
 

 
 Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es 

 

 Esta es la versión de autor del artículo publicado en: 
 This is an author produced version of a paper published in: 
 

Bioinformatics 35.24 (2019): 5339-5340 

 
DOI: https://doi.org/10.1093/bioinformatics/btz573 

Copyright: © 2019  The Author(s) 

 
 El acceso a la versión del editor puede requerir la suscripción del recurso  

Access to the published version may require subscription 

https://repositorio.uam.es/
https://doi.org/10.1093/bioinformatics/btz573


TFEA.ChIP: A tool kit for transcription factor binding site
enrichment analysis capitalizing on ChIP-seq datasets.

Laura Puente-Santamaria1, Luis del Peso1,2,3*
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Abstract

The identification of transcription factors (TFs) responsible for the co-regulation of
specific sets of genes is a common problem in transcriptomics. Herein we describe
TFEA.ChIP, a tool to estimate and visualize TF enrichment in gene lists representing
transcriptional profiles. To generate the gene sets representing TF targets, we gathered
ChIP-Seq experiments from the ENCODE Consortium and GEO datasets and used the
correlation between Dnase Hypersensitive Sites across cell lines to generate a database
linking TFs with the genes they interact with in each ChIP-Seq experiment. In its
current state, TFEA.ChIP covers 327 different transcription factors from 1075 ChIP-Seq
experiments, with over 150 cell types being represented. TFEA.ChIP accepts gene sets
as well as sorted lists differentially expressed genes to compute enrichment scores for
each of the datasets in its internal database using an Fisher’s exact association test or a
Gene Set Enrichment Analysis. We validated TFEA.ChIP using a wide variety of gene
sets representing signatures of genetic and chemical perturbations as input and found
that the relevant TF was correctly identified in 103 of a total of 144 analyzed datasets
with a median area under the curve (AUC) of 0.86. In depth analysis of an RNAseq
dataset, illustrates that the use of ChIP-Seq data instead of PWM-based provides key
biological context to interpret the results of the analysis. To facilitate its integration
into transcriptome analysis pipelines and allow easy expansion and customization of the
TF-gene database, we implemented TFEA.ChIP as an R package that can be
downloaded from Bioconductor:
https://www.bioconductor.org/packages/devel/bioc/html/TFEA.ChIP.html and
github: https://github.com/LauraPS1/TFEA-drafts In addition, make it available
to a wide range of researches, we have also developed a web application that runs the
package from the server side and enables easy exploratory analysis through interactive
graphs: https://www.iib.uam.es/TFEA.ChIP/
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Introduction 1

Identification of gene expression signatures representing biological states is a key step to 2

understand the transcriptional control of biological processes and the alterations that 3

occur in pathological conditions. The underlying assumption is that one or a few TFs 4

are responsible for the signature. Traditionally, the identification of relevant TFs has 5

relied on the use of position weight matrices (PWMs) to predict transcription factor 6

binding sites (TFBSs) proximal to the DE genes [19]. The comparison of predicted 7

TFBS in DE versus a set of control genes, reveals factors that are significantly enriched 8

in the DE gene set. The prediction of TFBS using these approaches have been useful to 9

narrow down potential binding sites, but can suffer from high rates of false positives. In 10

addition, this approach is limited by design to sequence-specific transcription factors 11

(TF) and thus unable to identify cofactors that bind indirectly to target genes. To 12

overcome these limitations a new family of methods that exploit experimentally 13

determined binding information are beginning to emerge [1] [6]. Here we describe the 14

development the R package TFEA.ChIP, which exploits the vast amount of publicly 15

available ChIP-Seq datasets to determine TFBS proximal to a given set of genes and 16

computes enrichment analysis based on this experimentally-derived rich information. 17

Specifically, TFEA.ChIP uses information derived from the hundreds of ChIP-Seq 18

experiments from the ENCODE Consortium [4] expanded to include additional datasets 19

contributed to GEO database [3] [2] by individual laboratories representing the binding 20

sites of factors not assayed by ENCODE. The package includes a set of tools to 21

customize the ChIP data, perform enrichment analysis and visualize the results. This 22

manuscript describes the main characteristics of the package and assess its performance 23

through the analysis of selected gene sets from the v6.1 MSigDB [10] [9] representing 24

the expression signatures of chemical and genetic perturbations acting through defined 25

transcription factors. Our results show that the relevant transcription factor was 26

identified within the top 10% candidates in 90 out of 129 tested sets. The proportion of 27

correctly identified transcription factors increased up to 13 out of 15 datasets derived 28

from the integration of several signatures. TFEA.ChIP is implemented as a lightweight 29

bioconductor R package facilitating its integration into analysis pipelines and allowing 30

fully customization. In addition, to make it accessible to a wider range of researchers, 31

we have also implemented a web-based tool that runs TFEA.ChIP through a graphic 32

interface. 33

Design and implementation 34

Database 35

TFEA.ChIP package includes analysis and visualization tools intended for the 36

identification of TFBS enriched in a set of DE genes. To this end, the package uses 37

information derived from 1075 ChIP-seq datasets, generated by the ENCODE 38

consortium and individual researchers, testing a total of 327 individual human 39

transcription factors in a variety of cell types and experimental conditions 40

(supplemental table S1 Table). The collection of TF includes 276 sequence-specific 41

transcription factors and 51 regulatory molecules that bind DNA indirectly (e.g. 42

transcription cofactors and chromatin modifiers) or in a sequence-independent fashion 43

(e.g. RNA Polymerases). Thus, this compiled database covers around 20% of the 44

1,391 [17] to 1600 [8] sequence-specific transcription factors encoded by the human 45

genome and include proteins from all the major classes of DNA binding domains (Fig 1 46

and (supplemental table S2 Table)). Public ChIPseq datasets contain the coordinates of 47

TF binding sites throughout the genome. Thus, in order to use this information in gene 48
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enrichment analyses, we first need to associate binding regions (ChIP-peaks) to specific 49

gene loci. In the absence of three-dimensional contact information, such as that 50

produced by chromosome conformation capture carbon copy (Hi-C) experiments, the 51

peaks are usually assigned to the nearest gene.

Figure 1. Structural di-
versity according to DNA-
binding domains of the tran-
scription factors included in
the TFBS database . The
327 TFs included in TFEA.ChIP
database were classified into fam-
ilies according to their DNA-
binding domain composition.

52

However, Hi-C experiments 53

indicate that only a small 54

fraction of the looping interactions 55

of distant regulatory regions 56

are with the nearest gene [13]. 57

Accordingly, uncertainty of peak 58

assignation increases as the distance 59

to the nearest gene broadens [12]. 60

To overcome these difficulties, 61

we exploited the extensive 62

map of enhancer-target gene pairs 63

generated by the ENCODE project 64

through the analysis of correlation 65

between the DHS signal at distant 66

sites and gene promoters regions 67

across 79 cell lines [15]. Specifically, 68

we first generated a database 69

pairing open chromatin regions, 70

as defined by clusters of Dnase 71

Hypersensitive Sites (DHSs) [15], 72

and genes in the UCSC Known 73

Gene database (version 3.2.2) [5]. 74

DHSs were assigned to genes 75

overlapping with the open chromatin region tolerating a 1Kb margin from the gene 76

boundaries and allowing for multiple gene assignation for those DHSs overlapping two 77

genes. This process resulted in a database of DHSs-gene pairs that only retained DHSs 78

that were assigned to at least one gene (Fig 2, step A). Next, we added to this database 79

the list of statistically significant (Pearson’s correlation coefficient >0.8) enhancer 80

DHSs-gene pairs generated by ENCODE [15] (Fig 2, step B). Then, for each ChIP-seq 81

dataset we selected those peaks that were statistically significant (FDR < 0.001 for 82

ENCODE datasets and FDR < 0.05 for the rest of datasets) and overlapped an open 83

chromatin region in the DHSs-gene database. Each of these peaks was assigned to the 84

same gene as the DHS they overlapped with (Fig 2, step C). Finally, we integrated the 85

peak-gene information from all ChIP-dataset into a binary matrix with rows 86

corresponding to all the human genes in the Known Gene database, and a columns for 87

every ChIP-Seq experiment analyzed; the entry values were assigned to 1 when the row 88

gene had at least one peak assigned in the ChIP-Seq column and 0 otherwise (Fig 2). It 89

is worth noting that, as a result of the matching strategy, the interaction matrix 90

contains a large fraction of TFBS-gene pairs involving distant regulatory interactions 91

including intronic [12] and enhancer regions. 92

Enrichment analysis 93

TFEA.ChIP is designed to take the output of gene expression profiling analysis and
identify transcription factors enriched in the list of differentially expressed genes. The
core premise of the method is that key effectors of a transcriptional response will have
more target genes among the differentially expressed than among the unresponsive
genes. TFEA.ChIP implements to types of tests to identify enriched TF. The first one
analyzes the association of TFBS and differential expression from 2x2 contingency
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Figure 2. Building Database of TF-gene associations. A, Open chromatin
regions, defined as clusters of DHSs by the ENCODE project, were assigned to the
nearest gene in the UCSC Known Gene database within 1Kb window. B, Distant DHSs
were assigned to genes based on statistical correlation (Pearson’s coeficient >0.8) between
distant and promoter DHSs across cell lines. C, Significant ChIP-seq peaks mapping to
the DHSs selected in A and B were assigned to gene linked to the DHSs they overlap
with.

tables categorizing all human genes according to the presence of binding sites for a
given TF and their transcriptional response (DE or non-responsive). The statistical
significance of the association for each transcription factor is determined by a Fisher’s
exact test. We refer to this method as association test throughout the text. This
analysis only requires a list of DE genes as input and returns a table containing the
results of the Fisher’s exact test computed for each one of the 1075 independent binding
profiles the data base. In addition to the FDR-adjusted p-value (and its -log10
transformation, here referred to as LPV) for the association, the table contains the
odds-ratio (and the log2 transformation, here referred to as LOR) as a measure of the
size effect. Also, in an attempt to rank the transcription factors as potential candidates
mediating the regulation of DE genes, the program computes the euclidean distance of
each factor i to the origin in LPV versus LOG graphs as

Distancei = sgn(LORi) ∗
√
LOR2

i + LPV 2
i
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where LORi and LPVi correspond to the log2(OR) and −(log10(adjPval))
transformation of the odds-ratio (OR) and FDR-adjusted p-value (adjPval) returned by
the Fisher’s exact test for the i TF in the data base, and sng() is the sign function. In
the second method, the association of TF to DE genes is determined using a Gene Set
Enrichment Analysis (GSEA) [14]. To this end TFEA.ChIP uses the list of genes bound
by each TF in the internal database as a gene sets representing the binding signature of
each factor. Thus, each column in figure 2 is represented as a gene set that includes all
genes with a value of 1. This analysis requires as input list of genes sorted according to
the magnitude of the difference in expression in the two conditions being compared. We
recommend the π-value [20], which combines expression fold change and statistical
significance, as sorting criteria for the result of a DE gene analysis:

πi = log2(FC) ∗ (− log10(adjPval))

. where FC is the ratio of gene i expression in the two conditions being compared and 94

adjPval is the multiple-testing adjusted P-value associated with equal-mean expression 95

hypothesis test. 96

Results 97

The general strategy followed by TFEA.ChIP was first described in an study aiming to 98

determine transcription factors involved in gene repression induced by reduced oxygen 99

availability (hypoxia) [16]. This work also highlighted the benefits of using ChIP-seq 100

data over PWM for the identification of TFBS [16]. The implementation of this 101

approach in the package TFEA.Chip described herein greatly simplifies its application 102

to any general case. Here, we use a case study to illustrate the tools implemented in 103

this software package and its web version. In addition, to provide evidence of its general 104

performance, we applied TFEA.ChIP to a total of 144 gene sets from the MSigDB 105

representing the expression signature of a wide variety of chemical and genetic 106

perturbations and well-defined lists of transcription factor targets. 107

0.1 Case study: identification of TF responsible for 108

hypoxia-triggered gene induction 109

The transcriptional response to hypoxia is mediated by a group of basic helix-loop-helix 110

(bHLH) transcription factors termed Hypoxia Inducible Factors (HIFs). HIFs are 111

heterodimers that share a common beta subunit, encoded by the gene ARNT, and an 112

alpha subunit, encoded by the genes HIF1A, EPAS1 or HIF3A. To demonstrate the use 113

of TFEA.ChIP we applied it to an RNA-seq dataset (GSE89831) representing the 114

transcriptional response of endothelial cells to hypoxia [16]. To this end, we first 115

reanalyzed this dataset with DEseq2 [11] and selected DE genes whose transcription was 116

significantly induced by hypoxia (log-fold change hypoxia over normoxia >0 and FDR 117

<0.05). Then, we searched for overrepresented TFBS in this list of DE genes using the 118

association test in TFEA.ChIP (Fig 3A) and Opossum (Fig 3B), a PWM-based 119

state-of-the-art tool [7]. To compare both methods, we processed the raw output 120

produced by oPOSSUM (number of target hits, target non-hits, background hits, and 121

background non-hits for every PWM) to generate statistics comparable to those 122

produced by TFEA.ChIP (Fisher’s tests p-value and odds ratio). While both methods 123

were able to find the Hypoxia Inducible Factors (HIFs) as TF significantly enriched in 124

the set of genes upregulated by hypoxia (Fig 3 A and B), the results of TFEA.ChIP 125

clearly ranked HIFs above the rest of TFs, suggesting a much higher signal to noise 126

ratio. In addition, the output of TFEA.ChIP indicated that most of the datasets 127
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representing these transcription factors are consistently enriched (Fig 3A), regardless 128

the HIF subunit assayed (HIF1A, EPAS1 and ARNT, no ChIP-seq datasets are 129

available for HIF3A). In fact, the interactive analysis allowed by the package, revealed 130

that the datasets that did not show significant enrichment correspond to samples 131

assayed in normoxic conditions where HIFs are inactive (Fig 3C). Conversely, the few 132

datasets from normoxic samples that showed enrichment derive from a clear cell renal 133

carcinoma cell line (786-O). This cell line is defective for the tumor supressor gene VHL, 134

a key protein controlling the transcriptional response to hypoxia, leading to constitutive 135

activation of HIF even in the presence of oxygen (normoxic conditions). The

Figure 3. Identification of
TF enriched in genes induced
by hypoxia. Association test.
A set of genes whose transcrip-
tion was significantly induced in
response to hypoxia was ana-
lyzed with TFEA.ChIP (A,C and
D) or Opossum (B). The graphs
represent the adjusted p-value
(-log10 FDR) and the log-odds
ratio (LOR) for the association
of ChIP datasets (A,C and D)
or PWM-motifs (B). A, datasets
corresponding to TF of the Hy-
poxia Inducible Factor (”HIF1A”,
”EPAS1” and ”ARNT”) family
and other TF (”other”); B, PWM-
motif corresponding to Hypoxia
Inducible Factors (”HIFs”) vs
rest of motifs (”Other”). C,
the graph shows HIF datasets la-
belling those derived from nor-
moxic (”Nx”), hypoxic (”Hpx”)
and inhibitor-treated (”Inh”) sam-
ples. Inh samples were exposed
to a small molecule inhibitor that
activates HIF. D, HIF datasets
labelling those derived from VHL-
competent (”WT”) or deficient
(”Mut”) cells.

136

association analysis implemented in TFEA.ChIP allows ranking the ChIP datasets 137

based on their distance to the origin in the LPV-LOR plots (see mehods). Based on this 138

information, we found that, in agreement with the observations above, HIF (ARNT, 139

EPAS1 and HIF1A) datasets derived form hypoxic experiments significantly ranked 140

above other TF datasets ( p− value = 1.6e− 6 , Mann-Whitney U test). In addition to 141

the association analysis, TFEA.ChIP includes a GSEA-based analysis to determine the 142

enrichment of TFBS on a sorted list of genes. To apply this analysis to the hypoxia 143

gene expression data set, we first sorted the genes detected in the experiment according 144

to their response to hypoxia (pi-value, [20]) and then used the sorted list as input for 145

the GSEA included in the package. Figure 4A shows the GSEA-derived enrichment 146

score (ES) and rank for the ES (Argument) for each one of the 1075 gene sets 147

representing the signatures for each one of the TF included in the database. The 148
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highest scoring significant gene sets correspond to those representing HIF binding 149

profiles (figure 4A). Accordingly, the distribution of genes bound by HIF is strongly 150

skewed toward large values of π in the sorted DE gene list 4B).

Figure 4. Identification of the TF responsible for transcriptional upregula-
tion induced by hypoxia. GSEA analysis. We computed the π-value [20] for the
genes in the DE analysis and used it as the sorting variable in the GSEA analysis. A,
the graph represents the ES for the 1075 TFBS included in TFEA tested against the
list of genes sorted by their response to hypoxia. Gene sets with ES values that differ
significantly from random associations are shown as crosses and non-significant values
as circles. Gene sets representing the binding of HIFs are shown in color (EPAS1, red;
HIF1A, orange; ARNT, blue) and the rest of factors in grey. B, The graph represents
the profile of the running ES for the indicated gene sets representing HIFs.

151

Altogether these results indicate that the analyses implemented in TFEA successfully 152

identified HIFs as the relevant factors driving the transcriptional upregulation induced 153

by hypoxia and show that the biological metadata associated to the ChIP datasets 154

included in the package provide invaluable context to interpret the output. 155

0.2 General performance of TFEA.ChIP 156

To determine the general performance of TFEA.ChIP, we tested it against the 157

annotated gene sets in the Molecular Signature Database (MSigDB) [14] [10]. 158

Specifically, we selected 129 gene sets included in the C2-CGP (”curated datasets”) 159

collection, representing expression profiles of defined genetic and chemical perturbations, 160

and used them as input for TFEA.ChIP. The selection criteria included gene sets from 161

experiments that targeted a defined TF and that the factor (or a paralog) was present 162

in the internal database of TFEA.ChIP. The selected gene sets include a variety of 163

experimental settings affecting 34 families of TF (Supplementary table S3 Table). To 164

visualize the performace of TFEA.ChIP on these datasets we recorded the rank 165

occupied by the relevant TF in the ouput of the association analysis. As shown in 166

Fig 5A (”C2” group), the relevant TF was present within the top 10% ranking 167

candidates for the majority (90 out of 129) of analyzed datasets. The C2 subset of the 168

MSigDB derive from individual experiments performed by independent researchers 169

using a wide array of techniques and settings and hence it is a heterogeneous and 170

redundant collection. Thus, we next tested TFEA.ChIP against the MSigDB 171

”Hallmark” collection that consists of a non-redundant and manually curated gene sets 172

representing specific biological states [9]. In this case, the relevant TF was present in 173

the top 10% ranking factors in 13 out of 15 gene sets representing defined gene 174

expression signatures (Fig 5A ”H” group). In addition, the relevant TFs were usually 175

found far from the remaining TF in the LPV-LOG plot (Fig 5B), suggesting a good 176

signal-to-noise ratio. In agreement, computation of receiver operating characteristic 177

(ROC) curve for each dataset showed that the area under the curve (AUC) was higher 178
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than 0.7 for 73% of the C2 and 100% of the Hallmark datasets (Fig 5C). In the case of 179

the Hallmark collection, the AUC was >0.8 for 14 of the 15 gene sets and >0.9 for 7 of 180

them. Thus, TFEA.ChIP shows a high discriminative capacity across a wide range of 181

gene profiles derived from varied experimental conditions and cell origins. 182

Figure 5. Performance of TEFA.Chip on MSigDB gene sets. A, Selected gene
sets from the C2 and H collections of the MSigDB were used as input for the association
test. The distance of each ChIP data set to the origin was computed as indicated in
methods and the rank of the relevant TF in the sorted list of distances was recorded.
The graph represent the minimum rank among datasets representing the relevant factor.
B, The indicated gene sets from the Hallmark collection were used as input for the
association test of TFEA.ChIP. For each analysis, the distances to origin of all ChIP
datasets were normalized to standard scores. The heatmap represents the maximum
standard score among the ChIP dataset representing the indicated TF across the tested
gene sets. C, For each tested gene set, we computed a ROC from the sorted list of
distances of each ChIP dataset set to the origin, labeling as true positives those datasets
corresponding to the relevant TFs. The graph represent the AUC for analyzed gene sets.

Discussion 183

The identification of the transcription factor(s) that coordinate a given gene expression 184

pattern is usually a key piece of information in transcriptomics. Herein, we describe the 185

package TFEA.ChIP, a software package that combines experimentally determined 186

genome-wide binding profiles of transcription factors and DNase hypersensitive regions 187

to identify TFBS enrichment. The use of ChIP-seq data instead of binding profiles in 188
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the form of PWM, to determine gene-regulatory networks is an emerging approach and, 189

to our knowledge, just two other tools, ENCODE ChIP-seq significance tool [1] and 190

iREGULON [6], make use of it. However, both packages significantly differ from 191

TFEA.ChIP in the strategy they use to identify enriched TFBS and, importantly, their 192

implementation. A main difference is that TFEA.ChIP makes use of correlation 193

between DHSs across different cell types to assign TFBS to genes, instead of just 194

assigning the ChIP-peaks to the nearest gene/feature within a defined window. Another 195

important difference is that the database containing TFBS-genes pairs that TFEA.ChIP 196

uses to compute associations and enrichment scores is fully customizable. The software 197

package includes functions to allow users to expand the internal database and 198

incorporate additional criteria, such as histone postranslational modifications, to assign 199

ChIPseq peaks to genes. Finally, ENCODE ChIP-seq significance tool and iREGULON 200

are implemented as web applications (in the case os iREGULON as a Cytoscape plugin 201

that connects to a server-side daemon over the Internet). In contrast, TFEA.ChIP is a 202

lightweight R package that includes data base and analysis tools, allowing its 203

integration with other libraries in general transcriptomics pipelines. In addition, to 204

make it available to a wide range of researchers, we used Shiny 205

(https://shiny.rstudio.com/) to built an interactive web application that enables 206

the use of TFEA.ChIP analysis tools through a simple graphic interface. The user guide 207

for the web application, including an step-by-step analysis of the hypoxia dataset is 208

presented in the supplemental information S1 File. A limitation of the current version 209

of the TFEA.ChIP package is that it only includes ChIP datasets derived from human 210

cells. To circumvent this restriction, the package includes a function to translate mouse 211

gene names to their equivalent ID on the human genome, enabling the analysis mouse 212

datasets. Since many of the genes representing particular signatures are conserved 213

between human and mouse, translation of terms should not affect the ability to identify 214

the relevant TF, as indicated by our preliminary analysis (data not shown). In 215

conclusion, TFEA.ChIP is an R package that exploits experimentally determined 216

genome-wide binding profiles to accurately predict the TF(s) that mediate gene 217

signatures or transcriptional profiles. During the preparation of this manuscript Wang 218

et al. published a manuscript describing another software tool, BART, that leverages on 219

publicly available ChIP-seq profiles to predict transcription factor enrichment [18] 220

Supporting Information 221

S1 Table. 222

ChIP-seq datasets included in the TFEA.ChIP package. The table includes 223

the datasets along with their GEO accession ID and metadata. 224

S2 Table. 225

Structural classification of the transcription factors included in 226

TFEA.ChIP.. 227

S3 Table. 228

Gene sets from MSigDB analyzed used to test TFEA.ChIP performance. 229

The table includes MSigDB gene set ID (”Gene Set”), reference to the collection name 230

(”Collection”), the genetic/chemical perturbation or biological/experimental process 231

represented by the gene set (”Treatment”) and the main transcription factor(s) expected 232

to be activated by the perturbation as well as paralogs and related factors (”TF”). 233
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S1 File. 234

TFEA.ChIP web application user guide. 235
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