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1. INTRODUCTION

The problem of translation is not new. Each time a new
generation of computer systems evolve, data from the
old database must be regenerated and the old query set
must be translated. In addition, there is a need for
translation when we restructure the database. Such
restructuring can be motivated by

(1) a change of the environment in which a database
management system (DBMS) is used;

(2) a change in DBMS;

(3) modification of the design for efficiency reasons;

(4) a change in database semantics.

Su and Reynolds'* studied the problem of high-level
sublanguage query conversion using the relational model
with SEQUEL* as the sublanguage, DEFINE® as the
data description language and CONVERT?* as the data
translation language. They examined sublanguage query
conversion, where query modification is due to changes
in the schema and subschemas. The changes they
considered were

(1) a large relation is split into several relations;

(2) several relations are combined into one;

(3) changes of the mathematical mapping between/
among entities;

(4) adding or deleting entities and/or association.
Their conversion algorithm is specific to the environment
they studied and serves pedagogically when an attempt is
made to extend their work into the general translation
problem.

The advent of lower-cost computer systems has paved
the way for decentralisation of computing resources.
Decentralisation has enabled designers to enhance local
performance by allowing the freedom of design and
software choice for each local system. Such freedom
provides the necessary enhancement of local computing,
but complicates the task of providing access to the
database resources on a system-wide basis. In particular,
it either forces the user to be aware of the location and
format of all the data in the system or the computer
software/hardware must have the ability to provide
access to the local databases through a single data-
manipulation language. Systems, such as MULTIBASE™®
provide such access, but force the user to use both the
data manipulation language (DML) of MULTIBASE
and the local system to get the enhanced local
performance.

What is needed is a model that can provide both the
dynamic query translation necessary to allow the direct

1 To whom correspondence should be addressed.

communication of different DBMSs, so that the user
only needs to be proficient in the DML of his/her local
DBMS and the ability to provide general query trans-
lation to allow the extension of the work of Su and
Reynolds.’ In recent work on database design, a
number of authors have found the hypergraph to be a
useful means of modelling relational database designs.
1.2.5.6.7,11,15.18 When the hypergraph is extended to
incorporate the DML operations, it is helpful in defining
a general model for query translation.

In the next section, we review some basic concepts of
hypergraphs and look at the use of the hypergraph in
modelling the relational database. The section examines
the use of the hypergraph to model both the logical
design and DML operations. A translation process built
on the model is described in Section 3.

2. HYPERGRAPH MODEL

We assume that the reader is familiar with the basic
concepts in relational database theory, such as the basic
dependencies (functional, multivalued and join) and the
operators of relational algebra.’®® If N is the set of
attributes, then we define a database scheme R = {R,, R,,
..., R,} to be a set of subsets of N.

A hypergraph is a couple # = (A", &) where A" is a set
of vertices and & is a set of edges which are nonempty
subsets of 4.3 There is a natural correspondence between
database schemes and hypergraphs.

A hypergraph # = (A, &) is said to be y-acyclic® if it
contains no y-cycle which is a sequence of the form

(El’ xl’ E2’ x2’ A4 Ek’ xk’ Ek‘+l)

@) x,,x,,...,x, are distinct vertices in A";
(i) E,E,, ..., E, are distinct edges in & and E,,, =

19
(iii) k= 3;
@iv) x,isin E,NE,,, 1 <i<k;
(v) if 1 < i<k, then x,is in no E, except E, and E,,,.

The database scheme is p-acyclic exactly when the
underlying hypergraph is y-acyclic.

Fagin® has defined two additional types of acyclicity
for hypergraphs that are of interest: a-acyclic and S-
acyclic. Graham’s algorithm'® !¢ repeatedly applies the
following two steps on the hypergraph until neither can
be applied:

(1) if x is a vertex that appears in exactly one edge
E,, then delete it from E,;

(2) delete E, if there is an edge E,, j =+ i such that
E cE,.

THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988 155

¥202 IMdy gz uo 1senb Aq 28€2G¢/SSL/Z/LE/e1ome/|ufwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq



M. M. OWRANG O.

The algorithm succeeds if it terminates with an empty set;
otherwise, it fails. A hypergraph is a-acyclic if Graham’s
algorithm succeeds. A hypergraph is f-acyclic if every
arbitrary subhypergraph is a-acyclic.

Fagin® has shown that y-acyclic = B-acyclic = a-
acyclic, but none of the reverse implications hold. Each
type of acyclicity provides desirable properties for the
corresponding database scheme. In particular, Fagin®
has shown that any arbitrary connected set of relation
schemes in a y-acyclic database scheme defines an
embedded join dependency.

Fagin et al.” use the hypergraph to model the full join
dependency which defines the universal relation (UR).
For example, the well-known supplier—parts database
given in Fig. 2.1 is defined by the dependency set
{><[R,,R,, R;)), S# - C, C— S, S# P# — Q}. The join
dependency (jd)><[R;, R,, R,] can be represented by the
hypergraph of Fig. 2.2. Fagin et al.” have shown that the
semantics of any database can always be represented by
such a full join dependency and a set of functional
dependencies (fds). Ullman'? in his survey of universal
relation assumptions denotes this as the UR/JD as-
sumption. A second universal relation assumption we will
find useful is a variant of the Pure Universal Relation
Assumption.!’

To this point, we have only represented the logical
design in the hypergraph model. To be of use in
translating queries, the model has to expand to incor-
porate the operations of a data manipulation language
(DML).

In the following, we incorporate the DML commands
of relational algebra into the model to fit the needs of the
translation process given in the next section. The
inclusion of the three fundamental operators of relational
algebra —join, project and select —in the hypergraph
model is described by the following set of actions.

Join. The natural join is introduced into the model by
the creation of a new edge containing the combined
attribute set of the two joined relations. The new edge is
labelled as a join edge. To consider the more general
question of the theta join requires an extension of the
edge labelling process to describe the restrictions on
theta.

Project. Projection is introduced into the hypergraph
by inclusion of a new edge containing the projected
attributes. The new edge is labelled as a projection
edge.

Select. A selection of operation on a relation creates a
new relation of tuples which have been defined by the
given condition. The condition (F) involves a boolean
combination of simple conditions. A simple condition on
the hypergraph is an expression C involving: (i) operands
that are vertices and constants; (ii) comparison
operators; (ii1) logical operators AND(A), OR(Vv) and
NOT(]). The selection formula F is in Conjunctive

R,(S#, P#,Q)

R,(S#,C)

R,(C,S)
where S# = supplier number, P# = part number, Q =
quantity, C = city located in, S = status of city.

Figure 2.1. Supplier—parts database.
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Figure 2.2. Hypergraph representation of the supplier—parts
database.

Query: Select e, where S# = S1 or P# = P1 giving T,;
join 7, and e, giving T;; project T, over C.
Resulting hypergraph:

~w<== ‘OR’edge

join edge
e—e—e—e—e project edge

original (system) edge

Figure 2.3. Example of including relational algebra in the
hypergraph model.

Normal Form (CNF), i.e. F= C;AC, A ... A C,. Simple
conditions can be indicated in the hypergraph by labelling
the appropriate attribute vertices with the simple
condition. Simple conditions using the OR operator
require the insertion of an OR edge labelled with the
simple condition.

Fig. 2.3 illustrates the inclusion of a relational algebra
query into the hypergraph model of Fig. 2.2. The model
is used in Section 3 in the query translation process.

3. TRANSLATION PROCESS

We assume that we have two relational designs over
essentially the same attribute set. The designs are not the
same, but attempt to support basically the same set of
semantics. The two designs are represented in the
hypergraph format of Section 2. The hypergraph
representing the design for which the query was written
is called the source hypergraph and the second is given as
the target hypergraph.

To translate the query, we need three operations, as
follows.
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(1) Map the source query into the hypergraph space
of the source hypergraph.

(2) Translate the resulting source query hypergraph
into the hypergraph space of the target hypergraph.

(3) Map the target query hypergraph to the target
data-manipulation language.

In the first operation, we have the task of creating a
query hypergraph that has sufficient information content
to provide a basis for the translation. The source query
can be generalised (without loss of generality) to

Q =1I,(0(R,><R,p><...0<xR))),

where L is the set of projected vertices, F is the selection
formula in the query and is in CNF, and R, R,, ..., R,
are the relation schemes from the source design.

Two types of information are essential to the trans-
lation process. The set of attributes that represent the
result of the source query (L) and any attributes that
have been used in the selection formula (F) must be
included in any source query hypergraph. The join
sequence is not required, since the universal relation
assumption has been adopted. To provide the necessary
information, we have adopted a two-edge hypergraph.
One edge is a projection edge (L) and the other edge
contains the selection attributes labelled with the appro-
priate condition from F. The projection edge has been
adopted to avoid marking the projection attributes. The
two edges, in general, will be disjoint, although this is not
required. An example of a source query and the resulting
source query hypergraph is given in Fig. 3.1.

In addition to the source query hypergraph (Qj), the
translation process requires information on the target
design. In particular, it requires information on the
possible join sequences in the target design. We could
obtain the join sequence directly from the target
hypergraph (s#,), but we have chosen the complete
intersection graph (I,)!° for s, since it is easier to
operate on. To avoid confusion, we will use the term
node when discussing sets of attributes for 7, and the
term vertex for single attributes in the hypergraph.
Algorithm 3.1 combines the source query hypergraph
(Q5) with the complete intersection graph for s, to
produce the join sequence for the target database. The
process is similar to the creation of a join tree described
by Maier,' but the reader will observe two important
differences. First, the join sequence we require, in general,
will use only a subset of the nodes in 7. Secondly, as the

Query: join (ABDF)><(BCEG) giving T,; select T, where
C=1AND D =2 AND E = « giving T;; project T, over
A, B, C giving RESULT.

Hypergraph (Q):

Figure 3.1. Example of a source query hypergraph.

algorithm is stated we cannot guarantee that the join
sequence provides a lossless join.! As Beeri et al.
show,? the existence of a join tree is equivalent to finding
the original hypergraph acyclic (x-acyclic using Fagin’s
notation).® As such the join sequence is fixed for the join
tree. To ensure the lossless join for the sequence that we
generate, we will take the opposite approach and impose
the restriction that s#, be y-acyclic.® The p-acyclicity
restriction means that any connected subhypergraph of
the s, defines an embedded join dependency.® The
restriction is imposed here in order to simplify our
discussion. The restriction can be removed by expanding
the join sequence set produced by Algorithm 3.1 either to
a hinge® or to a maximal object.!!

To create the trees in Algorithm 3.1, we use a variation
of the breath-first search (BFS) to determine the join
sequence for #,. The algorithm supplements BFS by
including a label for each path in the search tree and a
set, which we will call the adjustment set (A). The
algorithm creates a search tree (we will call the tree an
adjusted BFS tree [ABFS]) for each node in 7, which
contains an attribute of & (the set of source query
attributes). The search tree path labels are used to prune
or delay the expansion of subtrees where the unused
nodes that are adjacent to the current endpoint of the
path do not contribute any new query attributes (%) to
the path label. Any nodes falling into this class are stored
in the adjustment set (A) with a pointer to the position

H

N
Ip:
GH
G
ABCG A ADE
y ABC A E
AE
E EI I
475 A4  ABCE IN
I I
IL | IM

Figure 3.2. Sample hypergraph and its complete intersection
graph.
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where they could be added to the search tree. The
expansion continues until

¥ =UP,
i=1
where F, represents a path label for each of the m paths.
In the event that we can no longer expand the search tree
and & + U, P, then we take nodes from A and restart
the process. Examples 3.1 and 3.2 illustrate the use of the
process for the complete intersection graph of Fig. 3.2.

Example 3.1
Create the search tree for EI of the I, of Fig. 3.2, where
={4,B,C,D,H, I}.
EI (n
{ABCI} ABCE ADE {ADI}
ABCG {ABCDI}

GH & {ABCDHI}

Adjustment set (4)
(parent in parentheses)

(IL(EI), IM(EI), IN(EI), AJ(ABCE)}

Notice that to expand A BCE with either ABCG or AJ is
of no value (i.e. adds no new & attribute to path label)
in this tree, but by saving 4 BCG in the adjustment set we
are able to use it in the expansion of ADE. W

Example 3.2

Create the search tree for ABCE of the I, of Fig. 3.2
where & ={4,B,C,D,H,I}.

ABCE {ABC}

{ABCD} ADE /\ EI {ABCI)

Adjustment set (4)

{AJ(ABCE), ABCG(ABCE),
IL(EI), IM(EI), IN(EI)}

At this point the process stalls, since we have no node in
the adjustment set that can add any & attribute, and GH
cannot be reached. Choose an element from A and
continue the process. We have

ABCE {ABC)

{ABCD} ADEY" EI4{4BCI} AJ {ABC}

as the resulting search tree. W
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From the examples, it is clear that the adjustment set
plays two roles in the expansion of the ABFS tree. First,
it is used to retain nodes where the desired expansion is
simply a matter of the order in which the nodes are
examined (Example 3.1). Second, it is used to restart the
expansion of the ABFS tree when our pruning does not
allow creation of a tree which includes all the query
attributes (&). Fig. 3.3 illustrates that this process may
be required to generate the optimal ABFS tree. By an
optimal ABFS tree, we mean one which has the minimum
weight (minimum join sequence) over all possible ABFS
trees for a given root. Note that this approach does not
guarantee that we will generate the optimal ABFS tree
for a given root (Fig. 3.4). The order of search in the
procedure create-ABFS-tree for Algorithm 3.1 is not
necessarily optimal. The order in which the nodes are
considered determines whether or not we can generate an
optimal ABFS tree for a given root. In Fig. 3.4 theg
algorithm failed to create an optimal ABFS tree for the:’
root EI. However, if the node ADE is considered prior toQ
ABE, we would get an optimal ABFS tree. In the testsa
conducted on Algorithm 3.1, we have not generated ad
hypergraph that created a non-optimal ABFS tree fori
each node in the optimal join sequence. It seems unllkelyz:
that such an event would occur in the practlcal\
environment. Such a possibility does not affect them
complexity of the translation process, but can create acBD
non-optimal join. The creation of a non-optimal ABFSZ
tree does not cause serious problems, since a redundantc
join can be removed at a later stage.

Once the ABFS tree is created, we need to be able t03
determine the join sequence defined by the tree. Ouro
approach is to take the root and a set of paths connected—
to the root such that the union of the path labels includes & )
the attributes found in &. Based on this approach, the&
complete set of ABFS trees and their assigned weights &
for the I, of Fig. 3.2 are given in Fig. 3.5. Note thatl\J
nodes such as AJ, that are only adjacent to nodes:
containing a superset of the ¥ attributes found in 4/, are &
assigned the weight MAX to remove them from con-§
sideration. The join sequence defined by one of the %
ABFS trees havmg the minimum weight is taken as the 2 g
appropriate join sequence for the target design and<D
passed on to Algorithm 3.2. 8

Algorithm 3.1 uses a three-tier approach to determine ©
the approprlate paths to select in each ABFS tree. The N
first level examines the path labels for & attributes that >
only occur in a single label. The paths are marked as part =
of the join sequence. For most of the test hypergraphs S S
that we examined this was sufficient to generate the *
appropriate join sequence. However, as can be seen from
Fig. 3.6, it is not adequate to generate all join sequences.

The second level of the path-selection algorithm
operates on nodes that are added at the terminal level

ABCG {ABC}

GH {ABCH}
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Ip: GH El DK & ={H, I, D}
G E K
ABC

ABCE ABC

ABCG \_/A BCK

ABC

ABFS tree for GH

(H} ABCE

(H, I} EI

{

ABCG  {H
ABCK {H}
DK {H, D}

GH H)
}

Figure 3.3. Example showing that elements from the adjustment set must be used in the expansion of the ABFS tree.

Ip: GH

¥ ={A,B,C,D, I, H}

ABCG ADFE
ABE
E

ABFS tree for EI
EI
{ABI} ABE
{ABCI} ABCG

{ABCIH} GH

El

ADE {ADI}

Figure 3.4. Example illustrating the creation of a non-optimal ABFS tree.

and have the same parent. The final step forces the
selection of any remaining query attributes that have not
been added to the join sequence by the first two steps. (In
our test data, the first two steps were sufficient in all cases
to select the paths necessary to perform the required join
when S is y-acyclic.) The step is clearly required when
the y-acyclic restriction is dropped.

The algorithm has performed well on test data. While
itis true that for any particular ABFS tree we can choose
a non-optimal path (as well as a non-optimal ABFS
tree), it has not kept us, in our test data, from coming up
with a good join sequence. The low possibility of
generating non-optimal join sequences for all of the
relations in the desired join sequence leads us to believe
the algorithm will perform well in practice. Since the
ABFS trees are generally related in size to the number of

attributes in the query, the generation of the trees is
expected to be much less than the worst case. In the
worst case we need to generate an ABFS tree containing
all of the nodes in I, (when query nodes fall on the
extreme end points of the hypergraph), but in general
one expects queries to be much more localised within the
hypergraph.

The constraints placed on the target hypergraph are
not sufficient to guarantee uniqueness, as we can see
from the hypergraph in Fig. 3.7. For s, either {HL, LA,
ABCE, AK, KI} or {HL, LA, ABCG, AK, KI} will
produce the desired join sequence when % = {4, B, C
H,I}.

The join sequence is used in Algorithm 3.2 to produce
the target query hypergraph (Q,). The target query
hypergraph (Q,) can then be used to create the target

bl
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ABFS trees Weight
GH {H| 3
ABCG {ABCH |
ADE {ABCDH)
EI {ABCDHI,
ABCG {ABC 3
{ABCH! GH ADE {ABCD)
EI  {ABCDI;
4
{ABCD} ADE®# % ABCG {ABC!
$GH {ABCH|
El I} 3
{ABCI} ABCE ADE {ADI,
ABCG {ABCDI}
GH {ABCDHI\
3
{ABCD} ABCE {ADI|

GH
Figure 3.5. ABFS trees and weights produced by Algorithm 3.1 for the target hypergraph of Fig. 3.2.

query. In order to create the target query, a mapping
algorithm is required to map Q, into the appropriate
DML. Algorithm 3.3 provides a mapping for relational
algebra. Similar algorithms can easily be given for any
required DML. Algorithm 3.1 is the dominant algorithm
of the three. In the worst case, the attributes in & could
be involved in all edges of 5, and the algorithm would
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{ABCDH!

need to generate one ABFS tree for each node in the
complete intersection graph for #,. Each ABFS tree
could require that » nodes be included, and in the worst
case n— | nodes must be examined to add a new node to
the ABFS tree. Thus the algorithm requires time pro-
portional to »® in the worst case, where #n is the number
of nodes in the complete intersection graph for the target
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ABFS tree for AX

AX (A}
{4, B} ABW,
{4, B,C} BCP BCQ {4, B, C)
{4, B,C, I} CIS CIR {A, B, C, I}

Figure 3.6. Example to show we must break ties.

Hop:
H L ANk
E |B |G
C
& ={4,B,C, H, I}
Ig: ABCE
A A
A
L A A
HL LA AK K1
A A
ABCG

Figure 3.7. Example of non-unique optimal join sequence, namely,
{HL, LA, ABCE, AK, KI} or {HL, LA, ABCG, AK, KI}.

hypergraph, 5. An illustration of the complete process
is given in Example 3.3.

Example 3.3

Translation example.
* Source Query Hypergraph (Q)

BY D

1 D=dOR F=f
ccF

* Target Hypergraph (5¢,)

CE EFG GH HIJ

* Join sequence
AB {AB} & =1{A,B,C,D,E,F)}
BCD {ABCD}

CE {ABCDE}

EFG {ABCDEF}

—{AB, BCD, CE, EFG} is the join sequence generated
by Algorithm 3.1.

* Target Query Hypergraph (Q,) generated by
Algorithm 3.2.

* Query generated by Algorithm 3.3

IT, £(0p-p AnD coc axD (D=d OR F=f)) (e,p<e,pxeype,)

It remains to examine the equivalence of the source
and the target query produced by the process. We will
take the view that two queries are equivalent, if they
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produce the same result given that the two universal
relations (source and target) produce the same result
when projected over (the query attributes). In the
following, it is assumed that the system relations are
projections of the universal relations at the time of
comparison.!” In addition, we make the assumption that
the source query does not use a disjoint join sequence. (If
we take the join R, >< R, and R, N R, = &, then the join is
equivalent to the cartesian product.) Such an assumption
is reasonable, since a disjoint join will produce a lossy
join and is likely to produce a result with incorrect data
relationships. However, it should be noted that we are
giving up something with this assumption. A disjoint join
can be used to define a union operation when the OR is
allowed to span over more than one relation.

The following remark examines the question of
equivalence using relational algebra. Relational algebra
is used for its simplicity here, with the notation that any
query language that is relationally complete!® can be
represented using relational algebra.

Proposition. Let #; and A, be y-acyclic hypergraphs
defining the source database and target database,
respectively. The target query produced by Algorithms
3.1, 3.2 and 3.3 is equivalent to the source query.

Proof. Since the two hypergraphs, #, and 5#,, are y-
acyclic, any connected subhypergraph forms an em-
bedded join dependency.® Therefore the join sequences
used in the source and target queries produce a lossless
join. Let r, represent the result of the join sequence
required by the source query and s, represent the result
of the join sequence for the target query.

Due to the lossless join property, the data relationships
between the query attributes (&) will be the same in r,,
and s, as in their respective universal relations. As long
as the two universal relations support the same data
relationships for the query attributes, we have

Tg(rq) = My(Sy)-

The selection operator applies a selection condition in
CNF and will achieve the same result whether it is
applied as a sequence of k selections with condition ¢, to
relations used in the join process or as one selection
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applied to the final join result with the ¢, ANDed
together. Therefore, we have

Oc negh..n ck(ny’(ro)) = 0¢incoh...n c,‘(ny’(sq)):

since all of the conditions ¢,, i = 1,...,k, are applied to
the query attributes ().

As the two relations are projected over the same set of
query vertices to achieve the result for the query, we have
both the source query and the target query producing the
same result, given the same data relationships for the
query attributes (&) in their respective universal rela-
tions. Therefore, the two queries are equivalent. W

We note that the two universal relations do not have
to support the same set of attributes. They only need to
support the attributes in & and have the same data
relationships for the attributes in &.

4. CONCLUSION

A generalised query translation process for query
translation between two relational database schemes has
been presented. The process uses the hypergraph model
of the target database scheme to provide sufficient
information to generate the appropriate join sequence.

The process is sufficiently general to provide the basis
of generalising the work of Su and Reynolds,* as well as
providing a means of dynamic query translation. The
work in Section 3 was based on the conversion to
relational algebra. The process can easily be extended to
other data manipulation languages by creating variations
of Algorithm 3.3 for the appropriate DML used with the
relational model.

Our current work centres on the examination of the
optimality considerations of choosing the join sequence
in Algorithm 3.1. The algorithm has performed well on
test designs, but more work needs to be done in this
area.
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X:= the set of nodes of I, containing elements of & ;
Jjoincount: = n; {where n is the size of I}
while X + & do
begin
choose x,e X ;
create-ABFS-tree (x,);
choose-path (x,);
if path-length < joincount then
begin root: = x;;
save ABFS tree;
Jjoincount: = path-length
end;
X:=X—{x;}
end
end.

procedure create-ABFS-tree (root) ;
begin
Y:= {root}; Initialise ABFS tree; A:= (¥,
path (root):= & attr (root);
while ¥ = U path(i) and there are nodes in I,

ie ABFS
that have not been traversed yet do

begin
while Y+ Jand ¥ + U path(i) do

i€ ABFS
begin
choose ye Y; {first y in Y}
let J:= nodes adjacent to y and not in ABFS
tree;

while J &+ @ and ¥ + U path(i) do

1€ ABFS
begin
choose je J,
if & attr(j) € path(y)
then
begin {expand ABFS tree}
Y:= YU{j}; {append to end of Y}
mark j is in ABFS;
if je A then remove j from A;
path(j):= path(y) U & attr(j);
pointer(j):=y
end
else
begin
if j is not in set(A) then
begin
place j and a pointer to y in the adjustment
set(A);
mark j is in A

hypergraphs, and selectively reduce acyclic hypergraphs.
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end
end;
Ji=J—={j}
end;
Y:=Y-{y}
end;
if ¥+ U path(i) then

i€ ABFS

begin
choose ae A;
A:= A—{a};

place a in ABFS tree using pointer from A;
mark a is in ABFS tree;
Y:={a}
end
end
end;

procedure choose-path(x,);
begin
count the number of occurrences for each Be & in the
path labels of the terminal nodes; {Freq(B)} Let
L:= the set of path labels for the terminal nodes;
L:=J;
while L + & and & + J do
begin { Examine the path labels for & attributes that
occur in a single path label in L}
choose leL; L:= L—{l};
if 3 Be path(l) such that Freq(B) = 1
then
begin
mark the path whose path label is 1;
reduce & and the path labels in L by the attributes
inl;
remove any empty path labels from L created by
the reduction

end
else

L:=L u{l}
end;

L= g;

while L' + J and & + & do
begin {operate on nodes that are added at the terminal
level with the same parent}
choose le L’;
let T:=the & attributes added by the terminal
node of the path with label I,
while T+ ¥ do
begin choose te T; T:= T—{t};
if the contributing nodes for t have the same parent
then
begin
choose contributing path adding the most new &
attributes, in case of tie choose either,
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mark chosen path;

reduce T, &, and the labels in L’ by the attributes

chosen path label;

remove any empty labels from L’ created by the

M.M.OWRANG O. AND L.L. MILLER

weight : = weight + 1

end;

let R:=RUR'; J:=J—R

copy labels from the vertices in Qg to the vertices in

insert the “OR” edges in R from Qg;
insert the projection edge in R from Qg

Algorithm 3.3. Mapping target query hypergraph to

reduction
end
end;
if I + & then end.
begin
L :=L"U{l};
L:=L —{l}
::g; relational algebra
while & + ¢ do begin
begin {select any remaining query attributes that have i=1;
not been added to the join sequence} F:=;
choose le L Ji=;

choose lowest frequency attribute added at the

terminal step;

choose path contributing the most new & attributes,
in case of tie use the shortest path,

mark the chosen path;

reduce & and the labels in L” by the attributes in

the chosen path label

remove any empty labels from L” created by the

reduction
end;

end;

Algorithm 3.2. Creation of the target query hypergraph

()
begin
R:= & R:=;

let & := vertices in the source query hypergraph;

let J:= nodes in the join sequence;
assign the first element of J to R;
let J:= J—R; weight:=1;

while ¥ & R do

begin

assign the first element of J to R’; {note that a node in

I, represents an edge in Q.}

generate a join edge for the attributes in RU R’ labelled

Wlth jweight ’

path-length:= number of edges in marked paths

if join edges exist
then
begin

choose join edge j,;
let J:= the join of the system edges in j;;

Jjoins}

Sor j}
then

i=1i+1
end;

begin

let J:= the join of the system edges in j;;

Jjoins}

if any vertices in j,—j,_, are labelled {expand selection

Sformula}
then
begin

{join edge weight}

{selection condition}

{set of joined relation schemes}
P:= the set of vertices in the project edge;

{use first join edge j,}
{perform

if any vertices in j; are labelled {create selection formula

let F:= the AND of all labels within j;
{point to next join edge}

while a join edge j, exists do

{ perform

let condition be the AND of all labels in j,—j,_,;
F:=F AND condition

end;
ii=1i+1
end;

end.

{ point to next join edge}

g;nerate ‘(o))

Announcement

1-5 AuGusT 1988

10th Congress of the International
Ergonomics Association, Sydney, Australia

The 10th International Ergonomics Congress,
to be held in Sydney from 1 to 5 August 1988,
has released its provisional programme and
registration details. An impressive 32-page
booklet, it contains details on registration, the

scientific programme, keynote speakers, social
and accompanying persons’ programmes, and
associated meetings.

‘Designing a Better World’ is the chal-
lenging congress theme, and an imaginative
programme reflects this challenge.

Two post-Congress tours are offered: one
to Australia’s ‘Red Centre’ and famous
Kakadu National Park in ‘ Crocodile Dundee’
territory, the other to the beautiful Great
Barrier Reef in Northern Queensland. A
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weekend escape on the waterways close to
Sydney is offered for those with limited time to
take a break.

The programme also contains general in-
formation about Australia, travel and accom-
modation details.

Enquiries to:

IEAB88 Secretariat, PO Box 380, Spit Junction,
NSW 2088, Australia. Tel. 61 2 969 1400. Fax
61 2 908 4982.
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