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Abstract

Motivation: Over the last few years, the field of protein structure prediction has been transformed
by increasingly-accurate contact prediction software. These methods are based on the detection of
coevolutionary relationships between residues from multiple sequence alignments. However, despite
speculation, there is little evidence of a link between contact prediction and the physico-chemical
interactions which drive amino-acid coevolution. Furthermore, existing protocols predict only a fraction
of all protein contacts and it is not clear why some contacts are favoured over others. Using a dataset of
863 protein domains, we assessed the physico-chemical interactions of contacts predicted by CCMpred,
MetaPSICOV, and DNCON2, as examples of direct coupling analysis, meta-prediction, and deep learning.
Results: We considered correctly-predicted contacts and compared their properties against the protein
contacts that were not predicted. Predicted contacts tend to form more bonds than non-predicted contacts,
which suggests these contacts may be more important than contacts that were not predicted. Comparing
the contacts predicted by each method, we found that metaPSICOV and DNCON2 favour accuracy
whereas CCMPred detects contacts with more bonds. This suggests that the push for higher accuracy may
lead to a loss of physico-chemically important contacts. These results underscore the connection between
protein physico-chemistry and the coevolutionary couplings that can be derived from multiple sequence
alignments. This relationship is likely to be relevant to protein structure prediction and functional analysis
of protein structure and may be key to understanding their utility for different problems in structural biology.
Availability: We use publicly-available databases. Our code is available for download at http://opig.
stats.ox.ac.uk/.
Contact: mark.chonofsky@stats.ox.ac.uk
Supplementary information: Supplementary information is available at Bioinformatics online.

1 Introduction
The development of advanced methods to detect correlation between
sites in large multiple sequence alignments has increased the accuracy
of protein contact prediction. The predicted contacts output by these

methods have resulted in improvements in many areas of structural biology,
including template-free protein structure prediction (Jones et al., 2012;
Kamisetty et al., 2013). Machine learning-assisted contact prediction
methods, such as AlphaFold, have recently demonstrated unprecedented
ability to accurately predict protein structures at the level of topology or
better (Moult et al., 2018).

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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2 Chonofsky et al.

These contact prediction methods are based on the idea of coevolution
between residues in the protein structure. If a protein is to keep its folded
shape when a residue mutates, at least one of the residues with which it is
in contact is likely to undergo a compensatory mutation. For example,
a mutation which removes one cysteine in a disulfide bond might be
compensated by a mutation of the remaining cysteine in order to preserve a
bonding interaction between those two sites in the protein. Sites where such
compensatory mutations occur frequently can be identified by statistical
techniques from multiple sequence alignments. For these techniques to be
successful, it is necessary that the multiple sequence alignments contain
sufficient levels of sequence diversity to reveal these correlations.

Early contact prediction methods used mutual information between
alignment columns to infer contacts. Even with a number of corrections,
particularly including the average product correction (Dunn et al., 2008)
for phylogenetic and entropic noise, these methods (such as MIp (Dunn
et al., 2008), MIc and aMIc (Lee and Kim, 2009), and ZNMI (Brown
and Brown, 2010)) were unable to accurately infer protein contacts (i.e.,
residues that share spatial proximity, typically those with Cβ less than
8 Å apart). Gomes et al. (2012) found less than 30% precision at 20%
recall for any of the available mutual information-based methods. The low
precision of these methods was due in part to their inability to identify
contacts within a larger number of transitive correlations.

Direct coupling analysis (DCA) (Morcos et al., 2011; Marks et al.,
2011; Jones et al., 2012) overcame some of the weaknesses of MI methods
by correcting for the effect of transitive couplings between residues.
Methods such as CCMpred (Seemayer et al., 2014), Freecontact (Kaján
et al., 2014), EVFold (Sheridan et al., 2015), GREMLIN (Balakrishnan
et al., 2011), and PSICOV (Jones et al., 2012) all use variations of
this methodology. DCA-based contact predictors reached accuracies
approaching 50% for the top L/5 contacts where L is the length of the
protein (Jones et al., 2012). Despite higher accuracy, these methods still
obtains a low recall, and it remains unclear why certain contacts are not
predicted. A recent paper by Hockenberry and Wilke (2018) has suggested
that DCA methods detect side-chain interactions, while most studies assess
recall using an 8 Cβ backbone distance cut-off.

In an effort to further increase accuracy and recall, the next
development in protein contact prediction was the introduction of meta-
predictors, which combined the output of different contact predictors to
create aggregate predictions (e.g. MetaPSICOV (Jones et al., 2015) and
PConsC (Skwark et al., 2013)). MetaPSICOV outperforms its constituent
predictors (CCMpred, DCA, and PSICOV) by 10% precision or more, as
assessed on the topL contacts (Jones et al., 2015). Although these methods
increase the number of correctly predicted contacts, they also predict a set
of contacts which is different from the sets that their constituent predictors
predict, for example, by removing contacts that are predicted with low
confidence or by only one constituent predictor, or by ‘filling in’ contacts
from secondary structures (Jones et al., 2015).

The most recent developments have been the application of deep
learning approaches to contact prediction. DNCON2 (Adhikari et al.,
2018) and RaptorX (Wang et al., 2017) are currently the only published
examples of deep learning based contact predictors. (CASP13 featured
numerous examples of this class of approach, but these programmes
have not yet been released to the community.) Neither RaptorX nor
DNCON2 operates directly on the multiple sequence alignment, instead
using features derived from statistical coupling inference methods and
sequence property predictions, such as predicted secondary structure and
predicted solvation. DNCON2 outperforms MetaPSICOV and RaptorX
on the CASP10, CASP11, and CASP12 datasets (Adhikari et al., 2018),
achieving a precision of 53.4% on the CASP12 dataset, compared with
42.9% and 46.3%, respectively, for MetaPSICOV and RaptorX, for the
top L/5 predictions of long-range contacts. These methods treat contact
prediction as a problem in computer vision, enabling the application of

Fig. 1. A schematic of the data processing pipeline for our analysis. As described in the
main text, we filtered domains from ASTRAL to produce a set of domains with structural
and functional diversity. This set of domains was used as the basis for contact prediction
and categorisation of structural properties.

higher-order structures to the data, and resulting in a set of correctly-
predicted contacts that is again larger than those predicted by DCA or
meta-prediction methods. This larger set must again contain different
contacts from those identified by DCA or meta-prediction.

Contact prediction methods have been used to approach many
bioinformatics problems, from protein structure prediction to inference
of functional interactions, but little work has been done to understand the
nature of the contacts that they predict. Given that these methods were
all initially based on identifying co-evolving sites, it could be expected
that the contacts that they predict relate to specific types of interactions.
It is also likely that there are differences between contacts predicted by
different methods. While more modern prediction methods may improve
the accuracy of the predictions, as they move further from attempting to
extract coevolutionary signal, the physico-chemical nature of the sets of
predicted contacts may change. Direct coupling methods identify contacts
that exhibit strong statistical coevolutionary signal, and may therefore
identify contacts that have particular evolutionary significance. The effect
of adding other information to these predictions through deep learning is
not known. These differences might be key in understanding their utility
for different problems.

In this paper, we investigate the nature of the predicted contacts
from different contact prediction methods. We compare aMIc, CCMpred,
MetaPSICOV, and DNCON2 as examples of the different types of contact
predictors currently available, and we assess the differences between true
contacts predicted by the methods and random true contacts in protein
structures. We classify the bonds which are formed between residues in
our sets of contacts, and we show differences in the number and kind
of physico-chemical bonding interactions between different methods, and
between predicted contacts and random contacts. We show commonalities
between machine-learning based methods (MetaPSICOV and DNCON2)
and direct coupling analysis. Further, we find differences in the extent to
which bonds are conserved between different sets of contact predictions
and between contact predictions and the set of all contacts.
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2 Methods

Approach

In this paper, we consider a set of protein domains from the ASTRAL
database. A schematic of our pipeline is shown in Figure 1. We introduce
the following terminology to describe contacts:

Predicted set Of the top L predicted contacts for a given protein
structure, the predicted set is the set of residue pairs which are in contact
in that protein structure (true contacts), where L is the length in residues
of the structure. Therefore, the size of the predicted set is at most L.

Background set A randomly-selected set of residue pairs which are
not in the predicted set but which are in contact in a given protein structure
(false negatives) . For each protein structure, we select the same number
of contacts for the background set as are in the predicted set. For most
analyses, we use 20 randomly-selected background sets for each structure
to improve statistical reliability.

Structural domain set

From the 13,760 domains in ASTRAL (06.02.2016 build at 40% sequence
identity cut-off) (Fox et al., 2014; Chandonia et al., 2004, 2002; Brenner
et al., 2000), we selected a single exemplar domain for each CATH
(Dawson et al., 2017) homologous superfamily, giving 2,086 protein
domains. For each protein domain, we assembled a Multiple Sequence
Alignment (MSA) and predicted contacts for that alignment. (See below
for more details.)

Multiple sequence alignment generation For each domain, we
generated an MSA using HHBlits 3.0.0 (15-03-2015, default options
except -n 3, -maxfilt 500000, -id 99, -cov 0.90) with the
Uniprot20 database (2016.02) (Bateman et al., 2017). In order to ensure
alignments of sufficient quality for use in contact prediction, we removed
MSAs which had Nf < 32 (Ovchinnikov et al., 2017).

Protein contact properties

Contact definition Contacts are defined as residue pairs where the
distance between Cβ atoms (Cα for glycine) is less than 8Å. While this
cut-off is arbitrary, it is in accordance with convention in the field, and in
particular it is the cut-off with which DNCON2 and MetaPSICOV were
trained (Adhikari et al., 2018; Jones et al., 2015). We consider only those
contacts which are separated by five or more residues.

Contact prediction We used our MSAs as input to four contact
prediction methods: aMIc (Lee and Kim, 2009), CCMpred (Seemayer
et al., 2014), gDCA (Baldassi et al., 2014), MetaPSICOV version 1 (Jones
et al., 2015), and DNCON2 (Adhikari et al., 2018). For each of these
prediction methods, we used default parameters except in the following
ways. For aMIc, we used a pseudocount value of 0.05 in pairwise residue
counts so that the marginal contributions of the pseudocounts for each
residue was 1. We also modified the DNCON2 pipeline to use our HHBlits
alignments so that all four methods had identical input. After contact
prediction, we assessed contact prediction accuracy and removed cases
in which any of CCMpred, MetaPSICOV, and DNCON2 had contact
prediction accuracy over the top L contacts below 30%, where L is the
length of the protein domain. We also removed structures where there were
too few real contacts to populate the background set (see below). A full
list of all 2,086 cases and their alignment and contact prediction statistics
are given in SI.

Physico-chemical interactions We used ARPEGGIO (Jubb et al.,
2017) to identify the types of physico-chemical interactions between
amino acids in the three-dimensional protein structures of our domains.
ARPEGGIO uses molecular geometry to classify physico-chemical
interactions into 13 Structural Interaction Fingerprints (SIFts) (Deng
et al., 2004). The most common interaction types by overall count were

hydrophobic; polar, hydrogen_bond, and weak_polar and
weak_hydrogen_bond; and vdw (van der Waals). We also observed
carbonyl, aromatic, ionic, and covalent interactions. We did
not count the proximal category because it is a d ≤ 5 distance bin,
overlapping substantially with other interaction types without implying
a specific physico-chemical interaction. A full list of physico-chemical
interaction types is given in SI Table 1 and the geometric and chemical
criteria used to identify and label these bonds are given and discussed in
Jubb et al. (2017). We call these attractive physico-chemical interactions
“bonds” because they represent attractive physical interactions between
atoms. While some (i.e., disulfide bonds) are covalent, most are not.

Structural analysis

Structural alignment Protein-protein structural alignments were carried
out with CATH-SSAP (Dawson et al., 2017), since we used CATH
homologous superfamilies in structural classification.

Secondary structure classification STRIDE (Frishman and Argos,
1995) was used to assign contacts to secondary structures. We classified
contacts into four categories: Loop-Loop (contacts formed between
residues in loops), SS-Loop (contacts formed between a residue in a
loop and a residue in a secondary structure elements), within-SS (contacts
formed between residues within one secondary structure element), and
between-SS (contacts formed between residues within two different
secondary structure elements). We classified contacts as within-SS by
considering runs of consecutiveα or β residues. If two contacting residues
A andB were situated in runsRA andRB of the same secondary structure
type, we classified the contact (A,B) as within-SS if there was a main-
chain hydrogen bond between any of the residues in RA and RB , or if A
and B were situated in the same run. We also allowed transitive effects:
if a third residue C were located in a run RC that had a main-chain
hydrogen bond with RB , the contact (A,C) would have been classified
as within-SS.

Effective isolated contacts To assess the distribution of contacts,
we sought the largest set of contacts which could be considered isolated.
Specifically, we considered a contact A : (A1, A2) between an amino
acid with residue index A1 and amino acid with residue index A2 to
be isolated if there was no predicted contact B : (B1, B2) such that
|A1−B1| ≤ 1 and |A2−B2| ≤ 1. We constructed an undirected graph
on predicted contacts, with contacts corresponding to vertices and edges
between contacts A and B iff |A1 − B1| ≤ 1 or |A2 − B2| ≤ 1. We
then found a minimal vertex cover on this graph using a 2-approximation
algorithm (Savage, 1982), i.e., we identified the minimal setC of contacts
such thatC was adjacent to every contact not inC. The number of effective
isolated contacts was the number of contacts not present in the vertex
cover. We computed the vertex cover for all correct contacts inferred by
any method.

Adjusted probabilities We computed the probability that a contact
of a particular bond type was predicted by a each prediction method. In
order to account for different sizes of contact sets from different prediction
methods, we adjusted these probabilities by a factor equal to the ratio of
the length L of the protein to the number of correct contacts in the set
under consideration i.e.,

(
Ni,set/Ni,all contacts

)
(L/Nset) ,

for a bond type i and the number Nset of contacts in the predicted set for
a contact prediction method. Ni,set is the number of contacts displaying
bond type iwhich are in the predicted set of a particular prediction method.
Ni,allcontacts is the number of contacts displaying bond type i in the set
of all contacts in the protein domain. Thus, these probabilities are scaled to
compensate for the effect of predicted sets of different sizes due to different
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4 Chonofsky et al.

contact prediction accuracies. These adjusted probabilities were averaged
over the 863 cases.

3 Results and discussion

Trends in contact prediction accuracy

We predicted contacts on 1,030 high-quality alignments of protein domains
using four contact prediction methods (aMIc, CCMpred, MetaPSICOV,
and DNCON2). We also considered gDCA, a Gaussian-based direct
coupling method. Its prediction accuracy is similar to CCMpred (Potts
model) and since it represents the same generation of contact prediction
as CCMpred, we have included the result of its analysis in SI.

Figure 2 (SI Figure 1) shows the accuracy achieved over the top
L contacts, where L is the length of the protein. As expected, aMIc
(the mutual information method) performed worst (average accuracy of
15%). The best-performing method was DNCON2 (average accuracy of
77%) followed by MetaPSICOV (average accuracy of 64%) and CCMpred
(average accuracy of 47%). We found that alignment quality was correlated
with prediction accuracy for all prediction methods (SI Figure 2 and
SI Figure 3). We have used identical alignments for all methods with
the aim of reducing the effect of this potentially confounding factor.

Fig. 2. Top-L accuracy histograms of different contact prediction methods. Accuracy
was computed with respect to the top L scoring predictions, where L is the length of
the protein domain, for four prediction methods – aMIc, CCMpred, MetaPSICOV, and
DNCON2 – over 1,030 protein domains. The y axis is the number of protein domains, and
the x axis is the top-L accuracy. This analysis excludes cases where effective sequences
Nf < 32, which is known to result in poor predictions (Ovchinnikov et al., 2017).

Since the purpose of this study is to investigate the physico-chemical
properties of the true predicted contacts, we did not take aMIc contact
predictions forward for further analysis, because only 102 cases had top-
L accuracy equal to 30% or higher. To fairly compare the three methods
in terms of the physico-chemical properties of their predicted contacts, we
used only the 863 cases for which all three methods had top-L prediction
accuracy above 30% and sufficient contacts available in the structure to
form a predicted set and a background set for our analyses.

Predicted contacts have more bonds than background
contacts

Using this set of 863 cases, we compared the properties of the correct
predicted contacts for each case (predicted set) to those of a randomly-
selected set of residue pairs that are in contact in that protein structure
and which were not in the predicted set (background set). The bonds

Fig. 3. A comparison of interactions between predicted set and background set
contacts. (a) shows the number of bonds per contact for the prediction methods in terms of
the background and predicted sets of contacts. The figure shows the average value of bonds
per contact 863 protein domains with top-L prediction accuracy above 0.3 for all three
methods. (b) shows the difference in secondary structure composition of contacts between
the predicted and background sets for different prediction methods. The average count of
contacts between secondary structures, within secondary structures, between loop regions
(Loop-Loop), or between loops and secondary structure (SS-Loop), is plotted.

between residue pairs in both the background and predicted sets were
identified by ARPEGGIO (see Methods). Fig. 3 shows the number of
bonds per contact averaged over the 863 prediction cases. For all three
contact prediction methods, there are more bonds per contact for the
predicted contact sets than the background contact sets. CCMpred exhibits
the largest increase (58%), while MetaPSICOV has the smallest increase
(47%). The bias toward selecting heavily-bonded contacts for all prediction
methods suggests that physico-chemical bonds play a role in determining
the coevolutionary signal in alignments. If the need to preserve existing
chemical interactions drives the correlated mutations that give rise to the
evolutionary signal in protein multiple sequence alignments, then it makes
sense that those contacts which have the largest number of bonds are likely
to be predicted, and that introducing other sources of contacts would result
in fewer bonds per contact.

MetaPSICOV and DNCON2 predict almost twice as many
within-secondary-structure contacts as CCMpred

To further probe the nature of this difference, we separated the counts of
contacts that occurred between loops and secondary structures. Although
contacts in general are disproportionately found between secondary
structure elements, MetaPSICOV and DNCON2 predict almost twice
as many within-secondary-structure contacts as CCMpred, despite their
background sets having similar compositions (Fig. 3 (b)). These general
measures of the sets of all contacts mask sharper effects of individual
contact predictors because all contact predictors predict some of the same
contacts. In order to more precisely identify the properties of individual
contact predictors, we considered those contacts which were predicted
only by particular contact predictors.

For each of the 863 protein domain cases, and restricting ourselves
to the top L predictions, we considered separately those correct contacts
that were predicted uniquely by CCMpred, DNCON2, and MetaPSICOV.
We also considered those contacts that were predicted by pairs of contact
predictors, and those which were predicted by all three contact prediction
methods (SI Table 5).

For each of the 863 protein domain cases, and restricting ourselves
to the top L predictions for each prediction method, we considered the
union of the predicted sets for CCMpred, DNCON2, and MetaPSICOV.
We then considered the ratio of the number of contacts in subsets of this
group to L, the maximum number in the predicted set for any predictor.
Specifically, we considered the three subsets that contained those contacts
that were predicted uniquely by CCMpred, DNCON2, or MetaPSICOV,
as well as the three subsets that contained those contacts predicted by



i
i

“main” — 2019/10/29 — 12:46 — page 5 — #5 i
i

i
i

i
i
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only two of the three predictors, and the subset containing contacts
predicted by all three predictors (SI Table 5). The largest group is the
set of contacts that are predicted by all three methods (0.27L). DNCON2
and MetaPSICOV share an equivalently large number of contacts (0.27L)
while CCMPred shares with MetaPSICOV and DNCON2 only 0.07L

and 0.06L, respectively. This points to a strong link between DNCON2
and MetaPSICOV predictions. Moreover, MetaPSICOV has the lowest
proportion of unique predictions (0.11L of its correct predictions), while
DNCON2 and CCMPred have comparable proportions (0.24L and 0.22L,
respectively), despite DNCON2’s higher predictive accuracy. This analysis
points to differences between raw DCA-based methods and methods which
incorporate information from other sources. DNCON2 and MetaPSICOV
predict similar sets of contacts, while the CCMpred predicted sets tend
to contain different contacts than the other two predicted sets. In light of
the broader trend that CCMpred tends to predict fewer within-secondary
structure contacts, and that there are similarities between the predictions of
DNCON2 and MetaPSICOV that are not shared by CCMpred, we repeated
earlier analyses to consider their distribution over those contacts that were
predicted uniquely by one predictor, by pairs of predictors, and by all three
predictors together. In all cases, the standard errors were less than 0.003L.

First, considering the numbers of bonds per contact, we found that
the contacts with the largest numbers of bonds on average were those that
were predicted by all three methods (SI Table 5C). Those predicted by two
or more methods also had more bonds per contact than those predicted
by only one method. Of the contacts predicted by only one method, those
contacts predicted only by MetaPSICOV had the lowest number of bonds
per contact (1.26), while those predicted by CCMpred had the highest
number of bonds per contact (1.74). Those contacts predicted by both
CCMpred and DNCON2 had the highest number of bonds per contact
(2.17), exceeding both sets of combinations which involved MetaPSICOV
(1.87 and 1.81). As expected, in light of our findings related to secondary
structures, contacts predicted by both DNCON2 and MetaPSICOV had the
highest number of hydrogen bonds per contact (0.67, compared to 0.32
and 0.49 for those predicted by both CCMpred, and MetaPSICOV and
DNCON2, respectively). These data confirm the idea that coevolutionary
couplings are linked to the strength of the bonds between the residues that
comprise them. Those contacts that are easiest to predict, in the sense that
they are predicted by all three predictors, have the highest numbers of bonds
per contact. This relationship is likely due to contacts with particularly
strong and numerous bonds generating strong co-evolutionary signal which
results in their prediction by all three methods. As noted below, there is
not an unusually large proportion of within-secondary structure contacts
in this group, suggesting that these predictions are not due to presence
within secondary structures.

Those contacts predicted only by CCMpred have the largest number
of bonds per contact of those sets from an individual contact prediction
method. CCMpred uses raw co-evolutionary signal, and this signal appears
to reflect the number of bonds in the contacts.

Further, CCMpred-predicted contacts have more side-chain contacts
than those contacts predicted by other methods. We defined side-chain
contacts as those contacts that had at least one side-chain to side-chain
bond. As shown in SI Table 5E, contacts predicted by CCMpred had a
consistently higher proportion of these contacts than those predicted by
MetaPSICOV and DNCON2 and consistently lower proportions of main-
chain/main-chain contacts in all secondary structure contexts (defined as
those contacts with at least one main-chain/main-chain bond, SI Table 5F-
J). This result is consistent with recent work, e.g. (Hockenberry and Wilke,
2018) but extends it by quantifying the extent of the difference in side-
chain contacts. We find that only a minority of all contacts contained side-
chain/side-chain bonds. It is plausible that machine-learning algorithms
which are trained to maximise the proportion of Cβcontacts are more likely
to omit contacts where there are significant side-chain interactions because

Fig. 4. A comparison of predicted contacts for PDB 1Y0G. A: Background sets. B:
Predicted sets. C: Contacts predicted by only one of the two predictors, e.g., those predicted
by CCMpred but not DNCON2. D: Contacts from C associated with bonds that are not
within a single secondary structure. Contacts drawn in purple connect residues that have at
least one hydrogen bond; contacts drawn in red have no hydrogen bonds associated with
them.

those residues may be farther apart on average. Therefore, they may fail to
detect important chemical interactions between side chains. By contrast,
covariation-based methods use an unsupervised approach, and hence the
types of contacts they recover depends on the biophysical mechanisms that
create the covariation. These mechanisms may be more closely tied to the
identity and position of side chains than to the backbone atoms.

We also assessed the secondary structure characteristics of the
predicted contact sets (SI Table 5D). The set with the highest level of
contacts within a secondary structure (55%) are between DNCON2 and
MetaPSICOV. The lowest level of within-secondary-structure contacts
were those predicted by CCMpred alone (7%), followed by those
shared between CCMpred and one of the other predictors. These data
suggest that the co-evolutionary signal within secondary structures is
relatively weak, presumably because these structures are harder to disrupt
than supersecondary interactions. Machine-learning methods may also
capitalize on the ease with which it is possible to recognise and suggest
contacts within secondary structures, increasing their proportion of these
types of contacts in order to increase their total accuracy.

CCMpred contacts are distributed more widely in protein
structures

We also examined to consider the distribution of contacts within protein
structures. As described in Methods, we considered a contact (A1, A2)

between amino acid A1 and amino acid A2 to be isolated if there was no
predicted contact (B1, B2) from the set of all predicted contacts such that



i
i

“main” — 2019/10/29 — 12:46 — page 6 — #6 i
i

i
i

i
i

6 Chonofsky et al.

|A1 − B1| ≤ 1 and |A2 − B2| ≤ 1. As a measure of the distribution
of the contacts throughout the protein, we used an established algorithm
to remove contacts from the contact sets until all remaining contacts were
isolated (Savage, 1982). We refer to the number of remaining contacts as
effective isolated contacts. CCMpred had more effective isolated contacts
than DNCON2 (0.090L and 0.052L) and both had more effective isolated
contacts than MetaPSICOV (0.033L). Only 6% of those contacts that
were predicted by both DNCON2 and MetaPSICOV were isolated, the
lowest proportion of any combination of predictors or individual predictor.
These data suggest that CCMpred predicts contacts which have a broader
distribution within protein structures than MetaPSICOV and DNCON2.
Specifically, our evidence is that DNCON2 and MetaPSICOV tend to
predict blocks of contacts corresponding to complete secondary structures.
CCMpred, however, tends to make more isolated predictions. These
results suggest that machine learning-based predictors are learning to ‘fill
in’ secondary structure contacts. Additionally, isolated predictions are
more likely to be incorrect, so predictors may learn to discard ‘riskier’
isolated contacts and promote ‘safer’ contacts which are connected to
other blocks of contacts. Other papers about machine learning for contact
prediction have also noted that if a residue is in contact with another,
then their neighboring residues are more likely to be in contact (Wozniak
and Kotulska, 2014) and it appears that this effect is incorporated into
DNCON2 and MetaPSICOV.

As an example of these differences, we plotted the predicted contacts
for PDB structure 1Y0G (Figure 4). Both CCMpred and DNCON2
exhibit noticeable ordering of their predicted contacts (4B) compared
to background (4A). Although CCMpred predicts fewer contacts than
DNCON2, its predictions include a greater proportion of SS-loop and
between-SS contacts (4C). Excluding the within-SS contacts and those
without bonds, DNCON2 predicts only five contacts, all of which
are associated with hydrogen bonds, while CCMpred predicts 22, of
which seven have hydrogen bonds (4D). This example demonstrates the
possibility of divergence between contacts predicted by CCMpred and
DNCON2 in terms of structural and chemical factors.

These differences between bond numbers and between kinds of
contacts among the contact predictors led us to consider whether bond
types differed in similar ways.

Types of bonding interactions differ between contact
predictors

Predicted contacts have more bonds, which suggests a link between
coevolutionary signal and the physical effects which bonds mediate. We
sought to investigate whether this difference also manifested in a change in
physico-chemical properties of the bonds that mediate contact predictions.
We used the Cochran-Mantel-Haenszel procedure (Cochran, 1954; Mantel
and Haenszel, 1959) to test whether the distribution of bonding interactions
in the background sets of proteins were different from the distribution of
bonding interactions in the predicted set. In all cases, p << 0.01, so we
considered the differences between the predicted and background sets in
further detail.

We considered the probabilities that a contact with a particular
type of bond would be found in the predicted set using the adjusted
probability methodology described in Methods. These probabilities are
given in Table 1. (Probabilities for the background set are given in
SI Table 2 and raw probabilities are available in SI Table 3.) For each
contact type, cases in which no contacts of that type were found in
the protein structure were excluded from the average. A difference
between contact prediction methods is evident from these data. The range
of probabilities for CCMpred is larger than the range for DNCON2
or MetaPSICOV. Moreover, CCMpred has a different distribution of
conditional probabilities than the other two contact prediction methods,

Table 1. Adjusted conditional probabilities of predictions of
bond types.

CCMpred MetaPSICOV DNCON2
covalent 0.97 0.49 0.43
ionic 0.84 0.43 0.4
hydrophobic 0.61 0.48 0.44
aromatic 0.58 0.35 0.34
vdw 0.47 0.47 0.49
vdw_clash 0.46 0.52 0.55
hbond_like 0.43 0.5 0.54
carbonyl 0.25 0.65 0.72

The average adjusted probabilities that a bond of a particular type is
found in the predicted set is shown in this table. These probabilities
are scaled to compensate for the effect of different contact prediction
accuracies as described in Methods.

where the figures are broadly similar. The contacts most likely to be
selected in the top L are those which display covalent or ionic
interactions. carbonyl interactions are the least likely to be chosen
by CCMpred. These results suggest that CCMpred preferentially predicts
stronger bond types, once again pointing to CCMpred contacts being more
closely related to evolutionary significance.

Conservation of predicted contacts

Fig. 5. Difference in conservation between predicted set of contacts and background
set for different contact predictors as a function of structural dissimilarity. SSAP
structural alignment score is used as a measure of structural dissimilarity. The y axis is
backround conservation − predicted conservation.

In order to further test the role of evolutionary pressure in the
formation of evolutionary signal which generates these correlations, we
sought to investigate whether the predicted sets were particularly highly
conserved in comparison to the background sets. In order to estimate
this phenomenon, we compared the extent to which the predicted set of
contacts for each caseP were present in other members of the same CATH
homologous superfamily. For the CATH homologous superfamily in which
P occurred, we filtered the homolous superfamily at a 90% sequence
identity threshold and then performed structural alignment between every
protein remaining in the homologous superfamily and P . (There were
155 CATH superfamilies which had more than one family member after
filtering at 90% sequence identity.) We then recorded the proportion of
the contacts in the predicted set of P that were also correct in the aligned
family member. We performed the same process for the contacts in the
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background set. For all three contact prediction methods, the contacts in
the predicted sets were more conserved than the background sets for more
than 70% of protein-family member pairs (SI Table 4). This excess was
present for a range of CATH-SSAP alignment scores and grew as family
members became more distant from the exemplar. Fig. 5 demonstrates
how, as structural relationships become more distant, the predicted set
of contacts is more strongly conserved than the background set. This
effect is stronger for DNCON2 and MetaPSICOV than for CCMpred.
This analysis confirms the centrality of coevolutionary constraints on our
ability to predict contacts. Those contacts which are less evolutionarily
important and therefore less evolutionarily conserved are more present in
the background set than the predicted set. This effect is persistent over
the full range of structural similarity scores within proteins. Moreover,
CCMpred evinces a lower difference, which varies less as a function of
alignment score than the other contact predictors. This difference may
originate in CCMpred’s comparative bias against secondary structure sites,
causing the predicted set to appear to be less strongly conserved than for
MetaPSICOV or DNCON2.

4 Conclusion
Over the last ten years, contact prediction has seen remarkable gains in
the accuracy of its predictions and its utility for biological applications.
The field of contact prediction has been able to identify larger numbers
of contacts, and our results show that this improvement has resulted in
changes to the kinds of contacts predicted by state-of-the-art methods.
These differences complicate the recent drive to increase prediction
accuracy because not all predicted contacts may be of the same importance.
In this paper, we have placed the differences between predicted and
non-predicted contacts in their structural and physico-chemical context.

We found that predicted contacts and background contacts have
different properties. Predicted contacts have more bonds than background
contacts. For MetaPSICOV and DNCON2, more predicted contacts are
within secondary structures than are background contacts. Considering
those sets that are uniquely predicted by one contact predictor, these
effects are heightened: the unique predictions of CCMpred have more
bonds than the unique predictions of MetaPSICOV or DNCON2 and
fewer within-secondary structure contacts. CCMpred contacts were more
often unique to CCMpred than were MetaPSICOV or DNCON2 unique
to those contact predictors. Further, CCMpred contacts were more widely
distributed within the protein structures. Contact prediction methods varied
in terms of the kinds of bonds that they favoured. These effects throw into
relief the relationship between contact prediction and chemical bonds.

Structural constraints that are relevant to the evolutionary history of
proteins, and which can be detected in multiple sequence alignments, must
be mediated by some kind of physical effect. Our evidence suggests that
one component of this effect are physico-chemical bonding interactions,
which can be inferred from three-dimensional protein structures. These
effects manifest as changes in chemical properties of contact predictions.

If contact prediction is used in the inference of structural properties,
such as in the prediction of functional properties, studies of protein
mechanism, or simply in structure prediction, future work must take note
of the implications for contact type that its choice of prediction method
entails. Indeed, in some instances, it may be appropriate to train new
approaches on a different definition of contact (e.g. physico-chemical
interactions, rather than main-chain Cβdistance).

The accuracy and location of predicted contacts are known to have an
important effect on protein structure prediction accuracy. For this reason, a
great deal of effort has been dedicated to improving the accuracy of protein
contact prediction. However, our data suggest that the raw evolutionary
signal of less advanced and less accurate methods may be a source of
independently interesting biological information.
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