Inheritance in Actor Based
Concurrent Object-Oriented Languages

Dennis G. Kafura and Keung Hae Lee

TR 88-53



Inheritance in Actor Based
Concurrent Object-Oriented Languages

Dennis G. Kafura Keung Hae Lee

Department of Computer Science
Virginia Tech
Blacksburg, Virginia 24061, U.S.A.

Electronic Mail
kafura@vtopus.cs.vt.edu
keung@vtopus.cs.vt.edy

Abstract

Inheritance is a valuable mechanism which enhances reusability and maintainability of
software. A language design based on the actor model of concurrent computation faces a
serious problem arising from the interference between concurrency and inheritance. A
similar problem also occurs in other concurrent object-oriented languages. In this paper, we
describe problems found in existing concurrent object-oriented languages. We present a
solution which is based on a concept called behavior abstraction.

1. Introduction

Is inheritance inconsistent with concurrency? The interference between inheritance and
object-based concurrency has been noted by others [Wegner 87, Briot 87]. These
observations center on the difficulty of locating or copying methods at run-time in systems
without shared memory. However, we do not consider this to be a fundamental difficulty
because the performance penalty induced by inheritance may not always a problem. At an
extreme, the sharing problem may be avoided by allowing multiple copies of the same code
and data on different nodes. [Briot 87] discusses a copy technique which is useful in this
situation.

We believe that the fundamental interference between inheritance and concurrency is more
deeply rooted. This difficulty can be observed in existing object-oriented languages, only a
few of which support both concurrency and inheritance.



The problem, as will be described later, is that inheritance and concurrency control tend to
interfere with each other. This interference results in concurrent object-based languages
which either do not support inheritance or which do so only by severely compromising
some other property. For example, one language supporting both concurrency and
inheritance compromised object encapsulation [Yokote 86]. A second language excludes
the possibility of inheriting synchronization code [Caromel 88]. A result of this restriction
is limited leverage in reusability. In yet another language, inheritance had been tried but
was removed later because of limited reusability [America 87]. The same basic problem
was found in the initial approach of our own exploratory language design, called ACT++
[Kafura 88]. The language is a concurrent extension of C++ [Stroustrup 86] based on the
actor computation model of Agha and Hewitt [Agha 87). All these approaches make a
compromise in benefits of an object-oriented language, resulting in significantly reduced
reusability and maintainability.

This paper analyzes the approaches to inheritance and concurrency control in existing
object-oriented languages and proposes a solution to the interference problem using what
we call behavior abstraction. The remainder of this paper is organized as follows. In
general, Sections 2 and 3 provide background for this research while the major research
contribution of this paper is found in sections 4 and 5. In section 2, we present our view
of inheritance and delegation. Reuse and sharing are distinguished in order to motivate our
use of inheritance rather than delegation. Section 3 classifies approaches to concurrency
control in existing object-oriented languages. Based on this classification, an analysis of
currently existing concurrent object-oriented languages is provided. The conflict between
inheritance and concurrency found in an actor based language is described in section 4.
Section 5 proposes our solution to this problem.

2. Inheritance and Delegation

In this section, we discuss a viewpoint on the difference between inheritance and
delegation. This discussion motivates our attempt to combine the actor model with

inheritance rather than delegation.

Both inheritance and delegation are mechanisms for sharing knowledge in object-oriented
programming. Recently, there has been a great debate on the power of these two
mechanisms. [Lieberman 86] suggested that delegation is more powerful than inheritance
by arguing that delegation can simulate inheritance but not vice versa. [Stein 87] showed

2



that the two mechanisms are equal in power. Finally, the Treaty of Orlando [Lieberman 88]
concluded that there are different application domains where each of inheritance and

delegation is better suited.

In order to put our view on this issue in perspective, we now distinguish two concepts,
reuse and sharing. Our position is that inheritance provides more power in reusability while
delegation provides more power and flexibility in sharing.

2.1 Reuse and Sharing

Reuse is the activity of using an existing component in defining a new component. Reuse
has been recognized as an important activity in software engineering [Freeman 81,
Biggerstaff 87]. Reusability improves reliability since new software components can be
built on existing components which have been extensively tested. Reuse during program
development is also crucial in providing significant leverage in productivity. This view is
supported by the fact that software engineering research is mainly concerned about the

impact of reuse on software productivity.

Sharing denotes that the same component is used by more than a single client at run time.
For example, code sharing occurs if a code segment in memory is used by different
processes. It is possible to reuse a component without sharing it. Sharing offers several
advantages. One important advantage is that sharing allows the efficient use of resources
such as memory. For example, sharing the same code or data segment among processes in
separate address spaces was an important research issue in the area of operating systems.
Another advantage in the framework of object-oriented programming is the flexibility in
modifying properties of objects at run time. For example, in Smalltalk, a class object is
shared by all instances of the class at run time. A modification of a method in the class is
automatically reflected in the behavior of every instance of the class. If each instance has its
own copy of the method, this localized modification is not possible at run time. These
advantages are the main motivations behind the development of prototype-based systems
such as Actl [Lieberman 87} and Self [Ungar 87], where sharing among objects occurs
dynamically.



2.2 Inheritance vs Delegation

The inheritance mechanism is closely tied with the notion of a class. A class provides
encapsulation to its instances. A class captures static properties of objects such as attributes
and methods in an explicit form. A new class can be defined as an extension of existing
classes with the support of inheritance. Class hierarchies provide a natural classification of
components and enhances modularized modification. These expectations have been
evidenced in [Goldberg 83, Campbell 87, Johnson 88, Madany 88].

Delegation-based languages provide strong support for sharing. Reuse in such systems
connotes dynamic and efficient sharing of object properties [Lieberman 86]. While class-
based languages allow limited sharing of values between objects, this restriction is not
found in languages based on delegation. However, in a delegation-based system, sharing
seems to be limited to run-time entities such as values and objects. No explicit organized

collection of reusable components exist.

Reuse is an important activity even when no sharing is available. Classes and inheritance
are valuable where reusability and maintainability are emphasized more than flexibility.
Prototype and delegation based languages are more tuned for interpretation, where the
power of dynamic and flexible sharin & can be maximally exploited. The support for classes
and inheritance in languages seems more natural for compilation, in which strong type-
checking and efficient code are favored over flexibility and dynamicity.

3. Concurrency Control in Object-Oriented Languages

This section discusses the relationship between concurrency and inheritance in existing
languages. An observation is made about the interference between the two mechanisms.

An object in a concurrent object-oriented language may proceed in parallel with another
object. Such an object has its own thread of control. We call an object with its own thread
of control an active object. In contrast, an object in a sequential language does not possess
its own thread of control. We will refer to an object without its own thread of control as a
passive object.

Concurrency implies the need for synchronization support, without which the state of an
active object may become inconsistent. Synchronization in an object-oriented lan guage

4



needs to be consistent with the philosophy of object- oriented programming. Since the
internal state of an object can only be accessed via method invocation, concurrency control
of an object needs to be implemented inside the object. There are two directions in
providing concurrency control. One approach centralizes concurrency control in a single
procedure. We call this approach centralized control. The other approach distributes
concurrency control among methods without a centralized procedure. We call this
decentralized control,

In centralized control, message reception is explicitly programmed using guarded
commands or SELECT constructs. CSP {Hoare 78], ADA, ABCL/1 [Yonezawa 87],
POOL-T [America 871, and Extended Eiffe] [Caromel 88] belong to this category. There is
a common problem which one must face in an attempt to incorporate inheritance into these
languages: synchronization constraints specified in the centralized procedure cannot be
inherited by a subclass. This point will become clear when we review these languages later
in this section.

In a language with decentralized control, message reception is implicit. A message is
delivered by the underlying mail system when the receiver is ready. Two different
approaches to decentralized control are found. One approach uses critical sections and the
other approach uses what we call interface control. We now discuss each approach,

A majority of languages adopt the critical section approach. In these languages, each
method is responsible for ensuring a certain condition before enterin g a critical section.
Several languages use a locking mechanism. Each method must explicitly lock a variable
before entering a critical section and must unlock the variable when the method exits the
critical section. Other languages use a construct similar to a conditional critical region
[Brinch-Hansen 72}. For example, a newer version of Concurrent Smalltalk provides a
construct called relinquish which allows a thread to wait on a condition [Yokote §7]. In
Trellis/Owl [Moss 871, the lock block structure automatically performs an unlock for a lock
variable when its scope is exited.

Two problems exist in the approach based on critical sections. First, object encapsulation is
weakened. Relying on a lock variable requires the variable to be visible to any subclass in
the class hierarchy, which is a violation of encapsulation. A similar observation was made
by [Snyder 87].



Second, it is possible for a method to violate the critical section protocol. For example, if
explicit locking is used, a method may enter the critical section without performing the
locking. This problem is compounded ir a language which supports inheritance. Because
the superclass is separated from the subclass, there is a greater possibility that methods
defined in a subclass may not observe the critical section protocol.

The other approach in decentralized control is based on direct control of the object interface.
In this approach, called Interface control, a method execution is initiated only when the
method is allowed to access the internal state of the object. Hybrid [Nierstrasz 87] and actor
based languages such as Act2 [Theriault 83] and Act3 [Agha 86] are found in this category.
For example, Hybrid provides constructs which can control the availability of methods. A
method may be closed temporarily so that messages for that method are not allowed to
cross the object boundary. The blocked messages are processed later when the method is
opened. In Act2 and Act3, synchronization of an active object is achieved with an operation
called become. This operation allows an object to become another object, which may have a
different interface and even different data items. Neither Act? nor Act3 supports

inheritance,

A serious problem occurs when adding inheritance to languages using decentralized
control. Defining a new method in a subclass may invalidate many superclass methods,
The remainder of this section describes this problem in more detail and other problems
discussed earlier in this section.

The following concurrent object-based languages are discussed: POOL-T, Extended Eiffel,
Concurrent Smalltalk, Hybrid, ACT3, and ACT++. Each of these languages uses a
different approach to concurrency control. While some of these languages do not support
inheritance, they are included here since a review of these languages provides insight into
the conflict between inheritance and concurrency.

POOL-T: the concurrency control approach of POQL-T [America 87] is centratized. In
POOL-T, the class definition of a concurrent object consists of a list of methods and a
separate procedure called the body which specifies concurrency constraints. The
willingness of an object to accept messages is explicitly stated in the body. Using a
construct similar to guarded command, POOL-T does not support inheritance. In fact,
inheritance was tried in the initial design, but was removed in a later design [America 87].



The decision to remove inheritance from POOL-T illustrates the general interference
between inheritance and centralized control,

In a language with inheritance, the centralized control scheme necessarily excludes the
reuse of the synchronization code which is contained in a single procedure. In centralized
conirol languages, like POOL-T, each time a subclass with a new method is defined, the
body must be revised since otherwise no new methods defined in the subclass can be
executed. It is this consideration that led the des; gner of POOL-T to choose not to include
inheritance in the lan guage,

Extended Eiffel: ! this is a concurrent extension of Eiffel proposed in [Caromel 88].
The language supports both concurrency and inheritance. The concurrency control is
centralized. An active object is defined as an instance of a subclass of a class called
"PROCESS-POWER". A method in a class is not concerned with synchronization,
Concurrency control is centralized into a single procedure called Live which is similar toa
body in POOL-T. This language and POOL-T suffer from the same problem. The method
Live must be rewritten if a subclass adds a new method, regardless of the semantics of the
new method.

The approach of Extended Eiffel severcly restricts reusability by excluding the inheritance
of synchronization code. The synchronization code of Live may be a result of an extensive
reasoning process. A subtle error may creep in during the process of copying and
modifying the Live method. This is the very problem that inheritance intends to solve.
While the separation of concurrency control from sequential action may allow a more
readable definition of an object's behavior, we believe that readability can also be provided
by a language which uses decentralized control. We discuss this in more detail when we
present our solution in section 5.

Concurrent Smalltalk: Concurrent Smalltalk is a concurrent extension of Smalltalk-80
[Yokote 86] which supports both concurrency and inheritance. The language uses
decentralized control. An active object, called an atomic object, serializes messages to
maintain consistency of its internal state, Locking is used for concurrency control. An

IThe 1an guage is a concurrent extension of Eiffel. Since the language was not given a
name in [Caromel 881, we will refer to the language as Extended Eiffel throu ghout this

paper.



active object allows a method to be executed even when the method execution is
immediately blocked. In this case, the client object should block itself, terminating its
current process. A provision is required in the code of the client which will send the same
message again to the object when the client is restarted. Since the client is terminated and
restarted, it must have a separate method which will do the retransmission.

This approach has several disadvantages. One is a weak object encapsulation. In the
language, a client must provide the method which will retransmit a message being blocked.
This method obscures the readability of the program and imposes a burden on the client,
The client is also required to understand the internals of the concurrent object. This violates
the encapsulation principle of object-oriented languages. Another disadvantage is the use
of unstructured constructs. For example, the BoundedBuffer problem described in [Yokote
86] uses a wait-signal primitive. The drawback of such a low-level primitive has been well
recognized in operating systems research.

A later version of Concurrent Smalltalk [Yokote 87] improves this situation by using a
relinguish operation and the concept of a secretary, which is similar to conditional critical
regions [Brinch-Hansen 72]. This approach still has the disadvantages intrinsic to an
approach based on critical sections.

Hybrid: Hybrid [Nierstrasz 87] is a concurrent object-oriented language based on
decentralized control. The language provides a message queue called delay queue for
concurrency control within an active object. Each method of an active object is associated
with a delay queue. Synchronization control for accessing an object is achieved by
explicitly closing and opening delay queues. Furthermore, each method contains explicit
statements for controlling delay queues. A message which requests the execution of a
method is blocked if the delay queue associated with the method is closed. The message is
processed later when some method opens the delay queue.

Hybrid does not support inheritance. The approach used in Hybrid presents a serious
problem if we attempt to incorporate inheritance into the language. To appreciate this
problem, assume that the lan guage supports inheritance and consider adding a new method
in defining a subclass. The new method may need to have its own delay queue which was
not present in its superclass. The question then is how the methods of its superclass can
control this delay queue. Unless the new delay queue is controlled solely by the new



method itself, all superclass methods that need to open or close the delay queue must be
revised so that the name of the delay queue may be referenced in their definitions.

Act3: Act3 is a concurrent object-oriented language based on the actor model ad defined
by Agha [Agha 86]. The language uses decentralized control. A main synchronization
device of ACT3 is the become operation. It is also the only synchronization primitive other
than message passing operations. A become operation in a method specifies a replacement
behavior, which is responsible for the next unprocessed message. Using a become
operation, each method execution must state how it should react to the next request,
Specifying a replacement behavior is the way an actor changes its state. In the actor model,
both state change and synchronization control is accomplished using a single become
operation.

ACT3 does not provide inheritance. A language which intends to support inheritance and
the actor model of concurrency faces a fundamental problem, which is similar to that of
Hybrid but more serious. The problem was noted in the initial design of our own language
ACT++. We describe the problem using ACT++ in the following section.

4. The Actor-Inheritance Conflict

In this section, we use ACT++ to illustrate inheritance and concurrency in a language based
on the actor model. Although we are using ACT++, the interference problem is not specific
to ACT++ and occurs in other languages combining concurrency and inheritance, Before
presenting the description of the problem, we provide a description of the relevant parts of
ACT++. Other aspects of ACT++ are described in {Kafura 88].

ACT++is a language design which supports both class inheritance and the actor model of
concurrency. As an expedient, we used C++ as the base language, extending it with the
concurrency abstraction of the actor model. In ACT++, actors represent active objects. All
non-actor objects are passive objects. A passive object represents a C++ object, which is
local to a single active object. A shared object must be an actor. An actor class, a class
whose instances are actors, is defined as a direct or indirect subclass of the special class
ACTOR. Like passive objects, an actor class can inherit properties from an existing actor
class by defining itself to be a subclass of the existing actor class. ACT++ distributes



concurrency control into each method. We now describe the the interference of inheritance
and actor concurrency,

Consider producers and consumers communicating through a bounded buffer. The
bounded buffer is modeled as an active object which is shared by producers and
consumers. The buffer provides gez() and put() methods to clients. Producers are actors
which send put() requests when they want to deliver data items to consumers. A consumer
actor sends a get() message to the buffer when the consumer needs a data item. A bounded
buffer actor is empty when it is initially created. An empty buffer accepts only a put()
message. If the buffer is neither empty nor full, it acts as a partially filled buffer which
honors both get() and put() requests. If the buffer is full then it must accept only a get()
request from a consumer. We will call these three states empty_buffer, partial_buffer, and
full_buffer, respectively.

A possible transition sequence in the states of a bounded_buffer is
empty_buffer -> partial_buffer -> full_buffer -> partial_buffer -> empty_buffer.

A subtle semantic question now arises. What will happen if the current state of an actor
does not recognize the method name in a message? For example, what should be done if
the next message to be processed contains a get() request while the buffer is empty? The
answer to this question in the context of ACT++ is bein g investigated. For the purpose of
this paper, we assume that a message will be put back at the end of the message queue.
Firure 1 shows the definition of bounded_buffer in ACT-++1.

The syntax of ACT++ is very close to that of C++. A few new constructs were added to
support the actor abstraction. In the above definition, the operation become is used to
specify a replacement behavior. A become operation takes an actor as a parameter. An actor
class corresponds to a behavior script of the primitive actor model [Agha 86]. The
operation reply is used to send a message to the sender of the message under processing.
Unlike the primitive actor model, statements in a method are executed sequentially.

Iwhile the primitive actor model assumes no data structures, such as an array, ACT++
provides all data types of C++. For the purpose of this paper, we assume an array
parameter is passed by value.

10



class bounded_buffer : ACTOR {
int_array buff MAX;
int in,out;

public:

bounded_buffer()
{ in=0; out=0}

int get()

reply buffout++];

out %= MAX;

if (in==out)
become(empty_buffer(buf,in,out));

else
bccome(panial_buffer(buf,in,out));

void put(int item)

buflin++] = item;

in %= MAX;

if (in==out%MAX)
become(full_buffer(buf,in,out));

else
becorne(partial_buffer(buf,in,out));

Figure 1 - Definition of bounded_buffer

Since the class bounded_buffer is defined as a subclass of ACTOR, the bounded_buffer is
an actor class whose instances are active objects, namely actors. An instance of
bounded_buffer contains internal variables in, out, and the array buf. In C++, a method
with the same name as the class name denotes a constructor. The procedure
bounded_buffer() is a constructor.

To recognize the operations which are appropriate for different behaviors (e g. empty, full,
partial) we introduce three classes of bounded buffer: namely, empty_buffer, full_buffer,
and partial_buffer. These three classes are defined as subclasses of the class
bounded_buffer. The subclass empty_buffer is the same as bounded_buffer except that it
does not have the get() method. The subclass full_buffer is a bounded_buffer without

11



put(). The subclass partial_buffer is exactly the same as the bounded_buffer class. These
subclasses can be defined as restrictions of the class bounded_bufferl. The definitions of
the three subclasses follow.

class empty_buffer : bounded_buffer {

public:
bounded_buffer: put;

class full_buffer : bounded_buffer {

public:
bounded_buffer::get():

class full_buffer - bounded_buffer {
public:

bounded_buffer:: get();
bounded_buffer: put();

The first concern is that many similar classes must be defined to implement a
bounded_buffer. This is a result of the natural mapping of the primitive actor model into a
class-based object-oriented language. The use of the become operation implies a different
class be defined for each different interface. This is unpleasant especially since all of the
different behaviors have almost the same methods, yet they all must be defined as distinct
classes. However, the real problem occurs when a subclass with its own method needs to
be defined,

Suppose that we want to implement a bounded buffer with a new method get_rear(), which
returns the most recently deposited item, rather than the oldest one. We call this an
extended_buffer. A plausible solution is to define the extended_buffer class as a subclass
of bounded_buffer with an addition of a new method get_rear(). The extended buffer
should be able to inherit all other methods from bounded_buffer without change, This is
not an unusual expectation of a language with inheritance. Unfortunately, this solution
does not work as described below.

IThe difficulty in providing a restriction operation in the defintion of a subclass is not an
issue here. C++ allows names of methods defined in a superclass to be hidden in a
subclass.

12



The possible behaviors of an extended_buffer are:

extended_empty_buffer put()
extended_full_buffer get(), get_rear()
extended_partial buffer get(), get_rear(), put()

Comparing these behaviors with those of bounded_buffer, we find that
extended_empty_buffer and empty_buffer have the same interface. Hence empty_buffer
may be used in place of extended_empty_buffer in the new class definition. However,
extended_full_buffer is different from full_buffer because of the new method get_rear() in
the extended_full buffer. Similarly, the behaviors extended_partial_buffer and
partial_buffer are also different. Therefore, extended_full_buffer and
extended_partial_buffer must be defined as new classes,

However, the problem does not end here. Notice that every method of bounded_buffer
must be redefined in the definition of extended_buffer if the method refers to either of the
two class names, full_buffer and partial_buffer. Since both get() and put() uses
partial_buffer, none of these method can be inherited. Hence, extended_buffer inherits no
methods from its superclass. All of its methods must be implemented within its own
definition! This argument equally applies to an attempt to define extended_full_buffer as a
subclass of full_buffer and extended_partial_buffer as a subclass of partial_buffer. The
point of this example is that no methods of the superclass can be reused in the definition of
a subclass.

We have already noted that a similar interference problem exists in Hybrid. In both ACT++
and Hybrid, superclass methods are not independent of new methods being defined in a
subclass. The degree of dependency is, however, higher in a language based on the actor
model of computation.

5. Inheritance in Actors

Having described the conflict of concurrency and inheritance, we now present our solution
to this problem. Our solution is presented in the framework of an actor based language.

13



3.1 A Model of an Object Manager

Each active object (actor) is associated with an object manager. The object manager is
responsible for protecting the object from unauthorized requests and for dispatching
method invocations. An object manager is automatically created when an object is created.
The object manager immediately starts and continues until the object is destroyed.

The object manager protects an object by enforcing the interface of the object. Using the
terminology of Hybrid, the interface of an object consists of all open methods. A method is
open if the current interface of object can accept a message for the method. Otherwise, a
method is closed. The interface of an object is dynamically changed since methods can be
opened or closed during computation. Methods are closed by the object manager and
opened by a thread (see below). A message for a method invocation is authorized if the
method is open. A message for a closed method isunauthorized,

The object manager waits for the arrival of an authorized message. On finding such a
message, the object manager closes all methods and creates a thread which will perform
the requested method. Unauthorized messages are buffered by the object manager until
their corresponding methods are opened. Closed methods may be opened by a become
operation executed by a thread. A become operation specifies a set of methods to be
opened. A thread can perform the become operation only once in its life. Since a thread is
created as the result of the previous become operation, no thread but the most recently
dispatched thread can execute the become operation. The become operation will open at
least one method; otherwise, the actor is garbage collected.

There may exist multiple threads inside an object since the become operation may be
executed prior to the termination of a thread. All the threads proceed in parallel. A thread
dies when the execution of the method represented by the thread is completed. Among
threads, no variables are shared.

3.2 Implementation of the object manager
The function of an object manager is well-defined and uniform for every object. Hence, a
programmer does not need to write the object manager. The object manager can be

provided through compiler and run-time support. This obviates the need for concurrency
control mechanisms to be centralized in one method. The object manager can be

14



implemented either as a function of the mail quene or as a special thread. The former will
result in a sophisticated mail queue while the latter is similar to a process scheduler.

The object manager will need to keep track of the object’s interface, which is changed by a
become operation of the most recently dispatched thread. This problem along with the
interference problem can be solved by redefining the way a replacement behavior is
specified in the previous actor model. For this purpose, we introduce the concept of
behavior abstraction.

5.3 Behavior abstraction

A behavior name is a handle for a set of open method names. For example, consider the
bounded_buffer. The buffer actor has one of the followin g behaviors:

empty_buffer = { put())
full_buffer = {get()}
partial_buffer = {get(),put()}

With these, we have defined three behavior names; namely, empty_buffer, full_buffer, and
partial_buffer.

A become operation specifies a replacement in terms of a behavior name. For example,
"become full_buffer" is acceptable if full_buffer is a behavior name. The language should
provide a convenient way for specifying behavior names. For example, defining a behavior
name using a regular expression may be desirable. Note the difference in the usage of
"behavior" in the primitive actor model and in our model. In our model, a behavior denotes
a set of open methods while a behavior in the primitive actor model means a script of an

actor,

We now present the solution to the problem of extended_buffer which inherits from the
bounded_buffer. The bounded_buffer and the extended_buffer are defined using the
behavior names defined earlier in this section. Figure 2 shows a new definition of the

bounded_buffer using behavior abstraction.

15



class bounded_buffer : Actor {
int_array bufflMAX];

int in,out;

behavior:
empty_buffer = {put())
full_buffer = {get()}
partial_buffer = {get(),put()}

public:
buffer()
{

in=0;
out=0;
become empty_buffer;

void put(int itemn)

buffin++)=item;
in %= MAX:
if (in==(out+1)%MAX)
become full_buffer:
else
become partial_buffer;

int get()
{

reply buffout++];
out %= MAX;
if (in==out)
become empty_buffer;
clse
become partial_buffer:

Figure 2 - bounded buffer with bahavior abstraction

We now present the definition of the extended_buffer which inherits from the
bounded_buffer using behavior abstraction. The definition is shown in figure 3. The
extended_buffer has three distinct behaviors. Each of these constitutes a behavior name.
We define the following names as the relevant behaviors for an extended buffer:

16



extended_empty_buffer = { put(}}
extended_full_buffer = {get(), get_rear()}
extended_partial_buffer = { get(), get_rear(), put()}

We must now consider the relationship between the behavior names of the subclass and
those of the superclass. Consider the put() method, which is inherited from the superclass
bounded_buffer. The new operation get_rear() does not belong to any behavior names
named by put(). It is necessary to let the method put() know that get_rear() is added in the
definition of the extended_buffer, This is accomplished by redefining the behavior names
used in superclass methods. The new definition of behavior names will be used by all
superclass methods. In some cases, the redefinition of a behavior name does not change
the set of methods. Such redefinitions provide the object with a proper abstraction. For
example, behavior extended_empty_buffer is the same as empty_buffer but is a more
appropriate abstraction. For this rcason, we redefine empty_buffer as
extended_empty_buffer without changing its meaning. This is expressed by the "renames"
construct.

class extended_buffer - public bounded_buffer {

behavior:
extended_empty_buffer renames empty_buffer;
extended_full_buffer = {get(), get_rear()) redefines full_buffer;
extended_partial_buffer = {get(), get_rear(), put()} redefines partial_buffer;

public;
extended_buffer()
{
in=out=0;
become extended_empty_buffer;

}

int get_rear()

reply (buf]--in%max]);

if (in==out)
become extended_empty_buffer;
else

become extended_partial_buffer;

Figure 3 - Definition of extended_buffer

17



Using behavior names also has several other advantages. First, behavior names improve
program readability. With more expressive and meaningful names, a program is more
readable because the next interface is denoted by the behavior name used in a become

instruction.

Second, an active object requires that a programmer understand its dynamic run time
behavior. While the centralized approach provides an effective way to tackle this issue by
separating concurrency control from sequential actions, the approach has the drawback of
excluding the inheritance of synchronization code. While our model allows inheritance, it

also allows concurrency control to be separated.

Third, the synchronization mechanism is structured because no matching primitive is
needed for the become operation. This is an important requirement of synchronization
primitives proposed for incremental programming. This avoids such problems as a new
method defined in a subclass which forgets to signal superclass methods or fails to

observe a critical section protocol.

Fourth, it supports an object-oriented design methodology. The behavior names provide a
level of abstraction whose granularity is smaller than data abstraction but larger than
procedural abstraction. With the behavior abstraction, the behavior of an object can be
modeled as state transitions amon g behavior names. Each of these names provides a higher
level abstraction which is more relevant to a programmer's conceptual view of an object.
The event-driven behavior of an object is naturally expressed with the behavior abstraction.

8. Limitations and Future Research

There are several limitations to our approach. The most fundamental limitation is the
assumption of a closed system. One of the fundamental principles of the actor model is the
openness of the model. Openness means that an actor can modify itself dynamically (i.e., at
run-time) upon receipt of a message which requires a computation unanticipated by the
original behavior. The reconfigurability of actor relationships is extended beyond that
conceived of by the programmer. While openness provides a flexible computation model, it
is a significant obstacle to be overcome in the design of a language with type-checking. In
the presence of openness, type-checking of a message is impossible since an actor's
behavior may mutate without restriction during execution. The availability of inheritance,
which is related to the notion of type, becomes restricted accordingly. This may suggest

18



why most actor based languages traditionally prefer delegation. While our model assumes a
closed system, we do not consider this a weakness since several existing language designs
have chosen type safety over flexibility. A natural next step is to extend the concept of
behavior abstraction to a type system. We are currently investigating a type system based
on the behavior abstraction which will allow more flexible behavior replacements.

9.Conclusions

The interference between inheritance and concurrency has been noted by several
researchers in the form of difficulty in sharing methods in distributed environments. There
is a more fundamental problem in combining the two mechanisms in a single language. In
this paper, we described this problem, and presented an analysis of existing concurrent
object-oriented languages from this perspective. Finally, we presented our solution in the
framework of the actor model of concurrent computation. A solution to the problem of
combining concurrency and inheritance, based on the concept of behavior abstraction, was
discussed in detail using our exploratory language ACT++.

Acknowiedgement

We would like to thank the members of the Real-Time Systems Group at Virginia Tech.
Discussions with Greg Lavender, Michael Leahy, Jeff Nelson, and Sanjay Kohli helped in
clarifying the concepts of the actor model.

References

[Agha 86] G. Agha, A Mode! of Concurrent Computation in Distributed Systems, MIT
Press, 1986.

[Agha 87} G. Agha and C. Hewitt, Concurrent Programming Using Actors, In Object-

Oriented Concurrent Programming, (ed.) A. Yonezawa and M. Tokoro, MIT
Press, 1987, 37-53.

[America 87] P, America, POOL-T: A Parallel Object-Oriented I anguage, In Object-
Oriented Concurrent Programming, (ed.) A. Yonezawa and M. Tokoro, MIT
Press, 1987, 199-220.

[Biggerstaff 87] T. Biggerstaff and C. Richter, Reusability Framework. Assessment. and

Directions, IEEE Software, March 1987, 41-49.

[Brinch-Hansen] P. Brinch Hansen, Structured Multiprogramming, CACM, Vol. 15, No.
7, July 1972.

19



[Briot 87] J.-P. Briot and A. Yonezawa, Inheritance and Synchronization in Concurrent
QOP, ECOOP '87 European Conference on Object-Oriented Programming,
Springer-Verlag, June 1987, 33-40.

[Campbell 87] R. H. Campbell, J. Johnston, V. F. Russo, Choices: Class Hierarchical
Open Interface for Custom Embedded systems, Operating Systems Review 21,
July 1987, 9-17.

[Caromel 88] D. Caromel, A General Method for Concurrent and distributed Obiect -
Oriented Programming, Extended Abstract, Workshop on Object-Oriented
Concurrent Programming, OOPSLA '88, San Diego, California, September 1988.

[Freeman 81] P. Freeman, Reusable Software Engineering: Concepts and Research

Directions, Proceedings of Workshop on Reusability in
Programming, I'TT, Shelton, Conn., 1983.

{Goldberg 83] A. Goldberg and D. Robson, Small-talk-80: The Language and its
Implementation, Addison-Wesley, 1983.

[Hewitt 76] C. Hewitt, Viewing Control Structures as Patterns of Passing Messages, Al
MEMO 410, MIT Artificial Intelli gence Laboratory, 1976.

[Hoare 78] C. A. R. Hoare, Communicating Sequential Processes, CACM, August,
1978.

[Johnson 88] R. E. Johnson, J. O. Graver, and L. W, Zurawski, TS: An Optimizing
Compiler for Smalltalk, OOPSLA '88 Conference Proceedin gs, 1988,

[Kafura 88] D. G. Kafura, Concurrent Object-Oriented Real-Time Systems Research,
8.

Technical Report, TR 88-47, Dept. of Computer Science, Virginia Tech, 198

{Lieberman 86) H. Lieberman, Using Prototypical Objects to Implement Shared Behavior
in Object-Oriented Languages, OOPSLA '86 Conference Proceedings, 1986.

[Lieberman 87] H. Lieberman, Concurrent Object-Oriented Programming in Act 1, In

Object-Oriented Concurrent Programming, (ed.) A. Yonezawa and M.
Tokoro, MIT Press, 1987, 9-36.

[Lieberman 88] H. Lieberman, L. Stein, and D. Ungar, Treaty of Orlapdo, Addendum to
the Proceedings of OOPSLA '87, Special Issue of SIGPLAN Notices 23, 5, May
1988.

[Liskov 87] B. Liskov, Data Abstraction and Hierarchy, OOPSLA '87 Addendum to the
Proceedings, 1987, 17-32.

[Madany 88] P. Madany, A C++ Class Hierarchy for Buildin Unix-like File Systems,
USENIX Proceedings of the 1988, C++ Conference, October 1988, 65-80.

[Moss 871 J. B. Moss and W. H. Kohler, Concurrency Features for the Trellis/Owl
Language, ECOOP '87 European Conference on Object-Oriented programming,
Springer-Verlag, June 1987, 171-180. _

20



[Nierstrasz 87] O. M. Nierstrasz, Active Objects in Hybrid, GOPSLA '87 Conference
Proceedings, 1987, 243-253.

[Schaffert 86] C. Schaffert et al., An Introduction to Trellis/Owl, OOPSLA '86
Conference Proceedings, 1986,

[Snyder 86] A. Snyder, Encapsulation and Inheritance in Object-Oriented Programming

Languages, OOPLA '86 Conference Proceedings, 1986.

[Stein 87] L. Stein, Delegation is Inheritance, QOPSLA '87 conference Proceedings, 1987,
138-146.

[Stroustrup 86] B. Stroustrup, The C++ Programming Language, Addison-Wesely,
Menlo Park, Calif., 1986.

[Theriault 83] D. G. Theriault, Issues in the Design and Implementation of Act2, Technical

Report 728, MIT Artificial Intelligence Laboratory, 1983.

[[Ungar 87] D. Ungar and R.B. Smith, Self: The power of Simplicity, OOPSLA '87
Proceedings, October 1987, 227-242.

[Yokote 86] Y. Yokote and M. Tokoro, Concurrent Programming in Concurrence

Smalltalk, In Object-Oriented Concurrent Programming, (ed.) A.
Yonezawa and M. Tokoro, MIT Press, 1987.

[Yokote 87] Y. Yokote and M. Tokoro, Experience and Evolution of Concurrent Smalltalk,
OOPSLA '87 Conference Proceedings, 1987, 406-415.

[Yonezawa 87] A. Yonezawa, E. Shibayama, et al., Modelling and Programming in an
biect-Oriented Concurrent Lansuase ABCL. 1, In Object-Oriented Concurrent

Programming, (ed.) A. Yonezawa and M. Tokoro, MIT Press, 1987, 55-89.

[Wegner 87] P. Wegner, Dimensions of Object-Based Language Design, OOPSILA '87

Conference Proceedings, 1987, 168-182.

21





