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Abstract

Motivation: A synthetic lethal (SL) interaction is a relationship between two functional entities where the

loss of either one of the entities is viable but the loss of both entities is lethal to the cell. Such pairs can

be used as drug targets in targeted anticancer therapies, and so, many methods have been developed to

identify potential candidate SL pairs. However, these methods use only a subset of available data from

multiple platforms, at genomic, epigenomic and transcriptomic levels; and hence are limited in their ability

to learn from complex associations in heterogeneous data sources.

Results: In this paper we develop techniques that can seamlessly integrate multiple heterogeneous

data sources to predict SL interactions. Our approach obtains latent representations by collective matrix

factorization based techniques, which in turn are used for prediction through matrix completion. Our

experiments, on a variety of biological datasets, illustrate the efficacy and versatility of our approach, that

outperforms state-of-the-art methods for predicting SL interactions and can be used with heterogeneous

data sources with minimal feature engineering.

Availability: Software available at https://github.com/lianyh

Contact: vaibhav.rajan@nus.edu.sg

1 Introduction

Genomic studies have shed light on several aspects of cancer, from the

understanding of how the disease initiates and progresses to genomic

drivers of the disease and the development of first generation of targeted

therapies (Hyman et al., 2017). Cancer develops as a result of mutational

events caused by endogenous and exogenous process; these mutations

enable cancer cells to gain selective advantage over healthy cells resulting

in uncontrolled proliferation and ultimately metastasis (Hanahan and

Weinberg, 2011). Large-scale molecular profiling of major cancer types

have been completed (Hudson et al., 2010). Multi-omics data, including

copy number, gene expression, DNA methylation, microRNA and clinical

data of several cancers have been collected and analyzed, for example

in the Cancer Genome Atlas Research Network (Weinstein et al., 2013).

A key challenge of cancer studies is in the integration of data generated

on different platforms and at different levels – genomic, epigenomic and

transcriptomic levels (Senft et al., 2017).

Extensive studies of the genomic landscape of tumors have revealed

vulnerabilities that have been fruitfully exploited to develop targeted

therapeutics that offer highly specific therapies with fewer adverse effects

and the potential to reduce overtreatment (O’Neil et al., 2017). One

promising direction has been the use of synthetic lethality for developing

drug targets. A synthetic lethal (SL) genetic interaction is a functional

relationship between two genes or functional entities where the loss of

either entity is viable but the loss of both is lethal. SL pairs have been

exploited in targeted cancer therapeutics: the basic idea is that in a

malignant cell, functionally disruptive mutation in one of the two genes

(say, A) of an SL pair (A,B) leads to dependency on B for survival and

cancer cells can be selectively killed by inhibiting B. Non-cancerous cells,

that have A, survive even when B is inhibited. See fig. 1 for a schematic.

For example, mutations causing functional loss of BRCA1/2 genes leads to

deficiency of DNA Damage Response mechanism and dependence on the

protein PARP1/2 (Bryant et al., 2005). Drugs based on PARP inhibitors are

found to be promising in the treatment of breast cancer (Tutt et al., 2009)

and ovarian cancer (Audeh et al., 2010). However, such SL interactions in

humans remain largely unknown and there is a need for new methods to

discover such pairs.

Synthetic Lethality has been considered a foundation for development

of targeted anticancer therapies (Brough et al., 2011; Senft et al., 2017).

As a result, large number of screens have been developed, such as

RNA interference screens and CRISPR screens to identify potential SL

pairs. Although such screens are effective approaches, they are costly
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Fig. 1: Synthetic Lethality: Genes A and B enable functionally redundant

mechanisms and any one of them can ensure cell survival. If such pairs

are found in cancer with one of the genes mutated, then the other can be

targeted for developing highly specific drugs.

and labour-intensive and significant challenges remain: first, since these

genetic interactions are lethal, mutant recovery and identification become

difficult; second, many SL pairs are conditionally dependent and may not

be conserved in all genetic backgrounds or in different cellular conditions

and third, large number of SL pairs need to be queried to identify SL

interactions (O’Neil et al., 2017). These genome-wide screens typically

scan a few thousand candidate pairs of just one ‘anchor’ cancer driver gene

of interest; due to the large combinatorial space of pairwise interactions,

only a small fraction have been analyzed (Senft et al., 2017).

Computational methods have been developed to identify potential SL

pairs, reducing the number of candidates that can be functionally analyzed

through genome-wide screens. These include machine learning based

methods to predict genetic interactions in different species (Costanzo et al.,

2010; Lu et al., 2013), in cancer (using yeast SL pairs) (Conde-Pueyo et al.,

2009; Srivas et al., 2016), using metabolic modeling (Folger et al., 2011;

Frezza et al., 2011), using evolutionary characteristics (Lu et al., 2013;

Srivas et al., 2016), using transcriptomic profiles (Kim et al., 2016) and by

mining cancer patient data (Jerby-Arnon et al., 2014; Sinha et al., 2017; Lee

et al., 2018). All of these methods use only a subset of available data from

multiple platforms, at genomic, epigenomic and transcriptomic levels.

Individual analysis of the data sources may not reveal critical associations

and potential causal relationships and there is a need to develop drug target

discovery methods that can effectively integrate the diverse data sources

that describe cancer at different levels.

Most biological datasets can be represented as matrices, where a matrix

contains pairwise relational data between two entities. For example, a gene

expression data matrix represents a relationship between entities, patients

and genes. Thus, a collection of matrices may have multiple relationships

between entities and each entity may be involved in multiple relationships.

Collective Matrix Factorization (CMF) (Singh and Gordon, 2008), and

extensions thereof, are models designed to collectively learn from

multiple such relationships. These models generalize the idea of matrix

factorization to a collection of matrices. They learn a latent representation

for each entity in a way that information from multiple matrices are

integrated seamlessly. These entity-specific latent representations can then

be used in predictive tasks. However, CMF cannot model collections of

matrices where there are two or more matrices describing the relation

between the same entity, e.g., pairwise gene co-expression and mutual

exclusivity information, that both contain relationships between the same

entity, genes. Many biological datasets represent such relations, including

the relation of synthetic lethality.

In this paper, we develop techniques to model arbitrary collections

of matrices, that include two or more relations between the same entity.

This extends the modeling capability of CMF to a much larger set of

heterogeneous biological data. We evaluate our techniques in the task

of predicting synthetic lethality for a pair of genes. We compare our

techniques with four different collections of data, used by state-of-the-

art methods for SL prediction. These methods involve the development of

task-specific statistical inference tests or sophisticated feature engineering.

Our CMF-based techniques can be used with derived features as well as

the input data directly, with minimal feature engineering, and in each of the

four cases, our techniques match or outperform previous methods, thereby

demonstrating the accuracy and versatility of our method.

2 Related work

A comprehensive review of methods based on machine learning and

network interaction can be found in (Madhukar et al., 2015). In this section

we provide a brief overview of some recent statistical and machine learning

based approaches for predicting SL pairs.

Statistical Approaches. DAISY applies three statistical inference

procedures to identify potential SL pairs (Jerby-Arnon et al., 2014). The

first strategy, called genomic survival of the fittest (SoF), uses Somatic

Copy Number Alteration (SCNA) and gene expression data to detect

significantly infrequent co-inactivations in gene pairs. The second strategy,

uses shRNA essentiality screens, SCNA and gene expression profiles, to

identify pairs where inactivity or over-activity of a gene induces essentiality

of the partner gene. The third test checks for significant pairwise co-

expression in transcriptomic data, since SL pairs, participating in related

biological processes are likely to be coexpressed. A gene pair is considered

SL if all three criteria are satisfied.

In a similar approach, ISLE uses lab-screened SL pairs as inputs

and identifies those pairs that are predictive of patients’ drug response

(Lee et al., 2018). Thus, ISLE can be viewed as a filtering algorithm to

obtain clinically relevant SL pairs, from an initial (larger) collection of

potential SL pairs. They apply three statistical procedures. In the first

procedure, gene expression and SCNA data is used to identify candidate

gene pairs with significantly infrequent co-inactivations. Second, a gene

pair is selected if its co-inactivation leads to better predicted patient survival

compared to when it is not co-inactivated. Survival probability is predicted

using Cox proportional hazard model. Third, pairs with high phylogenetic

similarity are identified, since functionally interacting genes tend to co-

evolve. The final output consists of those pairs that fulfill all three criteria.

Thus, apart from SCNA, gene expression and gene essentiality profiles,

ISLE also uses clinical data and phylogeny information.

Machine Learning Approaches. Ensemble-based classifiers have been

used in many models to predict SL pairs, using both yeast and human

data. For example, Pandey et al. (2010) developed the Multi-Network and

Multi-Classifier (MNMC) framework to predict SL interactions in yeast,

using six classifiers and several features extracted from PPI networks,

transcription factor bindings, functional annotations, mutant phenotype

data, phylogenetic profiles of proteins, KEGG pathway memberships

of genes, sequence similarity and gene network modules and clique

communities. MetaSL, developed by Wu et al. (2014), also used an

ensemble of classifiers, that learnt the relative weight of each classifier

in the ensemble and was found to outperform MNMC in predicting yeast

SL pairs. They extracted features for their classifier from PPI networks,

gene ontologies, gene expression and various similarity scores based on

co-complex membership, co-pathway membership, whether or not they

are paralogs, the number of their common or interacting domains as well

as affinity in mass-spectrometry purifications. They did not predict human

SL pairs directly, but through orthologous mapping from yeast to human

genes. In a study that directly predicted human SL pairs, Lu et al. (2015)

also use an ensemble of multiple classifiers (that we call MCA) using five

features derived from Copy Number Variation (CNV) and RNASeq data.
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The features measure homozygous, heterozygous and mixed co-loss events

as well as co-under- expression and co-inverse-expression events.

Note the heterogeneity of data sources used in all these methods.

Further, the design of each of these methods depends on the data used.

For example, the statistical tests chosen in DAISY or ISLE may have to be

modified if different or additional data sources are used. Considerable

effort has been devoted to designing relevant features in the machine

learning methods, where feature engineering depends on the data used.

None of these methods can seamlessly integrate arbitrary collections of

heterogeneous data sources for predicting SL pairs.

3 Background

In this section we briefly describe CMF and its limitation with respect to

modeling heterogeneous biological datasets.

For a single matrix X ∈ R
p×q , a low-rank factorization aims to

obtain latent factors U(1) ∈ R
p×K , U(2) ∈ R

q×K , such that X ≈

U(1) ·U(2)T , where theK < min(p, q). The factors are learnt by solving

the optimization problem: argminU,V L(X,U(1) · U(2)T ), where L

denotes a loss function.

Collective Matrix Factorization (CMF), proposed by Singh and Gordon

(2008), generalizes the idea of factorization to an arbitrary collection of

matrices. CMF aims to jointly obtain low-rank factorizations of arbitrary

collections of M matrices (indexed bym), X(m) = [x
(m)
ij ], that describe

relationships between E entities (e1, . . . eE ), each with dimension dei .

The entities corresponding to the rows and columns of the mth matrix

are denoted by rm and cm respectively. Each matrix is approximated

by product of low rank-K factors that form the representations of the

associated row and column entities: X(m) ≈ U(rm)U(cm)T where

U(e) = [u
(e)
ik

] ∈ R
de×K is the low-rank matrix for entity type

e. Any two matrices sharing the same entity use the same low-rank

representations as part of the approximation, which enables sharing

information. A link function f may be applied to model non-linear

relationships: X(m) ≈ f(U(rm)U(cm)T ). The latent factors are learnt

by solving the optimization problem:

argmin
{U(e)∈Rde×K}E

M∑

m=1

L(X(m), U(rm)U(cm)T ).

A regularizer is additionally used in some formulations. Solutions to this

optimization problem obtained through Stochastic Gradient Descent have

been found to yield good performance (Bouchard et al., 2013).

Consider the example shown in fig. 2. The matrices could represent

clinical data (X1), gene expression data (X2), and phylogenetic profiles

(X3). Each matrix describes the relation between two entities, along its

two dimensions. The entities in this example are patients (e1), clinical

features (e2), genes (e3), and species (e4). CMF can learn entity-specific

latent factors (U(ei)) which are learnt collectively from all three matrices

(with 4 entities): X1 ≈ U(e1)U(e2)
T

, X2 ≈ U(e1)U(e3)
T

, X3 ≈

U(e4)U(e3)
T

. Due to this formulation, latent representations (e.g.,

U(e1)) of entities that are shared across matrices (e1 across X1, X2)

are learnt from all the matrices containing that entity and indirectly from

other entities. Note that CMF can be used to learn entity-specific latent

representations from any number of input matrices.

Group-Sparse CMF (gCMF) extends the CMF formulation through

the use of group-sparse priors (Klami et al., 2014). Individual matrices

may have structured noise independent of other matrices, that cannot be

captured by the element-wise noise terms. To model such noise, automatic

creation of private factors is enabled by placing group-sparse priors on the

columns of the matrices of U(e). If the kth column of U(e) is null for all

but two entity types rm and cm, then the kth factor is private to relationm

since it impacts only matrix X(m). If more than two groups of variables

are non-zero then the factor is private to a subset of entities. The complete

Fig. 2: Example with 3 matrices

(X1, X2, X3) and 4 entities

(e1, e2, e3, e4). CMF (and

gCMF) learns latent factors

for each entity by collectively

using all the information in any

collection of matrices.

probabilistic model and Variational Bayesian inference for both Gaussian

and non-Gaussian observations are presented in (Klami et al., 2014).

CMF is an unsupervised learning method, but it can be used for

matrix completion tasks where it can learn from historical data and predict

unknown entries in the matrices. The latent factors are first learnt through

only the known entries in the matrices, that can be considered as the training

data. Completed matrices, obtained by multiplying the learnt latent factors,

includes the predictions for the unknown entries. This is similar to the

setting used in recommendation tasks, which has also been used in other

bioinformatics applications, e.g., in (Natarajan and Dhillon, 2014).

Limitation of CMF

If multiple input matrices to CMF contain the same row and column entity-

types, then CMF (or gCMF) cannot learn a unique representation for

each entity. For instance, consider two matrices with pairwise gene co-

expression (X1) and mutual exclusivity information (X2). where all the

row and column entities are genes. But it is impossible to reconstruct

two different matrices, such that, X1 = UgU
T
g , X2 = UgU

T
g , X1 6=

X2, using unique latent factors Ug for genes (g). The same problem

occurs if the row and column entities are identical in two or more input

matrices. E.g., matrices containing gene expression (X1) and copy number

alteration (X2), have relations between entities gene (g) and patients (p)

and it is impossible to reconstruct the matrices X1 = UgU
T
p , X2 =

UgU
T
p , X1 6= X2, using unique latent factors Ug , Up.

4 Our Approach

To model collections of matrices that may have multiple matrices with

identical row and column entities, we propose three solutions. The first

two solutions rely on a transformation before CMF can be applied. The

third solution modifies the model to use a matrix-specific factor to directly

learn latent representations from the input data. They can all be viewed as

different forms of link functions in the formulation of Singh and Gordon

(2008); the difference is that in our case, the link function is matrix-specific.

Transformation Using PCA

We use Principal Components Analysis (PCA) to obtain eigenvectors of

the matrix. The leading eigenvectors can be selected as the columns in

the transformed matrix. This also allows us to reduce dimensionality of

the matrix, if required. We choose the minimum number of principal

components required for the cumulative explained variance ratio to be

greater than 0.9. Thus, we can transform a matrix with identical row and

column entities (say, e1) to a matrix where the row entity is e1 and column

entity is features that are matrix-specific, as shown in fig. 3a. Such features

have been found to be effective in other matrix completion based predictive

models, e.g., in (Natarajan and Dhillon, 2014). When this transformation

is applied before using CMF or gCMF, we call the method pca-CMF or

pca-gCMF, respectively.

Transformation Using Graph Features

Matrices with identical row and column entity-types can be viewed as

adjacency matrices of graphs where each entity is used to form the node

set. When the row and column entity-types are not identical, the matrix
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(a) Transformation using PCA (b) Transformation using Graph features

(c) CMF-W

Fig. 3: Overview of our solution. Multiple matrices

with identical row and column entities in an input

collection of matrices cannot be handled by CMF

directly. If PCA (fig. 3a) or graph-based features

(fig. 3b) are used to transform such matrices, then

CMF can be applied on the transformed matrices,

since the column entities in each of the transformed

matrices are different and not identical to their

row entities. Our model CMF-W (fig. 3c) extends

CMF by using a matrix-specific weight (W) that

can model different data in each input matrix with

identical row and column entities.

can be viewed as an adjacency matrix of a bipartite graph, with the row

entities being one set of nodes and column entities being the other set of

nodes. In both cases, a cell entry can be considered to be an edge label. We

can transform the adjacency matrix to another matrix where the column

entity is formed by graph-based features that are matrix-specific, as shown

in fig. 3b. To transform the input matrices, we use graph features that

were found to be useful in predicting SL interactions in yeast using PPI

networks (Paladugu et al., 2008). These include the node degree, closeness

centrality, betweenness centrality (Freeman, 1977), information centrality

(Stephenson and Zelen, 1989), eigenvector centrality (Bonacich, 1972),

Gil-Schmidt Power Index (Gil-Mendieta and Schmidt, 1996), and the Flow

Betweenness Score (Freeman et al., 1991). Appendix A has definitions of

these features. When this transformation is applied before using CMF or

gCMF, we call the method gr-CMF or gr-gCMF, respectively.

CMF-W

In this approach, we modify the CMF model by incorporating matrix-

specific weights to handle matrices with identical row and column entity

types. Each such matrix is modeled as a product of three factors:

X(m) ≈ U(rm)U(cm)T W (m)

The first two factors are the same as in CMF, i.e., the row and column entity

representations, while the third factor is a matrix-specific weight W (m).

This third factor models the (unknown) transformation in each input source

responsible for different values and datatypes. Thus, for a matrix X(m)

with identical row and column entities ((rm) = (cm) = (gm)), we

have X(m) = U(gm)U(gm)T W (m), where W can be different for two

matrices with identical row and column latent factors (fig. 3c). The latent

factors are learned by solving the optimization problem:

min
U,W

M∑

m=1

d(X(m), U(gm)U(gm)T W (m)),

where d is the Frobenius norm of the difference between X(m) and

U(rm)U(cm)T W (m). For m × n matrix X(m) and latent dimension

k, the dimensions of U(rm), U(cm),W (m) are m×k, n×k and n×n

respectively. We use the Adam optimization algorithm (Kingma and Ba,

2015) to solve the optimization problem.

5 Experiments

We pose the problem of SL prediction as a binary classification task on

pairs of genes, with positive class indicating SL interactions and negative

class indicating no SL interactions.

Baselines. We use five state-of-the-art methods designed for predicting

SL pairs: ISLE, DAISY, MetaSL, MNMC and MCA. These methods have

been tested with different input datasets. Our first three experiments match

the input data used in MCA, DAISY and ISLE respectively. We conduct a

fourth experiment with another dataset. Details are given below.

Evaluation Metric. We use two metrics to evaluate performance. The

first is AUC (Area under the ROC Curve), on held-out test sets, that has

been used in all the baselines that we compare with. However, while

there is previous evidence of positive SL pairs (e.g., through knock-

out screens), the evidence for negative pairs is weaker and so, these

pairs could be considered as unlabelled. Further, in the application of

SL prediction, it is more important to penalize false positives than false

negatives. So, our second metric is ‘probability-at-n’, that is used in

positive-unlabelled learning and in similar applications, e.g., gene-disease

prioritization (Natarajan and Dhillon, 2014). For the ith gene, we order

the other genes (indexed by j) by scores assigned by the predictive models.

For every gene pair (i, j) in the held-out test set we record the rank of the

gene i in the list associated with gene j. Probability-at-n is the probability

that the rank (at which an SL pair is retrieved) is less than a thresholdn (i.e.,

the cumulative distribution of the ranks). This measures the probability of

recovering a true SL interaction in the top-n predictions for a given gene.

A small value of n is desirable and we report results for n ≤ 180.

Experiment 1. We first compare our method with that of Lu et al. (2015),

on their published datasets. They obtain 270 SL pairs and 5660 non-SL

pairs from two previous studies (Laufer et al., 2013; Vizeacoumar et al.,

2013). Using Copy Number Variation (CNV) data and RNAseq data they

design five features for each gene pair based on homozygous, heterozygous

or mixed co-loss events, likelihood of simultaneous under-expression and

likelihood of inverse expression (i.e., when one gene is over-expressed

and the other under-expressed). We can represent these features as five

matrices with genes as both row-entity and column-entity in each matrix

and where, the ijth cell contains the feature value for the gene pair (i, j).

Due to the imbalance present in the data (only 4.6% data in the positive

class of SL pairs), we follow an undersampling based approach similar

to that of Lu et al. (2015). We conduct 10 experiments; retaining the

same 270 SL pairs in each experiment, 270 non-SL pairs are randomly

sampled from the 5660 non-SL pairs independently for each experiment.

Then, in each experiment, we randomly select 70% of the SL pairs (378

pairs) for training and remaining 30% (162 pairs) as the test set. The

average performance over these 10 experiments is reported. On this dataset,

we compare the performance of MNMC, MCA and MetaSL with our

CMF-based approaches.

Experiments on Breast Cancer Data

In the remaining three experiments, we use all 245 SL pairs associated

with breast cancer as reported in SynLethDB (Guo et al., 2015). Let S
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Matrix Row Col Row Col

Entity Entity Dim Dim

SL-label Gene Gene 332 332

Essentiality Profile Gene Gene 332 332

mRNA Gene Expression Gene Patient 332 1075

SCNA Level Gene Patient 332 1075

Pairwise co-expression Gene Gene 332 332

Matrix Row Col Row Col

Entity Entity Dim Dim

SL-label Gene Gene 332 332

Essentiality Profile Gene Gene 332 332

mRNA Expression Gene Patient 332 1075

SCNA Level Gene Patient 332 1075

Phylogenetic Score Gene Species 332 86

Matrix Row Col Row Col

Entity Entity Dim Dim

SL-label Gene Gene 332 332

Co-expression Gene Gene 332 332

Mutual Exclusivity Gene Gene 332 332

Pathway Co-membership Gene Gene 332 332

Protein Complex Co-membership Gene Gene 332 332

Protein-Protein Interaction (PPI) Gene Gene 332 332

Table 1. Input matrices, their row and column entities and dimensions in our methods in experiment 2 (left), experiment 3 (middle), experiment 4 (right).

be the set of genes in these pairs. Pairs in the negative samples, i.e., pairs

that are not SL, may have a gene that can be an SL partner (with some

other gene) or may have both genes that are not involved in any known SL

interactions. To test both these cases, we select negative samples, denoted

by N , from the HGNC database (Bruford et al., 2007) after excluding

genes reported in any SL interaction in SynLethDB and those reported

to be essential in (Vizeacoumar et al., 2013; Marcotte et al., 2012). We

construct our negative samples by randomly selecting 200 pairs (gi, gj)

such that gi ∈ S, gj ∈ N and 45 pairs such that gi ∈ N, gj ∈ N . Thus,

there are a total of 332 unique genes used and 490 labelled pairs. We call

this matrix the SL-label matrix in the following. See Appendix B.1 for

more details and a schematic of our matrix.

We use 3-fold cross validation to evaluate and compare performance

of various methods. In addition, we also perform stratified 3-fold cross

validation, where the proportion of positive and negative class samples

are balanced across the folds. In the case of methods that are not based

on machine learning, such as DAISY or ISLE, the training data in each

fold is not utilized and predictions are made directly on the test data in

each fold. The statistical tests in DAISY and ISLE are specific to their

input data, and so, these results are only shown for experiments 2 and 3

respectively. For MCA, MNMC and MetaSL, all the input matrices, except

SL-label, are concatenated and used as features in each experiment. The

average probability-at-n and average AUC (with standard deviation) across

the folds, for all the methods are reported.

Experiment 2. We compare our methods with DAISY (Jerby-Arnon et al.,

2014), using matched data sources. DAISY conducts three independent

statistical tests using Somatic Copy Number Alteration (SCNA), mutation

profiles (containing information of deleterious mutations, i.e., whether

a gene has frameshift or nonsense mutations), gene essentiality profiles,

and pairwise gene co-expression data. We obtained SCNA, mRNA gene

expression data and mutation profiles for breast cancer patients in TCGA

(TCGA, 2012) using cBioPortal (Gao et al., 2013; Cerami et al., 2012)

and Firehose.Essentiality profiles are based on those curated in (Marcotte

et al., 2012) for breast cancer in addition to the (∼ 16,000 essentiality)

genes listed in (Vizeacoumar et al., 2013).

In DAISY a pair is predicted to be SL if it passes all three tests. We

denote the first test by DAISY-1, and the method comprising the first

and third test is called DAISY-3. The second test is not included because

in our experiments, no gene pairs were selected after the second test.

Similar results were observed by Jerby-Arnon et al. (2014) who report

that the shRNA-based functional examination, i.e., the second test, is not

predictive on its own (with an AUC of 0.477 in their larger dataset). They

also use the second test only as a soft constraint after identification of gene

pairs using the first and third test. For CMF-based methods, we use four

matrices in addition to the SL-label matrix: SCNA, gene expression data,

essentiality profile and pairwise co-expression data. Since both SCNA

and gene expression data have the same row-entity (gene) and column

entity (patient), we chose one of the matrices, SCNA, for (graph and

PCA) transformations and retained the other, gene expression, without

any transformation. Implementation details of DAISY and our approach

are described in Appendix B.2.

Experiment 3. To compare with ISLE, we use the software and data

provided by them (Lee et al. (2018)), using only the breast cancer data.

We obtain phylogenetic similarity using the phylogenetic profile database

(Sadreyev et al., 2015). For our CMF-based methods we use the scores for

86 species provided by the database directly.

Experiment 4. We also compare the performance of our methods on

another dataset where we use features for each pair of genes, derived

from five sources: Co-expression from StringDB (Szklarczyk et al., 2014);

Mutual Exclusivity scores for breast cancer from TiMEx (Constantinescu

et al., 2015); Pathway Co-membership, using the Canonical pathway

database from Broad Institute’s Molecular Signatures Database (MSigDB)

(Subramanian et al., 2005); Protein Complex Co-membership, using the

CORUM protein complex database (Giurgiu et al., 2018); and Protein-

Protein Interactions (PPI) scores from the Hippie database (Alanis-Lobato

et al., 2017). In the two co-membership matrices, we assign a 1 to a gene

pair if they belong to the same pathway or protein complex, otherwise a

0. All the six matrices have genes as row and column entities and are of

dimensions 332× 332.

All the matrices used in experiments 2,3 and 4 in our CMF-based

approaches are shown in table 1. Note that although the input features

differ across these three experiments, the test set (i.e., held-out entries

in the SL-label matrix) across the three folds are identical in these three

experiments and hence, the results are comparable.

6 Results

Fig. 4 (leftmost) shows the performance of all our methods and three

ensemble-based methods on the published dataset of Lu et al. (2015)

comprising five evolutionary features for each pair of genes. CMF-W,

pca-CMF and gr-CMF do not outperform previous methods MCA, MetaSL

and MNMC. However, pca-gCMF and gr-gCMF significantly outperform

all other methods, both achieving average AUC of more than 0.9. The

same trend is observed with respect to probability-at-N. At all values of

N, pca-gCMF and gr-gCMF outperform MCA, MetaSL and MNMC. The

performance of CMF-W is comparable to the baselines.

The second column of fig. 4 compares the performance of our CMF-

based methods with DAISY in experiment 2. The AUC achieved by

DAISY is lower than the reported AUC in (Jerby-Arnon et al., 2014).

Although we have used the same data sources, our test sets are different

and restricted to breast cancer only. Similar low AUC for DAISY are

reported in other datasets (e.g. (Lee et al., 2018)). While pca-CMF and gr-

CMF have AUC comparable to that of DAISY, pca-gCMF, gr-gCMF and

CMF-W outperform DAISY. However, with respect to probability-at-N,

DAISY, CMF-W and pca-gCMF are comparable (and better than the rest)

for N ≤ 60, and DAISY outperforms all the methods at N ≥ 60. With

respect to CMF-based approaches, DAISY has comparable (atN ≤ 60) or
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Fig. 4: Results on 3-fold CV. Columns (left to right): Experiments 1–4 (identical test sets in 2–4). Rows: AUC (above), Probability-at-N (below).

better (at N ≥ 60) sensitivity while its specificity may be lower resulting

in lower AUC.

The third column of fig. 4 compares the performance of our CMF-based

methods with ISLE in experiment 3. None of the pairs passed the second

test and so we show the results only for ISLE-1. CMF-W, pca-gCMF and

gr-gCMF outperform the remaining methods that have comparable AUC. A

similar trend is seen in prbability-at-N values with ISLE underperforming

at all values of N . In the last column of fig. 4, the AUC of MCA, MetaSL

and MCMC is found to be better than those of pca-CMF and gr-CMF.

However, pca-gCMF, gr-gCMF and CMF-W outperform other methods in

experiment 4 in both AUC and probability-at-N.

Note that in experiments 2, 3 and 4, the test sets used are identical across

the folds. Hence these results are comparable. In general, we observe that

that performance of gCMF and CMF-W is consistently better than that

of CMF. Experiments 2,3 and 4 with stratified 3-fold CV are discussed

in Appendix C, where we observe the same same performance trends.

Experiment 4 is also conducted with four other random samples of the

negative set N ; these results, discussed in Appendix D also show the same

performance trends. For all the CMF-based approaches, we repeat the

experiments with different values (2, 5, 10, 50) of the latent dimensionK.

The best performance is seen for K = 2 with results deteriorating slightly

with increasing K (shown in Appendix F). We investigate this further

for pca-gCMF and observe that the distibution of latent factor values are

more peaked at K = 2 and more flat at K = 50 (results in Appendix

G). Thus, more sparse solutions are correlated with better performance in

gCMF. This is also observed in the difference of performance between pca-

CMF and pca-gCMF (or gr-CMF and gr-gCMF) with the latter, that yields

sparse solution, outperforming the former in all our experiments. Better

performance of CMF-W over CMF, can be attributed to better optimization

method (Adam) used in CMF-W as well as better modeling of matrix-

specific parameters (W ).

An advantage of our CMF-based approach is that it can be used with

arbitrary collections of matrices. This can be used to investigate the relative

value of the ‘signal’ provided by each data source or combinations of data

sources by systematically using subsets of data matrices for prediction.

Such an analysis is described in Appendix E that shows the relative

importance of each data matrix for experiments 2–4.

7 Conclusion

Integration of data from heterogeneous sources is a key challenge

in bioinformatics, particularly in cancer studies. Collective Matrix

Factorization (CMF) and its variants can model heterogeneous data,

represented as relations between entities in matrices. However, CMF

cannot be used directly when two or more matrices in the input have the

same row and column entities, a case that is commonly found in biological

datasets (and in all the datasets in our experiments). By overcoming

this limitation, our techniques can be effectively utilized on many large

heterogeneous datsets. We illustrated the advantage of our methods in

predicting synthetic lethality in gene pairs using a machine learning based

matrix completion approach on four different datasets.

Previous methods for predicting SL pairs, like DAISY and ISLE, use

statistical inference tests that are specifically designed for the input data

they use. More general machine learning approaches, like MCA, require

considerable effort in feature engineering to obtain features with high

predictive value. In contrast, our approach can directly use relations of

genes with other entities like patients or species, and could also benefit

from auxiliary data sources containing different but related entities (e.g.,

patients and their clinical features). Thus, our approach can seamlessly

integrate multiple heterogeneous data sources, which can be either specific

features (in experiments 1, 2 and 3) or those derived, with considerably

less feature engineering, from multiple existing databases (experiment 4).

In fact, the versatility and accuracy of our method is best indicated by

comparing its performance across experiments 2,3 and 4 (that use the

same test data). Our approach achieves the highest AUC in experiment 4,

without the complex feature engineering used in experiments 2 and 3.

Future work can further extend the modeling capability of these

methods, and evaluate the methods on other datasets, including other

applications that can benefit from integrating heterogeneous data sources.

Strategies to improve learning, e.g., through better initialization, can be

explored. We also plan to validate our predictions for previously untested

gene pairs through CRISPR screens.
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Appendix: Predicting Synthetic Lethal Interactions using

Heterogeneous Data Sources

Herty Liany, Anand Jeyasekharan, Vaibhav Rajan

National University of Singapore

A Graph Features used in gr-CMF and gr-gCMF

• Degree. In undirected networks, the node degree of a node v is the number of edges linked to
v. A self-loop of a node yields a degree of 2. The node degrees measures the number of direct
interactions in the network.

• Closeness centrality. It is a measure of centrality of a node. For a node x, it is given by
Cc(x) = 1∑

y
d(y,x) , where d(y, x) is the distance of the shortest path between vertices x and y

(Sabidussi, 1966). The normalized version has a multiplicative factor equal to the number of nodes
in the network.

• Betweenness centrality. Another centrality measure, the betweenness centrality of a node v is

given by: Cb(v) =
∑

s 6=v 6=t

σst(v)
σst

, where σst is the total number of shortest paths from node s to node

t and σst (v) is the number of those paths that pass through v (Freeman, 1977).

• Information centrality. Let A be an adjacency matrix of a network, D a diagonal matrix of the
degree of each node and J a matrix with all its elements equal to one; we define B = D − A + J

and let C = B−1. This yields the information matrix I with elements Ivj = (Cvi+Cjj +Cvj). The
information centrality IC(v) of node v is then defined as harmonic mean: IC(v) = [ 1

j

∑

j

1
Ivj

]−1,

where the information measure Ivj between nodes is defined as the reciprocal of the topological
distance dvj between the corresponding nodes, Ivj =

1
dvj

(Stephenson and Zelen, 1989).

• Eigenvector centrality The eigenvector centrality of a node v is defined as the vth element of
the principal eigenvector of the adjacency matrix. This principal eigenvector is normalized such
that its largest entry is 1 (Bonacich, 1972).

• Gil-Schmidt Power Index. This index generalizes degree centrality by taking into account not
just the order of the neighborhood set of the node, but also a weighted sum of the orders of each
kth-neighborhood set in the network with respect to the indexed node Gil-Mendieta and Schmidt
(1996).

• Flow Betweenness Score. The flow betweenness of a vertex, v is defined by:
CF (v) =

∑

i,j:i6=j,i6=v,j 6=v

(f(i, j, G) − f(i, j, G \ v)), where f(i, j, G) is the maximum flow from i to j

within G. Intuitively, it is the total flow mediated by v (Freeman et al., 1991).

Typically, data matrices, and hence the corresponding graphs, in bioinformatics are not sparse and so,
we can use a threshold value on the entries to induce sparsity. E.g., we can construct a graph, without
edge labels, by considering all cells with values greater than the threshold. We choose a threshold value
of 0 for our experiments.

B Experiment Settings

B.1 SL Label Matrix

For experiments 2,3 and 4, we use all 245 SL pairs associated with breast cancer as reported in SynLethDB
(Guo et al., 2015). Let S be the set of genes in these pairs. Pairs in the negative samples, i.e., pairs that

1
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are not SL, may have a gene that can be an SL partner (with some other gene) or may have both genes
that are not involved in any known SL interactions. To test both these cases, we select negative samples
in the following manner. From an initial set of 41,289 genes in the HGNC database (Bruford et al.,
2007), we exclude those genes that are reported in any SL interaction in SynLethDB (5,131 genes) and
also exclude those genes reported to be essential in both (Vizeacoumar et al., 2013) and (Marcotte et al.,
2012) (15,715 genes). In total, there are 25,388 (unique) genes after the exclusions, that we denote by set
N . We construct our negative samples by randomly selecting 200 pairs (gi, gj) such that gi ∈ S, gj ∈ N

and 45 pairs such that gi ∈ N, gj ∈ N . Thus, there are a total of 332 unique genes used and 590 labelled
pairs. See figure B.1 for a schematic of our matrix, the diagonal indicating that the matrix is symmetric.
We call this matrix the SL-label matrix.

Figure B.1: Schematic of SL-label Matrix with curated SL and non-SL interactions used in experiments
2,3,4. Entries are symmetric across the diagonal.

B.2 Settings for Experiment 2

To compare our methods with DAISY (Jerby-Arnon et al., 2014), we use the same data sources. DAISY
conducts three independent statistical tests using Somatic Copy Number Alteration (SCNA), mutation
profiles (containing information of deleterious mutations, i.e., whether a gene has frameshift or nonsense
mutations), gene essentiality profiles, and pairwise gene coexpression data. We obtained SCNA, mRNA
gene expression data and mutation profiles for breast cancer patients in TCGA (TCGA, 2012) using
cBioPortal (Gao et al., 2013; Cerami et al., 2012) and Firehose 1. Essentiality profiles are based on those
curated in (Marcotte et al., 2012) for breast cancer in addition to the (∼ 16,000 essentiality) genes listed
in (Vizeacoumar et al., 2013).

In DAISY a pair is predicted to be SL if it passes all three tests. For our analysis, we check the
results in a cumulative manner, as described below, to obtain three results. Following Jerby-Arnon et al.
(2014), we consider a gene to be inactive in a sample if it is underexpressed and its SCNA is below -0.3
or if it is mutated with a deleterious mutation; a gene is considered to be overactive in a sample if it is
overexpressed and its SCNA is above 0.3. A gene is defined as under-expressed in a given sample if its
expression level is below the 10th percentile of its expression levels across all samples in the data set or
its SCNA is below -0.3 or if it is mutated with a deleterious mutation. Similarly, a gene is over-expressed
if its expression level is above its 90th percentile or its SCNA is above 0.3.

For the first test, that we call DAISY-1, a Wilcoxon rank sum test is used to check if, for a pair
(A,B), gene B has a significantly higher SCNA level in samples in which gene A is inactive (overactive)
than in the rest of the samples (and similarly, for the pair (B,A)). Gene pairs that pass the test (p-
value < 0.05 following Bonferroni correction for multiple hypotheses testing) are predicted to be SL.
For the second test, since we did not have access to shRNA-based functional screen data, we checked
for essentiality using the data from (Marcotte et al., 2012). For a pair of genes (A, B), we conduct a
Wilcoxon rank sum test to check if gene B is significantly more essential in samples in which gene A is
inactive (overactive) than in the rest of the samples (similarly, for (B,A)). We denote by DAISY-2, the
method that conducts both the first and the second test. For the third test, we consider a pair of gene
to be positively correlated if it is significantly positively correlated in at least one of 7 transcriptomic
datasets (containing gene expression profiles for the following cancers from TCGA : Breast Cancer, Colon
Cancer, Colorectal Cancer, Glioblastoma, Liver, Lung and Ovarian Cancer). Correlation is measured by

1http://gdac.broadinstitute.org/

2
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Spearman’s correlation coefficient following Bonferroni correction for multiple hypotheses testing. We
denote by DAISY-3, the method that conducts all three tests. None of the pairs passed the second test
and so we show the results only for DAISY-1 and DAISY-3.

For CMF-based methods, we use four matrices in addition to the SL-label matrix: SCNA, gene ex-
pression data, essentiality profile and pairwise co-expression data. Since both SCNA and gene expression
data have the same row-entity (gene) and column entity (patient), we chose one of the matrices, SCNA,
for transformation in CMF and retained the other, gene expression, without any transformation.

We obtain a binary matrix from the pairwise co-expression data using the test for positive correlation
in DAISY-3. We obtain a binary matrix from the gene-expression profile, with a 1 if a given sample is
under-expressed (below its 10th percentile of its expression level across or all samples) or over-expressed
(above its 90th percentile), otherwise a 0 for each pair of genes. We also obtain a binary matrix from the
SCNA profile, with a 1 if a given sample is below -0.3 or above 0.3, otherwise a 0 for each pair of genes.

C Stratified 3-fold CV results

Figure C.1: AUC (row above) and Probability-at-N (row below) averaged over 3-fold CV for experiments
2–4 (columns left to right).

Figure C.1 shows the results of experiments 2-4 as discussed in section 5 with stratified 3-fold CV.

D Negative Samples

Figure D.1: AUC averaged over 3-fold CV (with standard deviation) for four other randomly sampled
negative sets N in experiment 4.

Figure D.1 shows AUC averaged over 3-fold CV (with standard deviation) for four other randomly

3
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sampled negative sets N in experiment 4. There is no significant change in performance trends across the
negative samples. PCA-gCMF and gr-gCMF has the best performance across all five random selections.

E Feature Selection

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

Figure E.1: Predictive signal from each data source and combinations of data sources in experiments
1–4.

An advantage of our CMF-based approach is that it can be used with arbitrary collections of matri-
ces. This can be used to investigate the relative value of the ‘signal’ provided by each data source or
combinations of data sources by systematically using subsets of data matrices for prediction. Figure E.1
shows the results of such an analysis for experiments 1–4. In each experiment we used each data source
individually to predict SL pairs and then used each combination of data sources (all subsets) to predict
SL label using pca-gCMF. Note that the SL-label matrix that has the known SL labels and unknown
entries that are predicted is used in all the cases.

In experiment 1 (figure E.1a), we observe that the highest AUC is achieved by the combination of
feature matrices 1 and 2 (more than using all the five matrices). In experiment 2 (figure E.1b), using
SCNA matrix alone has higher AUC than using all the three matrices. In experiment 3 (figure E.1c),
use of all four matrices has the highest AUC with low standard deviation. In experiment 4 (figure E.1d),
any of the matrices or combinations of them have roughly equivalent predictive signal.

4
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F Selecting K

Figure F.1: AUC values at different values of latent dimensionK for experiment 1 (top left), experiment 2
(top right), experiment 3 (bottom left) and experiment 4 (bottom right) for our CMF-based approaches.

We empirically investigate the effect of different choices of latent dimension K in our CMF-based
approaches. Figure F.1 shows the average AUC obtained by our transformation-based approaches for
four different choices (2, 5, 10, 50) of K in experiments 1–4.

CMF is less sensitive to the choice of K and we observe roughly the same performance at all four
values of K. However the AUC obtained by CMF is lower than that of gCMF at all the values. gCMF is
more sensitive to the choice of K with the performance decreasing with increasing value of K. The best
AUC values are obtained at K = 2. The same trends are observed with both – PCA and graph-based –
transformations.

G Sparsity levels

Tables G.1, G.2, G.3 and G.4 show the distribution of the values (in 10 bins after min-max scaling) in the
learnt latent factors in experiments 1–4 respectively for four choices of K : 2, 5, 10, 50. The distributions
of the values in the latent factors for ‘gene’ entity (for all four values of K) are shown in figures G.1,
G.2, G.3 and G.4 respectively for experiments 1–4. All these results are for PCA-gCMF only.

We observe that the distributions are more peaked at K = 2 and more flat at K = 50. This indicates
that at lower values of K more values are concentrated in fewer bins compared to those in higher values of
K. The performance trends seen in figure F.1, and these distributions suggest that more sparse solutions
are correlated with better performance in gCMF. This is also observed in the difference of performance
between pca-CMF and pca-gCMF (or gr-CMF and gr-gCMF) with the latter, that yields sparse solution,
outperforming the former in all our experiments.
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Figure G.1: Experiment 1: distribution of values (in 10 bins after min-max scaling) of gene latent factor
at four choices of K.

Figure G.2: Experiment 2: distribution of values (in 10 bins after min-max scaling) of gene latent factor
at four choices of K.

Figure G.3: Experiment 3: distribution of values (in 10 bins after min-max scaling) of gene latent factor
at four choices of K.
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Figure G.4: Experiment 4: distribution of values (in 10 bins after min-max scaling) of gene latent factor
at four choices of K.
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Gene 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 0.69% 2.18% 5.75% 12.07% 14.83% 42.41% 12.87% 6.21% 2.07% 0.92%
k=5 1.43% 3.72% 7.36% 17.70% 39.68% 15.22% 8.55% 4.14% 1.52% 0.69%
k=10 0.83% 2.69% 6.32% 13.08% 34.37% 22.90% 11.84% 5.15% 2.21% 0.62%
k=50 0.85% 2.24% 5.83% 11.84% 26.12% 29.65% 13.41% 6.50% 2.61% 0.97

Hom del (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 8.33% 5.00% 11.67% 16.67% 11.67% 11.67% 8.33% 16.67% 5.00% 5.00%
k=5 5.33% 1.33% 8.00% 12.00% 11.33% 18.00% 10.00% 15.33% 10.67% 8.00%
k=10 6.00% 6.00% 5.67% 10.67% 15.00% 12.33% 14.00% 9.67% 9.33% 11.33%
k=50 8.13% 5.93% 10.53% 11.33% 12.80% 14.40% 12.20% 10.07% 7.53% 7.07%

Het del (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 3.33% 1.67% 11.67% 16.67% 18.33% 13.33% 25.00% 5.00% 0.00% 5.00%
k=5 6.00% 6.00% 14.00% 12.67% 12.67% 17.33% 14.00% 6.00% 7.33% 4.00%
k=10 6.00% 6.67% 10.67% 14.00% 14.33% 16.00% 14.67% 6.67% 5.00% 6.00%
k=50 7.07% 6.47% 9.20% 13.80% 15.53% 14.47% 13.20% 7.73% 5.87% 6.67%

Mix del (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 5.00% 15.00% 13.33% 10.00% 15.00% 16.67% 3.33% 6.67% 5.00% 10.00%
k=5 8.00% 6.00% 8.00% 12.67% 13.33% 14.00% 11.33% 12.67% 7.33% 6.67%
k=10 6.67% 9.33% 13.33% 14.00% 13.00% 15.00% 9.33% 7.67% 5.00% 6.67%
k=50 7.27% 6.20% 10.67% 11.53% 17.07% 14.13% 12.67% 8.67% 4.40% 7.40%

Co-UE del (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 10.00% 10.00% 13.33% 10.00% 16.67% 15.00% 8.33% 0.00% 6.67% 10.00%
k=5 7.33% 6.00% 4.00% 7.33% 17.33% 12.00% 16.00% 16.67% 6.00% 7.33%
k=10 5.67% 4.00% 8.00% 14.33% 16.00% 18.67% 13.00% 7.33% 6.67% 6.33%
k=50 6.47% 5.33% 9.07% 12.53% 13.60% 15.87% 14.13% 10.00% 6.47% 6.53%

Inv del (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 3.33% 3.33% 5.00% 11.67% 10.00% 13.33% 15.00% 10.00% 15.00% 13.33%
k=5 6.67% 4.00% 11.33% 17.33% 17.33% 12.67% 7.33% 11.33% 3.33% 8.67%
k=10 6.67% 5.33% 8.67% 10.67% 13.00% 13.33% 15.00% 14.67% 4.67% 8.00%
k=50 6.13% 5.47% 9.73% 12.33% 13.60% 14.07% 14.93% 9.87% 7.00% 6.87%

Table G.1: Experiment 1: distribution of values (in 10 bins after min-max scaling) of latent factors for
all entities at four choices of K.
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Gene 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 1.51% 3.31% 6.33% 14.76% 34.49% 17.02% 11.14% 7.68% 2.71% 1.05%
k=5 1.45% 2.35% 7.65% 12.11% 26.33% 26.93% 13.61% 5.06% 3.25% 1.27%
k=10 1.05% 2.35% 6.05% 10.33% 27.77% 24.79% 15.75% 6.90% 3.80% 1.20%
k=50 1.93% 5.71% 9.49% 15.93% 20.43% 16.69% 13.92% 9.42% 4.14% 2.33%

Pairwise Co-expr (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 5.33% 8.00% 10.67% 18.00% 19.67% 15.33% 12.67% 5.33% 3.33% 1.67%
k=5 1.73% 2.80% 7.47% 16.80% 18.80% 19.87% 16.93% 7.87% 5.47% 2.27%
k=10 2.47% 5.87% 8.87% 14.13% 19.13% 17.33% 15.47% 8.80% 5.27% 2.67%
k=50 2.15% 4.87% 9.81% 15.43% 17.53% 18.17% 15.16% 9.96% 4.69% 2.23%

Gene Expr (Patient) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 0.42% 3.81% 15.95% 20.47% 7.49% 2.00% 1.58% 6.28% 21.95% 20.05%
k=5 11.55% 23.55% 18.57% 4.97% 1.34% 2.25% 10.21% 9.41% 6.33% 11.81%
k=10 18.19% 21.88% 13.00% 5.64% 2.75% 6.60% 4.00% 6.07% 11.17% 10.71%
k=50 4.69% 9.65% 15.73% 12.86% 9.02% 12.58% 11.03% 11.75% 9.61% 3.07%

SCNA (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 0.67% 0.00% 2.00% 3.67% 31.67% 30.00% 25.33% 5.00% 0.67% 1.00%
k=5 0.93% 0.93% 6.13% 23.73% 18.93% 15.60% 21.20% 9.33% 2.27% 0.93%
k=10 2.20% 11.07% 8.67% 9.27% 15.60% 17.87% 17.53% 6.33% 9.40% 2.07%
k=50 1.92% 8.96% 15.55% 20.01% 13.36% 12.12% 10.93% 9.27% 5.11% 2.77%

Table G.2: Experiment 2: distribution of values (in 10 bins after min-max scaling) of latent factors for
all entities at four choices of K.
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Gene 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 2.11% 5.57% 6.33% 11.90% 26.36% 26.05% 11.14% 6.63% 2.11% 1.81%
k=5 1.17% 2.83% 7.17% 12.67% 18.50% 23.83% 13.67% 11.83% 4.67% 3.67%
k=10 0.99% 2.59% 11.02% 14.16% 15.87% 17.65% 20.42% 11.96% 4.07% 1.27%
k=50 1.38% 3.97% 8.74% 16.63% 23.28% 21.22% 15.08% 6.95% 1.92% 0.83%

Essentiality (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 1.25% 3.33% 4.58% 12.92% 22.08% 17.50% 15.00% 10.42% 11.25% 1.67%
k=5 1.73% 2.80% 7.47% 16.80% 18.80% 19.87% 16.93% 7.87% 5.47% 2.27%
k=10 2.42% 3.75% 7.25% 11.58% 18.75% 19.33% 18.25% 10.58% 5.08% 3.00%
k=50 2.90% 5.35% 10.23% 14.73% 19.53% 18.90% 14.12% 8.28% 3.67% 2.28%

Phylo Score (Species) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 46.88% 37.44% 12.05% 2.37% 0.84% 0.28% 0.05% 0.00% 0.00% 0.09%
k=5 2.79% 6.98% 11.40% 20.23% 21.63% 13.72% 8.84% 6.28% 4.42% 3.72%
k=10 5.81% 10.93% 12.21% 12.56% 12.79% 12.33% 13.49% 10.35% 6.16% 3.37%
k=50 3.30% 4.95% 8.79% 13.88% 17.30% 18.74% 14.23% 9.77% 5.42% 3.60%

Gene Expr (Patient) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 0.42% 3.81% 15.95% 20.47% 7.49% 2.00% 1.58% 6.28% 21.95% 20.05%
k=5 12.19% 5.62% 1.67% 0.35% 0.43% 0.73% 1.45% 7.29% 25.13% 45.13%
k=10 22.11% 14.73% 8.41% 3.37% 1.20% 0.75% 1.16% 5.13% 17.74% 25.40%
k=50 6.45% 12.41% 19.00% 12.54% 5.87% 7.56% 9.01% 9.26% 11.50% 6.41%

SCNA (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 1.00% 0.00% 1.00% 1.00% 10.33% 55.00% 26.67% 3.67% 0.33% 1.00%
k=5 2.27% 2.40% 15.20% 20.93% 14.27% 8.13% 13.07% 14.13% 7.20% 2.40%
k=10 2.00% 2.67% 8.87% 13.40% 21.20% 19.60% 14.67% 12.87% 3.20% 1.53%
k=50 3.31% 8.59% 9.59% 11.09% 16.31% 18.52% 16.31% 11.69% 3.41% 1.19%

Table G.3: Experiment 3: distribution of values (in 10 bins after min-max scaling) of latent factors for
all entities at four choices of K.
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Gene 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 0.45% 0.90% 3.77% 9.04% 16.57% 40.96% 15.81% 8.13% 3.31% 1.05%
k=5 1.51% 2.77% 5.84% 10.48% 26.69% 27.95% 12.95% 7.29% 3.19% 1.33%
k=10 5.00% 1.33% 10.00% 13.00% 27.00% 5.33% 4.67% 10.00% 17.33% 6.33%
k=50 7.47% 5.20% 4.00% 9.47% 17.80% 16.80% 15.47% 12.67% 5.53% 5.60%

Co-Expr (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 3.33% 10.00% 35.00% 3.33% 21.67% 15.00% 1.67% 0.00% 5.00% 5.00%
k=5 22.67% 3.33% 1.33% 4.00% 29.33% 22.67% 8.67% 0.00% 2.67% 5.33%
k=10 5.00% 1.33% 10.00% 13.00% 27.00% 5.33% 4.67% 10.00% 17.33% 6.33%
k=50 2.90% 5.35% 10.23% 14.73% 19.53% 18.90% 14.12% 8.28% 3.67% 2.28%

ME (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 50.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 50.00%
k=5 50.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 50.00%
k=10 50.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 50.00%
k=50 50.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 50.00%

Pathway (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 1.88% 4.38% 11.88% 15.63% 20.63% 23.75% 9.38% 7.50% 2.50% 2.50%
k=5 3.25% 4.25% 10.50% 18.75% 21.50% 15.25% 10.50% 8.50% 4.50% 3.00%
k=10 3.50% 5.25% 9.13% 15.00% 17.50% 17.88% 16.50% 9.25% 3.25% 2.75%
k=50 3.13% 5.30% 9.70% 14.73% 17.68% 17.48% 14.13% 9.20% 4.78% 3.90%

PPI (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 4.00% 7.00% 6.00% 12.00% 14.00% 19.00% 15.00% 14.00% 6.00% 3.00%
k=5 4.40% 6.80% 12.40% 14.40% 12.00% 15.60% 17.60% 9.60% 3.20% 4.00%
k=10 6.80% 7.60% 12.40% 16.00% 15.40% 14.40% 9.60% 9.20% 4.00% 4.60%
k=50 5.32% 5.96% 10.72% 15.08% 14.76% 15.60% 13.56% 9.04% 5.96% 4.00%

Prot-Complex (PC) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

k=2 7.14% 17.86% 3.57% 14.29% 21.43% 7.14% 3.57% 3.57% 7.14% 14.29%
k=5 14.29% 7.14% 8.57% 10.00% 7.14% 8.57% 17.14% 11.43% 2.86% 12.86%
k=10 11.43% 7.86% 7.86% 9.29% 11.43% 12.86% 11.43% 12.14% 5.71% 10.00%
k=50 11.71% 5.57% 11.29% 12.00% 11.86% 11.86% 9.29% 9.14% 5.71% 11.57%

Table G.4: Experiment 4: distribution of values (in 10 bins after min-max scaling) of latent factors for
all entities at four choices of K.
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