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Abstract

Motivation: The growth and survival of myeloma cells are greatly affected by their surrounding

microenvironment. To understand the molecular mechanism and the impact of stiffness on the

fate of myeloma-initiating cells (MICs), we develop a systems biological model to reveal the dy-

namic regulations by integrating reverse-phase protein array data and the stiffness-associated

pathway.

Results: We not only develop a stiffness-associated signaling pathway to describe the dynamic reg-

ulations of the MICs, but also clearly identify three critical proteins governing the MIC proliferation

and death, including FAK, mTORC1 and NFjB, which are validated to be related with multiple mye-

loma by our immunohistochemistry experiment, computation and manually reviewed evidences.

Moreover, we demonstrate that the systematic model performs better than widely used parameter

estimation algorithms for the complicated signaling pathway.

Availability and implementation: We can not only use the systems biological model to infer the

stiffness-associated genetic signaling pathway and locate the critical proteins, but also investigate

the important pathways, proteins or genes for other type of the cancer. Thus, it holds universal sci-

entific significance.
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1 Introduction

It is well known that multiple myeloma (MM) is the second most

common hematologic malignancy in the USA (Peng et al., 2014). In

particular, bone marrow stromal cells (BMSCs) in the surrounding

microenvironment play a critical role in the growth of myeloma cells

(Feng et al., 2010; Paszek et al., 2005; Teru et al., 2007; Tilghman

and Parsons, 2008; Tilghman et al., 2010; Ulrich et al., 2009).

Previous studies have reported that the BMSCs collected from

myeloma patients are stiffer than those from healthy donors (Feng

et al., 2010), and the stiffness of myeloma BMSCs is further

enhanced when they are cocultured with MM cells via changes in

cellular architecture (Dan et al., 2015; Feng et al., 2010). Then, as

the surface of both the MM cells and the BMSCs becomes harder,

leading to more gel spreading, myeloma-initiating cells (MICs) re-

ceive more support for growth (Peng et al., 2014) and form a vicious

cycle. For these reasons, it is crucial to reveal the dynamic regula-

tions, disrupt this vicious loop and determine the critical proteins of

the stiffness-associated signaling pathway for MM.

As developments in biological science continue to accumulate,

signaling pathways and their models are becoming increasingly im-

portant and complicated. Various techniques based on global opti-

mization have been proposed to estimate the parameters of pathway

models (Chen et al., 2009; Sun et al., 2012). Simulated annealing

(SA) (Chen et al., 2009; Jeon et al., 2002; Shockley et al., 2018) and

genetic algorithm (GA) (Goldberg, 1989; Sun et al., 2012; Thomas

et al., 2016) are most commonly used for parameter estimation of

signaling pathway.

However, the convergence speed for SA-based algorithm is no-

toriously slow and its performance depends on the initial values of

the parameters (Jeon et al., 2002). For example, although recently

developed PyDREAM application (Shockley et al., 2018) can greatly

alleviate this problem, it still depends on the prior distribution of

parameters that make it hard to choose the appropriate distribution,

especially for the high-dimensional parameter vectors. On the other

hand, GA-based algorithm is subjected to produce a ‘premature’ so-

lution (Goldberg, 1989), thus causing low estimation accuracy. For

instance, GA-based BioNetFit application (Thomas et al., 2016) can

significantly speed up parameter estimation process by high-

performance computation, but it is not good at increasing the par-

ameter estimation accuracy for high dimensional models.

Thus, the purpose of this study is to provide such a parameter es-

timation strategy for the large-scale signaling pathway that could be

applied not only for this MM study but also for other similar bio-

logical problems. First, it infers a stiffness-associated signaling path-

way with candidate proteins by comparing the proteins’ expression

obtained from reverse-phase protein array (RPPA) technology

(Sergio et al., 2010; Tibes et al., 2006) between the normal and mye-

loma stem cells. Then, we employ modularized factor graph (MFG),

multistage parameter estimation and parameter analysis (Koh et al.,

2006; Peng et al., 2014; Zhang et al., 2017a) to locate such key bio-

markers from these candidate proteins that have significant impact

on this signaling pathway and further demonstrate the robustness of

the model.

Here, we propose the following three innovative schemes: first,

this study designs a biological experiment to simulate surface pres-

sure for normal and MM cells under an in vivo bone marrow

environment at the start, followed by employing the RPPA tech-

nique to obtain a time-series protein expression data for both cells.

Second, we use the highly differential proteins between the normal

and MM cells to infer a stiffness-associated signaling pathway,

which is described by a Markov chain (Nelander et al., 2008) and

ordinary differential equations (ODEs) (Zhang et al., 2007). Third,

we use our well-developed multistage parameter estimation algo-

rithm for this large-scale stiffness-associated signaling pathway

(Peng et al., 2014) to obtain the most potential proteins for MM

cancer.

In summary, this study aims to reveal the dynamic regulations of

MICs by developing a coherent mathematical model and biochem-

ical experimental protocols, and then investigate the key roles of

critical proteins that are related to many cellular responses, includ-

ing apoptosis, cell cycle regulation, induction of expression of cyto-

kine genes and cellular differentiation. Since we infer a stiffness-

associated signaling pathway, it can help biologists disrupt the vi-

cious loop involving MICs and BMSCs by computing the expression

of crucial proteins which regulate the apoptosis or growth rate of

cancer cells.

Our mathematical model explores three crucial proteins (FAK,

mTORC1 and NFjB), which not only have been demonstrated to be

key biomarkers for MM by our biological experiments and manual-

ly reviewed evidences (Olivier Decaux et al., 2010; Rena et al.,

2004; Zhang et al., 2013), but also represent three important bio-

logical pathways in the development and progression of MM. Our

immunohistochemistry experimental results indicate that high NFjB

expression and constitutive activation are common events in MM

(Saez-Rodriguez et al., 2009; Tai et al., 2000). Additionally, manu-

ally reviewed evidences prove that FAK associates with integrins,

which are important in the crosstalk between cells and extracellular

matrix (Katz, 2010; Mclean et al., 2005; Sulzmaier et al., 2014; Tai

et al., 2015) and mTORC1 is related to the PI3K-AKT pathway.

Deregulation of the PI3K-AKT-mTOR pathway is widespread in

cancer including MM (Soares, 2012). Moreover, these three path-

ways can interact with each other and the changes in one pathway

can affect the activities of the other pathways. For example, NFjB

can bind to the promoter of and regulate the expression of FAK

(Sulzmaier et al., 2014). Therefore, the concerted activation of these

three pathways in MM have profound effects on the outcome of this

disease. Finally, we demonstrate that our multistage algorithm per-

forms better than the widely used GA and particle swarming opti-

mization (PSO) for the inferred large-scale signaling pathway.

2 Materials and methods

2.1 Experimental work
Supplementary Material S1 lists the ethics statement and experimen-

tal procedure including the essential experimental information for

our computational method.

2.2 Computational method
In general, we explore the key proteins for the stiffness-associated

signaling pathway by gradually narrowing down the scope as shown

in Figure 1. Step 1 is to choose the candidate proteins by integrating

the RPPA experimental results into the related pathway analysis.
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Then, step 2 is to estimate the parameters for these candidate pro-

teins of the signaling pathway. Lastly, step 3 is to locate the key bio-

markers from these candidate proteins.

Step 1: Since previous research (Abe, 2011; De Raeve and

Vanderkerken, 2002; Noonan and Borrello, 2011) report that a

rigid environment can promote the proliferation of MMs, we

employed 100 and 400 Pa pressures to simulate normal and tumor

cells, respectively, as in a previous setup (Feng et al., 2010). First,

we coarse-grained screen significantly expressed proteins from the

experimental data carried out by the RPPA technique. Next, these

potential candidate proteins become the input of the canonical path-

way database, the Ingenuity Pathway Analysis (IPA) (Apostolos

et al., 2014), to obtain the enriched signaling pathways. Finally,

these enriched signaling pathways are merged as a generic signaling

pathway with the help of the experimentalist.

Step 2: First, the genetic signaling pathway is described by

ODEs. Second, a PSO method (Gao et al., 2017; Zhang et al.,

2019b) is used to roughly estimate the key parameters of the ODEs.

Third, three stages are employed to increase the accuracy of the key

parameter estimation: (i) using a Markov chain to divide the genetic

signaling pathway into submodules; (ii) decomposing the genetic sig-

naling pathway into two subpathways by a MFG algorithm (Koh

et al., 2006); (iii) estimating the key parameters with a belief propa-

gation (BP) algorithm (Peng et al., 2014).

Step 3: The most crucial proteins for MM cancer are

explored by parameter analysis after model development, training

and testing.

3 Results

3.1 Step 1: model development
3.1.1 Using the coarse-grained method to screen protein

Since a rigid environment promotes the proliferation of myeloma

cells (Anderson, 2007; Arshi et al., 2016; Yamashita, 2012), this re-

search employs 100 Pa rigidities to simulate normal cells and 400 Pa

rigidities to simulate myeloma stem cells. Then, we preprocessed

RPPA data and chose significantly upregulated and downregulated

proteins to construct the raw genetic signaling pathway. These pro-

cedures are detailed in Supplementary Material S2 and S3.

3.1.2 Constructing the generic signaling pathway

The top 10 upregulated proteins selected from the previous step

are input for IPA (Apostolos et al., 2014) to obtain the

candidate pathways. With the help of the experimentalists, these

candidate pathways are combined to generate a raw genetic signal-

ing pathway (Fig. S3 of Supplementary Material S3). Since Figure S3

of Supplementary Material S3 is too complicated to infer its key

parameters, this study employs previously well-defined removing

rules (Peng et al., 2014; Saez-Rodriguez et al., 2009) to simplify it

into a genetic signaling pathway (Fig. 2). The removing rule

(Peng et al., 2014) that deletes unimportant proteins is as follows:

if protein A can activate protein B and protein B can activate

protein C, then protein B is removed to allow A to directly

activate C.

3.2 Step 2: model training
Step 2 employs a multistage parameter estimation algorithm to train

the key parameters of the model with three major stages: initializa-

tion, MFG and refinement stages. Since we employ a Markov chain

and MFG to reduce the large-scale signaling pathway, we denote

this multistage parameter estimation algorithm as Markov chain

modularized factor graph (MCMFG).

3.2.1 Initialization

ODEs are employed to describe the structural genetic signaling path-

way as in previous studies (Zhang and Zhang, 2017; Zhang et al.,

2007, 2016). However, the size of the genetic signaling pathway

(Fig. 2) is too large to accurately optimize its key parameters by clas-

sical optimization methods (Chen et al., 2009; Gao et al., 2017;

Zhang et al., 2017b, 2019b). Thus, we employ a Markov chain (Fig.

S4A of Supplementary Material S3) to divide the genetic signaling

pathway into 19 submodules (Fig. S4B of Supplementary Material

S3) by the previously used rules (Peng et al., 2014): (i) each module

has at least one phosphorylated protein; and (ii) each module has at

least one phosphorylated protein with RPPA data.

Fig. 1. The workflow of the systematic procedure. (A) Model development

(left panel shows Markov chain detailed in Figure S4A of Supplementary

Material S3). (B) Model training (right panel shows model testing results

detailed in Figure S1 of Supplementary Material S6). (C) Model testing (left

panel shows the sensitivity analysis result detailed in Figure S2 of

Supplementary Material S7)
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Here, protein pNFkB is used as an example to show how to em-

ploy ODEs to describe the signaling pathway as Equation (1).

dðpNFjBÞ
dt

¼ kNFjB pAKT=S473 � ½NFjB� � ½pAKT=S473� þ kNFjB pNotch3

�½NFjB� � ½pNotch3� � kpNFjB � ½pNFjB�
(1)

where [‘Name’] denotes the concentration of the protein ‘Name’.

kNFkB pAKT=S473, kNFjB pAKT=S473 and kNFjB pNotch3 denote the phos-

phorylation rate of NFjB activated by pAKT=S473, pNotch3 and

pNFjB; respectively. kpNFjB denotes the dephosphorylation rate of

pNFjB: Supplementary Material S4 lists 40 ODEs with 45 parame-

ters and 19 submodules for the genetic signaling pathway.

We use PSO to estimate the initial key parameters of each sub-

module as Equation (2).

H� ¼ argmin
XM
i¼1

XN
j¼1

xiðxSimulation
i ðtj;HÞ � xExperiment

i ðtjÞÞ2 (2)

where H�denotes the objective function of the parameter optimiza-

tion. xSimulation
i ðtj;HÞ denotes the protein concentration as a function

of time series data obtained by ODE equation simulations.

xExperiment
i ðtjÞ denotes the RPPA time series protein concentration. xi

is 1=ðmaxxExperiment
i ðtjÞÞ and H is the parameter vector. Here, ith and

jth represent the index for the protein and time. Mand N represent

the number of proteins and time points, respectively.

3.2.2 Using a modularized factor graph (MFG) to optimize the key

parameters of the model

Here, we consider that cell growth and apoptosis are the two major

phenotypes for MM cancer. Then, we employ a MFG (Koh et al.,

2006) to gradually reduce the search range of the key parameters by

decomposing the genetic signaling pathway (Fig. 2) into two sub-

pathways (Fig. S4C and D of Supplementary Material S3) by the fol-

lowing rules.

Rule 1: starting from the protein directly related to the growth

or apoptosis phenotype, keep seeking upstream proteins that directly

inhibit or promote the growth or apoptosis phenotype until we can-

not find new upstream proteins. After that, the first subpathway

consists of these selected proteins. Rule 2: if the number of shared

proteins for the two subpathways is greater than 90% of the total

number of proteins, these two subpathways are merged. Rule 3: if

the number of the proteins of one subpathway is twice that of an-

other subpathway, this subpathway is resolved again by rules 1, 2

and 3. It should be noted because the MFG developed by Koh et al.

(2006) has been widely used for biological signaling networks

(Chaouiya, 2007; Nim et al., 2013; Quach et al., 2007), neurobiol-

ogy (Parr et al., 2019), and drug resistance study (Niederberger

et al., 2015; Peng et al., 2014), we consider that it is a reliable

method for us to identify such proteins that are closely related to cell

apoptosis or growth phenotypes for MM.

Because several parameters simultaneously exist in modules 1 to

7 and 13 to 16 of Fig. S4B of Supplementary Material S3, it is im-

possible to optimize the parameters for each subpathway.

To reconcile the conflicts among parameters of shared proteins,

we first define the individual compatibility function [Equation (3)]

for each factor node in the context of an individual factor graph and

then combine all the compatibility functions across two factor

graphs (or the combined factor graph) in one objective function

[Equation (4)] through which the shared parameters can be opti-

mized by applying the BP algorithm, detailed in Supplementary

Material S5. Note that the initial values (or the initial ranges) of the

parameters used in the BP algorithm are obtained from the initializa-

tion step of our MFG algorithm. Finally, the best set of ranges of the

model parameters with smaller lengths of intervals can be obtained

through the BP algorithm from the initial ranges with larger lengths

of intervals.

gh
ih
ðHh

ih
;Xh

ih
ðtÞÞ ¼ expð�Eh

ih
ðHh

ih
;Xh

ih
ðtÞÞÞ (3)

where Eh
ih
ðHh

ih
;Xh

ih
ðtÞÞ ¼ minH=Hh

ih

P
m2Edata

P
jðxh

mðtj; HÞ � x̂h
mjÞ

2

denotes the error term between the simulation results and the experi-

mental results; Hh
ih

is the set of parameters and H=Hh
ih

represents

parameters that are not in the parameter set of Hh
ih

. Edata represents

the set of experiential data and m is the protein index from the ex-

periential data.

gðH;XðtÞÞ ¼ 1

a

Y
ih ;h

gh
ih
ðHh

ih
;Xh

ih
ðtÞÞ ¼ 1

a
exp
�
�
X

ih ;hEh
ih
ðHh

ih
;Xh

ih
ðtÞ
�

(4)

Equation (4) is a maximum-likelihood function that considers

the total compatibility of all nodes [Equation (3)] for the optimal

range of the parameters, where a is a normalizing constant and

g
�
h;XðtÞ

�
represents a well-defined probability function.

3.2.3 Refinement

We use PSO to train the model by setting the initial values based on

the ranges from the above steps. The refinement step is repeated five

times. Figure 1B shows that both simulated and experimental curves

have the same trend for P21 and CyclinD after the model training.

The remaining data are listed in Figure S1 of Supplementary

Material S6.

3.3 Step 3: model testing
3.3.1 Model cross validation

As mentioned above, the experimental data consists of 19 proteins

at four time points [t¼0, 30 and 60 min and overnight (12 h)].

Here, leave-one-out cross validation (LOOCV) (Gao et al., 2017;

Zhang et al., 2017b, 2019a) is employed to validate the predictive

power of the model. Table S1 of Supplementary Material S7 lists the

relation errors for each protein. We employ a well-developed

Fig. 2. The structure of the genetic BMSC’s stiffness-associated signaling

pathway
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statistical test procedure (Zhang et al., 2019a, b) to verify the differ-

ence between the simulated results and the experimental results for

all the proteins. Since the P-values listed in Table S1 of

Supplementary Material S8 are greater than 0.05, there is no statis-

tically significant difference between the simulated and experimental

data for all the proteins. Therefore, our proposed method has suffi-

cient predictive power.

3.3.2 Algorithm performance comparison

We compare the parameter estimation performance of MCMFG

with two widely used methods, GA (Sun et al., 2012) and PSO

by using object error (OE) (Peng et al., 2014), described by

Equation (5).

OE ¼
XM
i¼1

XN
j¼1

½xSimulation
i ðtj;HÞ � xExperiment

i ðtjÞ��
maxj

�
xExperiment

i ðtjÞ
��2

2

=ðM �NÞ (5)

We repeat 10 times to compute OE and use Student’s t-test (Peng

et al., 2014) to validate the statistical significance among these three

algorithms by OE. Figure 3 shows that MCMFG performs better

parameter estimation than GA and PSO with a smaller P-value.

3.4 Parameter analysis
3.4.1 Identifiability analysis

The identifiability analysis employs the coefficient of variation (CV)

(Sun et al., 2012; Zhang et al., 2016) defined as the ratio of the

standard deviation to the mean of the estimated values to determine

if the parameter is identifiable or not. If the CV of the parameter

is greater than 1, it is unidentifiable; otherwise it is identifiable.

Figure S1 of Supplementary Material S7 shows that 77.78% of our

parameters are identifiable.

3.4.2 Sensitivity analysis

Sensitivity analysis quantitatively determines the impact of the spe-

cific parameters on the output. To understand the relationship be-

tween system responses and variations in individual model

parameter values, local sensitivity analysis is performed by Equation

(6) (Sun et al., 2012).

Si ¼
@½proteinj�

@Vi
=
½proteinj�

Vi
�

D½proteinj�
½proteinj�

=
DVi

Vi
(6)

Here, Si is the sensitivity coefficient. ½proteinj� denotes the con-

centration of the critical proteins (Casp3, p90RSK, CyclinD1, p21

and p7056k) which directly affect the cell phenotype switch. Vi rep-

resents the estimated parameter, the change of which (DVi) is set to

1%. Figure S2 of Supplementary Material S7 shows that each pro-

tein (Casp3, p90RSK, CyclinD1, p21 and p7056k) is just sensitive to

at most two parameters, with sensitivity coefficients is greater than

0.5, and the maximum sensitivity of the parameter for these five

proteins is 1.3397 for CyclinD1 (Fig. 1C). Therefore, the sensitivity

analysis shows that our system is rather robust.

3.4.3 Variation analysis

Equation (7) computes the parameter variation for two experimen-

tal conditions.

V ¼ ðHP¼400 Pa �HP¼100 PaÞ=HP¼100 Pa (7)

where V denotes the variation of the parameter, HP¼400 Pa and

HP¼100Pa denote the parameter values under two different

conditions.

Figure 4 shows that parameter indices 2, 13, 16, 18 and 26 have

significant variations. Listed in Table S1 of Supplementary Material

S9, these indices are the corresponding parameters of k_pFAK,

k_NFjB_pAKTs473, k_mTORC1_pAKTs473, k_P70S6K1_pmTO

RC1 and k_CyclinD_pP21 in the ODE system (Supplementary

Material S4), which are closely related to proteins FAK, mTORC1

and NFjB. They are considered as the critical proteins of the

stiffness-associated signaling pathway. Based on the previous re-

search procedures (Fan et al., 2017; Wen et al., 2016), we show that

patients with MM have more positive and relatively stronger nuclear

staining for NFjB (Fig. 5A) than that of healthy individuals

(Fig. 5B).

Figure 6 shows that increasing or decreasing the concentration of

the three crucial proteins (FAK, mTORC1 and NFjB) can regulate

the dynamics of Casp3 and CyclinD1 for our inferred signaling

pathway (Fig. 2). As indicated by previous research, Casp3

(McIntosh et al., 2017) and CyclinD1 (Zhang et al., 2007) are close-

ly related to cell apoptosis and cell growth rate, respectively.

Fig. 3. The algorithm comparison among PSO, GA and MCMFG

Fig. 4. The variation analysis results. The x- and y-axis are parameter vari-

ation and the name of parameters (Table S1 of Supplementary Material S9),

respectively

Fig. 5. Immunohistochemistry experiment. NFjB staining for the (A) patient

(20%), (B) healthy individual (5%). It is noted that the percentage of positively

stained cells (subscript of A and B) is determined by two independent

pathologists
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For example, when we increase the concentration of FAK (FAKþ) in

the model, the concentration of CyclinD1 associated with cell prolifer-

ation significantly increases (dark red in Fig. 6) and the concentration

of Casp3 associated with cell apoptosis significantly decreases (shallow

green in Fig. 6). On the contrary, when we decrease the concentration

of FAK (FAK�) in the model, the concentration of CyclinD1 associated

with cell proliferation significantly decreases (shallow red in Fig. 6) and

the concentration of Casp3 associated with cell apoptosis significantly

increases (dark green in Fig. 6). Moreover, we can observe the same

results for mTORC1 and NFjB from Figure 6.

4 Discussion

This research aims to disrupt the vicious stiffening loop involving

MICs and BMSCs using the following three major scenarios. First,

we developed an integrative framework (Fig. 1) to infer the BMSC

stiffness-associated signaling pathway related to MIC cellular

responses, including apoptosis and growth. Then, we demonstrated

that not only the robustness and predictive capacity of the signaling

pathway model (Table S1 of Supplementary Material S8, Fig. S1 of

Supplementary Material S6, Figs S1C and S2 of Supplementary

Material S7), but also that the MCMFG algorithm has greater ac-

curacy of parameter estimation than GA and PSO for the inferred

stiffness-associated signaling pathway (Figs 2 and 3).

Second, we revealed the critical proteins (FAK, mTORC1 and

NFjB) from the stiffness-associated signaling pathway (Fig. 2) by

parameter analysis (Fig. 4). Then, we confirmed the impact of FAK,

mTORC1 and NFjB on MM cancer by using manually reviewed

the evidence and experimental data as follows: (i) focal adhesion

kinase (FAK) is a nonreceptor tyrosine kinase. FAK associates with

integrin adhesion molecules to exert its signaling activities. Since ad-

hesion molecules are the key players in the survival of MM cells

(Katz, 2010), it is evident that the FAK-associated pathway is vital

to cancer progression in MM. (ii) mTORC1 is a major downstream

mediator of the PI3K/AKT signaling pathway. Deregulation of the

mTOR signaling pathway has been reported in many types of

human cancer (Soares, 2012). The mTORC1 pathway is an import-

ant therapeutic target in the treatment of MM (Chen et al., 2014).

(iii) Abnormal activation of the NFjB pathway is frequent in human

lymphoid cancers, such as Hodgkin’s lymphoma (Arshi et al., 2016)

and mucosa-associated lymphoid tissue (MALT) lymphoma (Weiss

and Freeman, 2001). The prominent role of NFjB pathway activa-

tion came to light in 2007 when two independent research groups

report their similar findings in the same issue of cancer cell (Tai

et al., 2000). Both classical and alternative pathways of NFjB acti-

vation are involved in MM (Saez-Rodriguez et al., 2009). Moreover,

Figure 5 confirms that NFjB plays an important role in MM cancer.

Third, we investigated the impact of regulating the concentration

of the crucial proteins on the MM phenotype, as shown in Figure 6.

FAK, mTORC1 and NFjB are all positively related to cell growth

(CyclinD1) and negatively related to cell apoptosis (Casp3), which

are validated by manually reviewed evidences as follows: (i) Serrels

et al. (2015) indicates that FAK plays important roles in maintaining

tumor cell proliferation, survival and invasion. In particular, overex-

pression and activation of FAK can induce immune suppression in

the tumor microenvironment, allowing tumor cells to evade antitu-

mor immunity and grow unchecked. (ii) Chen et al. (2014) discov-

ered that mTORC1 activation by PRL-3 promotes both cancer

progression (Zu et al., 2015) and cancer cell survival by reprogram-

ming metabolic pathways or controlling Mcl-1 expression through

translation in cancer cells (Mills et al., 2008; Pusapati et al., 2016).

Inhibition of Pim2 results in decreased mTORC1 activity and dimin-

ished cell proliferation in MM (Lu et al., 2013). (iii) Yano et al.

(2005) showed that the consequences of constitutive NFjB activa-

tion in MM are prolonged tumor cell proliferation and survival,

which increase the therapy resistance.

In general, since we inferred the structure of the BMSC stiffness-

associated signaling pathway related to MIC responses and explored

their crucial proteins, it is possible for us to break the vicious stiffen-

ing loop between MIC and BMSCs by regulating cell growth or the

apoptosis rate.

Although we have constructed a fundamental framework for infer-

ring crucial proteins in related pathways, other questions remain. For

example, circadian rhythms have a great impact on cancer cells (Fu

and Lee, 2003). In particular, Khapre et al. (2014) and O’Keeffe et al.

(2017) demonstrate that the circadian clock controls the activity of the

mTOR pathway through BMAL1-dependent mechanisms and NFjB is

closely related to the circadian clock. To the best of our knowledge, the

connection between circadian rhythm of FAK and MM cells is still un-

clear. Since the major aim of this research is to develop an efficient

data mining algorithm to investigate MM cancer cells’ related proteins,

we are going to explore the connection between FAK and MM cancer

cells in the distant future. Also, RPMI8226 is the only cell line used in

this study limited to our capacity, though our study on this cell line

produced nice results and proved our hypothesis. Therefore, because

comprehensive study of different myeloma cell lines is beyond the aim

of this manuscript, our future studies will warrant the use of more cell

lines to evaluate if the discoveries made here can be generalized across

cell lines. Furthermore, since there is still a room to improve the effi-

ciency of this algorithm, more efficient optimization algorithm is

needed in future work.
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