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Abstract

Motivation: Spatial transcriptomics technology is increasingly being applied because it enables the

measurement of spatial gene expression in an intact tissue along with imaging morphology of the same

tissue. However, current analysis methods for spatial transcriptomics data do not use image pixel information,

thus missing the quantitative links between gene expression and tissue morphology.

Results: We developed an user-friendly deep learning software, SpaCell, to integrate millions of pixel intensity

values with thousands of gene expression measurements from spatially-barcoded spots in a tissue. We show

the integration approach outperforms the use of gene count alone or imaging data alone to create deep learning

models to identify cell types or predict labels of tissue images with high resolution and accuracy.

Availability: The SpaCell package is open source under a MIT license and it is available at

https://github.com/BiomedicalMachineLearning/SpaCell

Contact: quan.nguyen@uq.edu.au

1 Introduction
Spatial transcriptomics (ST) technology is emerging as an important

platform for measuring molecular biological processes at the tissue level
(Burgess, 2019). Different from other genomics technologies, ST does not
require dissociating cells from the original tissue. Molecular measurements
can be mapped back to the spatial location of the cells in tissue via spatial
barcodes, adding a novel spatial data dimension to gene expression data.
Moreover, platforms such as Slide-seq generate a tissue image and a gene
expression profile of the same tissue, allowing the integration of tissue
morphology and spatial gene expression (?).

However, incorporating imaging data to gene expression data is a
new analysis area, while current analysis pipelines mainly focus on using
expression values but not image pixel values. Image pixel intensity data
contain informative features that can be used for diagnosing diseases
such as for cancer staging (Coudray et al., 2018). Although machine
learning methods exist for analysing imaging data (Komura and Ishikawa,
2018), these methods do not utilise molecular data. Advances in genomics
technologies create new data types for novel machine learning applications
to combine molecular measurements with image pixel data to characterise
tissue morphological images beyond pathological annotation (Hekler et al.,
2019). Existing methods for spatial data analysis, however, use gene
expression, but not image pixel information (Navarro et al., 2017; Dries
et al., 2019). We developed SpaCell with a comprehensive workflow to
utilise both pixel and gene expression data to train neural network (NN)
models for cell-type and disease-stage classification.

2 Main workflow
SpaCell’s workflow (Fig. 1) starts with two-stream data preprocessing.

For image preprocessing, SpaCell first removes any colour cast, which
is the background difference from the white background in the H&E
image, then performs stain normalisation to overcome inconsistencies in
the staining process (Macenko et al., 2009) (Supp. Methods ). Then, high
images are tiled into small tiles and the tiles are resized to 299 x 299
pixels, where each tile contains one spot. To increase model performance
and generalisability, SpaCell performs random rotation and Z-transform
of the tiled images for each training step. For count matrix preprocessing,
gene counts are mapped read counts to each spatial transcriptomics spot,
recovered by spatial barcodes. A large range of programs developed for
single-cell data analysis are available for users to process and normalise
count data. SpaCell has built-in and fast options to remove unreliably
detected spots and genes, followed by library-size normalisation.

In the cell type classification model (Supp. Methods), SpaCell analyses
one high-resolution image and its spatial count matrix. To extract a
latent feature vector for each image tile, we fit pre-trained convolutional
neural network (CNN) weights from the ResNet50 model to utilize big
data in the ImageNet database. For each tile feature vector and its
corresponding spot gene counts, we trained two autoencoders (AE) to
find two latent spaces of equal dimension, which are then concatenated
into one latent vector. For all spots, the latent vectors are then combined
to form a latent matrix representative for both image and gene count
data, which are then used to perform clustering (default as K-means
clustering) to identify cell types. After spot clustering, SpaCell provides
visualisation functions to evaluate the model performance. Importantly,
to enable quantitative comparison to pathological annotation information,
we devised an approach to automatically and accurately detect and map
annotation contours from a low-resolution image to a WSI. After mapping,
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2 Tan et al.

Fig. 1. Two main analysis workflows of SpaCell: cell type identification and disease stage
classification.

we use digital spot coordinates and the contour-masked regions to compare
computational prediction with pathological annotation.

In the disease stage prediction model (Supp. Methods), SpaCell uses
hundreds of images and corresponding count matrices. Both tiles and count
data are input into a fully connected model, initially as two streams. Each
image tile is initiated by a CNN with weights pre-trained on the ImageNet
dataset and these weights are trainable together with parameters from the
count stream. To increase model generalisation and reduce over-fitting,
the following strategies are applied: random sampling of images stratified
by labels ensuring unseen test images, five-fold cross-validation, drop-out
and L2 penalization. Following model training, users can apply evaluation
functions in SpaCell for quantitative analysis of model performance such
as test accuracy, ROC curves and confusion matrix.

SpaCell models were tested on a prostate cancer (Berglund et al.,
2018) and amyotrophic lateral sclerosis (ALS) (Maniatis et al., 2019)
datasets (Supp. Methods), which represent a dataset with few images
and high resolution compared to a dataset with more images and lower
resolution. By testing more than 40 models, we consistently found that
the combination of pixel and gene expression data improved model
performance by 8-14% in accuracy, precision, F-score and Area Under
the Curve in cell-type models (Supp. Figs 1, 2 ) and 4% in disease-stage
classification models (Supp. Fig 3).

3 Implementation
SpaCell has been developed with Python 3.7 as a user-friendly

software. Installation and tutorials are described in the SpaCell GitHub
page and PyPI repository. Changes in the parameter settings are kept in the
config file for reproducibility. SpaCell uses Keras and TensorFlow backend
which are portable between platforms and supports Graphics Processing
Units (GPUs) distribution to accelerate the training step.

4 Conclusion
SpaCell is a pioneering software program implementing deep neural

networks for integrating image pixel data and spatial gene expression
data for biomedical research. We show that SpaCell can automatically
and quantitatively identify cell types and disease stages. We tested over
40 models and consistently found that the integration of both data types
increased model performance compared to using one type of data input.
Moreover, SpaCell prediction results have higher resolution, specific to
thousands of spatial spots, compared to typical pathological annotation
with several large regions. We expect that our model can be applied to any
type of spatial omics data that have both images and expression values.

Acknowledgements
We thank Prof. Joakim Lundeberg and Dr. Emelie Berglund for

sharing the spatial data and members in Nguyen’s Biomedical Machine
Learning Lab for helpful discussion. This work has been supported by
the Australian Research Council (ARC DECRA DE190100116), the
University of Queensland, and the Genome Innovation Hub.

Conflict of interest: none declared

References
Berglund, E. et al. (2018). Spatial maps of prostate cancer

transcriptomes reveal an unexplored landscape of heterogeneity. Nature
Communications, 9(1), 2419.

Burgess, D. J. (2019). Spatial transcriptomics coming of age. Nature
Reviews Genetics, 20(6), 317–317.

Coudray, N. et al. (2018). Classification and mutation prediction from
non-small cell lung cancer histopathology images using deep learning.
Nature Medicine, 24(10), 1559–1567.

Dries, R. et al. (2019). Giotto, a pipeline for integrative analysis and
visualization of single-cell spatial transcriptomic data. bioRxiv.

Hekler, A. et al. (2019). Deep learning outperformed 11 pathologists in the
classification of histopathological melanoma images. European Journal
of Cancer, 118, 91 – 96.

Komura, D. and Ishikawa, S. (2018). Machine learning methods
for histopathological image analysis. Computational and Structural
Biotechnology Journal, 16, 34 – 42.

Macenko, M. et al. (2009). A method for normalizing histology slides
for quantitative analysis. In 2009 IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pages 1107–1110.

Maniatis, S. et al. (2019). Spatiotemporal dynamics of molecular
pathology in amyotrophic lateral sclerosis. Science, 364(6435), 89–93.

Navarro, J. F. et al. (2017). ST Pipeline: an automated pipeline for spatial
mapping of unique transcripts. Bioinformatics, 33(16), 2591–2593.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 10, 2019. ; https://doi.org/10.1101/837211doi: bioRxiv preprint 

https://doi.org/10.1101/837211
http://creativecommons.org/licenses/by-nc/4.0/


i
i

“output” — 2019/11/10 — 7:21 — page 1 — #1 i
i

i
i

i
i

1

SpaCell: integrating tissue
morphology and spatial gene

expression to predict disease cells

Tan et al

Supplementary information

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 10, 2019. ; https://doi.org/10.1101/837211doi: bioRxiv preprint 

https://doi.org/10.1101/837211
http://creativecommons.org/licenses/by-nc/4.0/


i
i

“output” — 2019/11/10 — 7:21 — page 2 — #2 i
i

i
i

i
i

2

Supplementary methods
Cell Type Clustering

Data preprocessing includes tiling and normalisation to solve two inherent
challenges, the small sample size and the technical variation between
images. Since the number of images is often small, SpaCell implements
a tiling strategy where each spatial spot in Slide-seq data is captured as
an image tile with a corresponding column in the count matrix. While
most histological images are viewed in isolation without taking into
account other images, SpaCell can use spot image tiles from many tissue
section images. Images are often different in contrast, colour, and base-
line brightness due to various factors such as manufacturers, microscopy
settings and slide preparation. The normalisation step in SpaCell removes
this variation through colour cast removal and stain normalisation. As
histological images are taken against a white background, any images with
a coloured background can be assumed to have a colour cast. To remove
this colour cast, SpaCell scales the R,G,B channels individually such that
the background becomes white. Stain normalisation is implemented in
StainTools as described below (Macenko et al., 2009):

ODflat = C ⇤ S (1)

where OD is the optical density image transformed from a H&E stained
image in RGB format, S is a stain two colour matrix, and C is a pixel
concentration matrix that is used to normalise a target image using the S

matrix of that image. By default, the stain matrix is estimated by Vahadane
et al. method (Vahadane et al., 2016), or alternatively by Macenko et al.
method (Macenko et al., 2009). We found at least 3% improvement in
accuracy for models with the normalisation step.

In the cell type identification model, SpaCell uses a pre-trained
convolutional neural network (CNN), ResNet50, which makes use of
network weights trained from the ImageNet database. SpaCell applies the
ResNet50 model (He et al., 2015) to each spot image to find a latent variable
vector representing informative features in each spot image. These latent
features and corresponding gene counts then feed into an autoencoder (AE)
with a multi-input, multi-output architecture where a merged bottleneck
layer can communicate to both the spot image latent feature stream and the
spot gene counts stream (Fig. 1). Due to the unbalanced number of features
in the gene counts (13,000 genes) and tile feature vector (2048 features)
for each spot, SpaCell has function to select 2048 top variable genes to
equalise the dimensions of the spot gene counts and spot tile feature vector
to 2048. SpaCell also performs min-max scaling method to scale spot
gene counts and spot tile feature vector to range of 0 to 1 to minimize
bias derived from variation in data ranges between image and count data.
SpaCell implements two separate autoencoders for gene count and tile
feature vector data to generate two latent spaces with the same dimensions.
Those two latent spaces are able to output key features representative of
both the original spot image and the spot gene expression, therefore, are
concatenated as input for downstream k-means clustering (Fig. 1). We use
the Mean Square Error (MSE) to measure the distance between the original
input and the constructed output. Losses which contain both spot image
latent feature loss and spot gene count loss (Equation (2)) are minimised
by Adam optimiser during the training step (epoch). After model training,
the merged bottleneck layer is able to output key features representative
of both the original spot image and the spot gene expression. SpaCell
implements three loss functions such as the Mean Square Error (MSE)
(Equation (2)), Kullback-Leibler (KL) (Equation (3)) and Binary Cross
Entropy (BCE) (Equation (4)) to measure the cost of the original input and
the constructed output. Loss is minimised by the Adam (Kingma and Ba,
2014) optimiser during the training step (epoch).

MSE =

PN
i=1(yi � ŷi)2

N
(2)

DKL(pkq) = Hp(q)�H(p)

=
NX

i=1

p(xi)(log p(xi)� log q(xi))

=
NX

i=1

p(xi)
log p(xi)

log q(xi)

(3)

Hp(q) = �
1

N

NX

i=1

(xi log(p) + (1� xi) log(1� p)) (4)

where i is the index for spot i. Xi represents 2048 feature vectors from
ResNet50 model or a vector of counts for the top 2048 most variable genes
measured for Spoti. p and q denote the probability distributions for input
and constructed output of all N spots.

To quantify performance of the cell type identification model,
SpaCell implements a validation tool that utilises pathologist annotations.
Pathologist annotations are often low-resolution so SpaCell registers this
annotation image to the whole slide image. To achieve this, SpaCell
uses a sliding window approach to find the best location and scale for
the annotation image, as indicated by a maximum normalised correlation
coefficient (Yoo and Han, 2009). In combination with a user-specified
annotation colour, SpaCell extracts the annotation contours. These
annotations may be open or closed contours. SpaCell preprocesses open
contours with a convex hull approach (Barber et al., 1996) to close the
contours. Closed contours are filled in to create an annotation mask. By
referencing spot coordinates against this pathological annotation mask,
SpaCell generates a pathologist label for each spot. SpaCell compares
the labels predicted by the cell type identification model to the pathologist
labels to generate performance metrics such as accuracy, F-score and ROC
curves.

Clustering method were tested on a prostate cancer dataset (Berglund
et al., 2018) containing 12 tissue slides from one patient but taken from
different prostate locations. Two slides with pathologist annotation were
used to test the model performance; P3.3 which represents cancer and
non-cancer regions with an open annotation contour and P4.4 which
represents inflamed stromal and non-inflammed stromal regions with a
closed annotation contour.

Disease Stage Classification

In the disease stage prediction model, SpaCell uses a two-input deep
neural framework to integrate spot image data and spot gene count data
(Fig. 1). Spot images feed into an Xception CNN (Chollet, 2016) ResNet50
followed by a hidden layer for image feature input and spot gene counts
feed into a hidden layer for gene expression input. A merged layer connects
these two hidden layers and is followed by a fully connected neural network
classifier. This architecture enables the model to learn effective information
from both spot image data and spot count data that is relevant to the disease
stage. This model uses a Softmax activation function in the last layer to
calculate the probability over the C classes for each input Z, defined as:

Softmax(Zi) =
eZi

PC
C=1 e

ZC
(5)

As this model is designed for multi-class classification problem, a
Categorical Cross-Entropy Loss (CCE) (Equation (6)) is implemented
where ti and Softmax(Zi) denote the ground truth and predicted score
for class Ci.

CCE = �
Xn

i=1
tilog(Softmax(Zi)) (6)

Dropout layer and l2 regularization for dense layer are used to avoid
overfitting. To improve the robustness of the model and assess the risk of
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overfitting, SpaCell implements stratified 5 fold cross-validation on the
training dataset.

Classification method were tested on ALS dataset (Maniatis et al.,
2019) consisting of 348 Spinal cord spatial transcriptomics tissue slides in
the raw dataset, of which 146 were classified into different ALS disease
stages. After removing low quality spots, 31771 spots within 143 WSIs
were kept for classification model. Each WSI was labeled as one of
the four disease progression categories, including p30, p70, p100 and
p120 representing pre-symptomatic, onset, symptomatic and end-stage
respectively. In total, 9267 tiles from 46 WSIs with p30 labelled, 6370
tiles from 33 WSIs with p70 labelled, 6337 tiles from 27 WSIs with p100
labelled and 9797 tiles from 37 WSIs with p120 labelled were used in
classification model. 143 ALS mice were randomly split to 100 mice for
training and the remaining 43 mice as unseen data for testing such that each
disease stage was represented in similar proportions in the test set. Five fold
cross validation was applied for the training dataset. After tilling without
overlapping, 22179 tiles from 100 mice were used for model training and
9592 tiles from 43 unseen mouse tissue images were used for testing the
model performance.

Supplementary results
Compare models for cell type classification

For cell type clustering model, we assessed SpaCell’s performance in two
applications different in biological contexts. In one case, we distinguished
cancer cells from non-cancer cells (image P4.2) and in another case we
identified stromal cells from the whole tissue (image P3.3), (Supp. Fig
1). Two images were selected because they had pathological annotation,
which can be used as a reference for assessing spot predicted values.
We successfully mapped the contours from low-resolution pathological
annotation images, available as pdf files in the original paper (Berglund
et al., 2018), to the original images that are 1000 times larger. The mapping
enables us to assess the model performance by accuracy, precision, F-
score, and ROC curve. In both cases, the combined model shows higher
performance than using one data type alone, with up to 25% in precision,
14% in accuracy and 38% for F-score. Furthermore, we compared 36
models, with different options for data inputs (combined with two latent
spaces, combined with one latent space, single gene-count, single tiled
image), data-prepossessing (scaled, top variable genes, and no-scaled),
and loss functions (BCE, KL, and MSE ) (Supp. Fig 2). The four heatmap
blocks demonstrate the comprehensive comparisons and the superior
performance of the combined pixel and gene-count models, with the
performance ranked in descending order as: combined with two latent
spaces, combined with one latent space, single gene-count model, and
single tiled images (Supp. Fig 2). We also found the optimal architecture
for the cell type classification model with two latent spaces, BCE loss,
and scaled preprocessing. With this optimal model, the performance of
the combined image and gene-count data is 8-14 % higher in accuracy,
precision, F-score and Area Under the Curve than the models with only
one data type (Supp. Fig 2).

Compare models for disease stage classification

For multiclass classification of the four ALS disease stages, we
implemented a stringent design to create a test set completely unseen
from the training dataset at both the tile and image levels and performed
cross-validation to assess overfitting and model robustness. The design
allowed us to assess model performance based on ground-truth labels
from known phenotype for each of the above 31,000 tiles representing
143 mice and four disease states. Supp Fig. 3 shows higher performance
for the combined model especially for distinguishing the to very similar
class, presymtomatic (p30) and onset (p70). The confusion matrix in the

supplementary Figure 3 B show that the gene count only model was unable
to separate these two classes (P30 and P70). The combined model also
performed markedly better compared to the model using image only input.

Implementation steps
# Step 1. Installation
git clone https://github.com/BiomedicalMachineLearning/Spacell.git
conda create -y -name spacell python==3.7
conda install -y -name spacell -c conda-forge --file requirements.txt
conda activate spacell

# Step 2. Setup configurations in config.py
# Path to metadata which contains at least sample name column and
# corresponding label column
META_PATH = ’../dataset/metadata/mouse_sample_names_sra.tsv’

# Path to spatial transcriptomics imaging data
IMG_PATH = ’../dataset/image/’

# Path to spatial transcriptomics gene counts data
CM_PATH = ’../dataset/cm/’

# Alignment transform matrix
# If ST imaging data were aligned, leave it to None.
# Otherwise, give the path to affine transformation
# matrix generated by st_spot_detector
ATM_PATH = None

# Path to folder that save the tiles
TILE_PATH = ’../dataset/tile/’

# Path to save intermediate output and final result
DATASET_PATH = ’../dataset/’

# Path to an image which will be used as a template
# for stain normalization
TEMPLATE_IMG = ’../dataset/image/CN94_D2_HE.jpg’

# Tile size (DO NOT CHANGE)
SIZE = 299, 299

# Color channel (RGB)
N_CHANNEL = 3

# Image stain normalization method
NORM_METHOD = ’vahadane’

# Threshold for removing low abundant gene, genes
# expressed in less than THRESHOLD_GENE of total
# number spots will be removed
THRESHOLD_GENE = 0.01

# Threshold for removing low quality spots, spots
# with less than THRESHOLD_SPOT of total genes
# expressed will be removed
THRESHOLD_SPOT = 0.01

# Minimum gene count value for counting whether
# expressed or not
MIN_EXP = 1
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# Specify column name of sample name column,
# label column and condition column (used
# for subset if provided otherwise leave it to None)
# in metadata file
SAMPLE_COLUMN = ’sample_name’
LABEL_COLUMN = ’age’
CONDITION_COLUMN = ’breed’

# Subset dataset that all samples have certain
# CONDITION in CONDITION_COLUMN
CONDITION = ’B6SJLSOD1-G93A’
ADDITIONAL_COLUMN = 2 if CONDITION_COLUMN else 1

# Set random seed for reproducibility
seed = 37

# Color map for spots color in final clustering plot
color_map = [’#ff8aff’, ’#6fc23f’, ’#af63ff’,
’#eaed00’, ’#f02449’, ’#00dbeb’, ’#d19158’,
’#9eaada’, ’#89af7c’, ’#514036’]

# Options for running different models:
# "combine" : uses both image and gene count data
# "gene_only" : takes gene count data only as input
# "tile_only" : takes images data only as input
model = ["combine", "gene_only", "tile_only"]

# Number of tiles that will be propagated through
# the model at each step
batch_size = 32

# Number of times that all training dataset will be
# passed forward and backward through model
epochs = 1

# The ratio for splitting training and test datasets
train_ratio = 0.5

# Number of categories in label
n_classes = 4

# Option for stratified K-fold
# True : run stratified K-fold cross validation
# False : run model without cross validation

cross_validation = False

# Number of splits for cross validation
k_fold = 2

# Step 3. Image Preprocessing
python image_normalization.py

# Step 4. Count Matrix PreProcessing
python count_matrix_normalization.py

# Step 5. Generate paired image and gene count
# training dataset
python dataset_management.py

# Step 6. Classification
python spacell_classification.py

# Step 7. Clustering
python spacell_clustering.py -i /path/to/one/image.jpg -l
/path/to/iamge/tiles/ -c /path/to/count/matrix/
-e 100 -k 2 -o /path/to/output/

# -e is number of training epochs
# -k is number of expected clusters

# Step 8. Clustering Validation and Quantification
python spacell_validation.py -d /path/to/data
-a annotation.png -w wsi.jpeg
-m affine_tranformation_matrix.txt

# -o output_folder
# -k clustering_predictions.tsv
# -c annotation_colour_range
# -c is annotation colour range thresholds
# -blue_low green_low red_low blue_upper green_upper red_low
# -t indicates that annotations are not closed paths,
# so spacell with try to close the paths
# -f downscale factor if the input whole slide image has
# already been downscaled
# -s spot size, optional, usually set automatically
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Supplementary materials

Supplementary Figure 1. Cancer and inflamed cell type classification. Comparisons between three models that used either only gene count data or image data or the combination of
both as the model training dataset. P4.2, inflamed stromal cell. P3.3, cancer cell types. The red and purple contours denote pathological annotation. All three models implemented same
AE architecture with 100 training epochs where losses were calculated by BCE. Top 2048 variable genes were selected in gene model and combined model to balance the weight of gene
expression data and tile feature data.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 10, 2019. ; https://doi.org/10.1101/837211doi: bioRxiv preprint 

https://doi.org/10.1101/837211
http://creativecommons.org/licenses/by-nc/4.0/


i
i

“output” — 2019/11/10 — 7:21 — page 6 — #6 i
i

i
i

i
i

6

Supplementary Figure 2. Comparing cell type classification models. Four data input categories are compared. A) is model using the combination of gene counts and images with two
separate autoencoder streams, followed by the concatanation of the two latent spaces. B) is model using the combination of gene counts and images with a single autoencoder used for both
pixel and gene count. C) and D) are gene count only model and image only model, respectively.
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Supplementary Figure 3. Disease stage classification model. Three models are compared. A) and B) are the model using the combination of gene counts and images or the gene count
only , respectively.
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