants).

The comparison of compression ratios and times of the state-of-the-
art methods, i.e., TGC, PBWT, BGT, GTC, and the proposed GTShark
is shown in Table 1 and Supplementary Material. GTShark is the clear
winner in compression ratio. The running times of PBWT, BGT, GTC,
GTShark algorithms are similar as they are dominated by processing of
VCF files. GTShark is the fastest in compression due to slight paralleliza-
tion of the code and some small technical improvements in parsing the VCF
files. GTShark allows also to extract a single sample from a compressed
collection in an average time about 11.5 minutes.

In the next experiment, we measured the compression of external sam-
ples. We used the HRC dataset here and processed as follows. We excluded
100 randomly chosen samples to obtain the collection of 27,065 samples,
for which we built the compressed database of total size 1674 MB. Then
we compressed the excluded samples one by one taking the compressed
collection as a reference. On average GTShark processed a single sam-
ple in about 12 minutes and compacted it to 65.5 KB. To the best of our
knowledge, the most recent experiment of this type was described in (Pavli-
chin et al., 2013). The authors used a reference human genome and the
dbSNP database as a knowledge base. They were able to compress sin-
gle individual genotypes from the 1000GP Phase 1 (39.7 M variants) to
about 2.5 MB. The results should not be, however, compared directly as in
the Pavlichin et al. experiment the compressed samples contained variants
absent from the reference database, and in our experiment we assumed that
sets of variants in the sample and reference data are the same. Nevertheless,
the comparison shows what is possible in such restricted scenario.

In the final experiment, we investigated the impact of the selected
knowledge base. We used Chromosome 11 data from the 1000GP3 con-
taining 2504 samples from 26 populations. Initially, we divided the VCF
file into 26 files using the population criteria. The ASW and MXL popula-
tions were significantly smaller than the rest and we excluded them from
further studies. The remaining populations have cardinalities at least 85
and we randomly subsampled the larger ones to obtain 24 VCF files each
containing exactly 85 samples. Then we used GTShark to compress each
VCF file obtaining 24 compressed collections serving as references in the
rest of the experiment. We also constructed 24 larger referential collecti-
ons. Each of them, composed of 23 population VCF files and containing
23× 85 = 1955 samples, was also compressed using GTShark. Then we
compressed each single-sample VCF file (i.e., 24×85 = 2040 samples in
total) using each of the smaller (85-sample) collections as references. The
results were averaged over all 85 samples from each population. For easier
interpretability of Fig. 1 we grouped the populations in 5 superpopulations

(African, American, East Asian, European, and South Asian). The colu-
mns are described by the referential population. As one could expect the
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Fig. 1. Comparison of single-sample GTShark compression for 24 populations (data:
1000GP3, Chromosome 11), sizes of sample archives. The references with population
codes are made up of 85 samples from the population. The “Coll.” reference is a collection
of 1955 samples from 23 population (without population matching compressed sample).

compression is the best when a dataset from the same superpopulation is
used as a reference. The last column (beyond the matrix) shows the results
for larger collections (containing all populations except for the one that is
compressed).

4 Conclusions
The proposed algorithm compressed large collections of genotype data
significantly better than the existing methods and was the fastest. Its unique
feature is a mode in which the compressed collection of genotypes serves
as a reference for external single-sample data. In this scenario we were
able to shrink down the human genome to about 65 KB.
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