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We demonstrate a model, including operational semantics, for the reverse execution of stack-based
code. We discuss our modification of the Kaffe implementation of the Java Virtual Machine,
supporting a debugger capable of running Java bytecode backwards. We achieve reverse execution
by logging the state lost during each operation or by directly reversing instructions. Our debugger
has facilities for stepping, stepping over methods and running to breakpoints, in both directions.
Multi-threading is supported. It is also possible to step through the bytecode when the Java source
code is not available. The debugger has both a command line user interface and a graphical user

interface with facilities for editing code and running the Java compiler.
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1. INTRODUCTION

There are many debuggers available for debugging Java
programs. For instance, Sun’s JDK includes a command-
line-based debugger called JDB [1]. Various graphical
debugging environments have been developed, for instance
Borland JBuilder [2] and Forte for Java [3]. NetBeans [4],
which incorporates a debugger for Java, is open-source and
written in Java. Such debuggers have facilities for stepping
forwards through the source code a line at a time and
inspecting the values of variables during the execution of the
program being debugged.

Most commercially available debuggers are only capable
of stepping forwards through the source code. Because
the location of the bug is usually unknown, we may find
after having stepped through hundreds of lines of code that
we have stepped well past the bug and have to start again.
In such instances it can be helpful to be able to step back
through the source code to the location of the bug.

We discuss our implementation of a debugger which is
capable of running Java bytecode backwards. This allows
us to jump to a point in the code which we know to be after
the bug and then step backwards until the bug is found. This
is particularly useful when debugging large or long running
programs. In addition, it is useful for correcting forward
steps made in error, which is a problem that frequently
occurs while single-stepping through programs.

There are a few possible approaches to implementing
reverse execution. One is to record the data necessary for
reverse execution as the program runs forwards, which we
refer to as ‘logging’. Another is to use checkpoints, see [5]
and [6]. With checkpointing, the entire execution state of
the program is periodically stored in memory or written to
disk. Then, as in the case of [6], to step backwards one line
we go to the last checkpoint and then run forwards until the
line just before the one we started on. A third approach is to
convert the code into inherently reversible code or, as in the
case of [7], directly reverse instructions. Our debugger uses
logging as the main approach.

To implement reverse execution one can either instrument
the code or modify the compiler or interpreter. With
instrumentation the debugger rewrites the source code
to incorporate support for reverse execution and then
recompiles the code and runs it, without any modification
to the compiler or interpreter. Our approach is to modify the
interpreter to support controlled execution.

In implementing our debugger, we demonstrate an
efficient method of reversing stack-based code by taking
advantage of the stack model. We also demonstrate a
method for reversing methods calls, returns from methods
and exceptions in the case of the Java Virtual Machine
(JVM), Kaffe. Kaffe is structured so that it simulates a
method call in the Java code by a function call in its own
code. To achieve reverse execution we pass extra data to and
return extra data from the function in Kaffe which runs the
bytecode of a method.

In this paper, we first motivate and describe the
data structure that we use for logging and discuss the
implementation of reverse execution. We then describe how
we deal with method calls, exceptions, garbage collection,
multi-threading and file I/O, and give some details of the
architecture of the tool. Finally, we include a brief case
study, give performance data and discuss related work.

2. DATA STRUCTURE FOR REVERSE
EXECUTION

2.1. Characterization of bytecode instructions

We wish to tailor the reverse execution scheme to a stack-
based virtual machine. Almost all of the Java bytecode
instructions can be characterized by two numbers, m and
n, where the instruction can be thought of as popping m

items from the operand stack, possibly operating on them
and then pushing n new items onto the operand stack. In
some cases the entire operand stack is popped. It is an
easy, if laborious, exercise to determine such numbers. See
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the JVM specification [8] for detailed descriptions of the
bytecode instructions.

In order to reverse the bytecode instructions, we need to
somehow store the m items of the operand stack that are lost
when running the instruction forwards, so that they can be
restored on reverse execution.

The instruction IADD takes two integers off the operand
stack, adds them together, and then pushes the sum back
onto the operand stack. Thus, in this case m = 2 and
n = 1. When running forwards we must record the top two
values of the operand stack before the instruction executes
as usual. On reversing we must discard the top value of
the operand stack before restoring the two values that we
recorded earlier.

In view of the possibility of branches and jumps we also
need to store data on the flow of control, that is the order in
which the instructions are executed.

We store these data on circular buffers.

2.2. Two circular buffers

A circular buffer is a bounded stack with the property that
if we push beyond the end, we wrap around and begin
overwriting the start of the underlying array. We use two
circular buffers to record the data that is necessary for
reverse execution. The circular buffers employ a stack-
like last-in-first-out discipline which makes them similar, for
example, to the kill ring of the Emacs text editor.

Before we execute each instruction, we push its program
counter value onto the program counter circular buffer. As
part of the forwards execution of an instruction, we push
any data which will be lost as a result of the instruction onto
the other circular buffer, which we refer to as the logging
circular buffer.

By default, the program counter circular buffer is
128× 1024 slots and the logging buffer is also 128× 1024
slots. In total this equates to about 2 Mbytes of memory.
This figure includes the other buffers in parallel with the
logging circular buffer, which we discuss below. The user
is able to set the size of the buffers. For some of the sample
programs we tried, we found that on average 8 buffer slots of
each buffer were used for each line of source code. Thus, on
average we can reverse through 16,000 lines of code, with
the default setting.

2.3. Issues arising from the boundedness of the buffers

However, how do we know whether we can step back a line
or whether the data for the line to step back through has been
overwritten because the buffer has wrapped around? We do
this by keeping a validity pointer, marking the furthest back
we can read.

Before a backwards step is effected, we make sure that
we have enough data on the buffers to go back. We do
not want to find part way through reversing an instruction
that we have run out of data. So, before stepping back,
we run a simulation of the reverse step using code similar
to that which performs the real reversal. In terms of

flow of control this is relatively straightforward but a
problem arises with the logging circular buffer. We do
not want to actually reverse the instructions, but we need
to know how many items to take off the logging circular
buffer for each instruction. We do this by adding an
extra circular buffer, parallel to the logging circular buffer.
The elements of this buffer are initialized to zero. Before
each instruction, the element corresponding to the current
position is incremented. Then to run back over the last
instruction, we go back skipping those entries which are zero
until we reach a non-zero value which we decrement.

The following simplified code should convey the
idea. Before the instruction begins, mark() is called.
Then push() will be called some number of times or not
at all. When reaching this point, on simulating a reversal,
skipBack() will remove exactly one instruction’s data
from the buffer, regardless of whether that instruction
pushed to the buffer.

Procedure mark( ) {
increment( count[location] );

}

Procedure push( value ) {
log[location] = value;
increment( location );
if( location == BUFFER_SIZE )

location = 0;
}

Procedure skipBack( ) {
while( count[location] == 0 )

decrement( location );
decrement( count[location] );

}

The reader may feel that this scheme introduces
unnecessary complexity and that if the buffer runs out in the
middle of a reversal we should simply run the code forwards
again to where we should be. We cannot, however, do this as
not all native methods are reversed. Thus, if we were unable
to step back over an instruction which wrote to the console,
this instruction would be replayed and extra output would
appear.

3. IMPLEMENTATION OF REVERSE EXECUTION

We describe the reversal of instructions in two ways. In
this section we explain the reversal in prose. In the next
section we give operational semantics for both directions of
execution.

It should be noted that two of the basic types which can be
stored on the operand stack (longs and doubles) actually take
up two slots. In the descriptions and operational semantics,
we regard such pairs as single stack slots.
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3.1. Description of reversal without method calls

3.1.1. The operand stack and object creation
Recall the values m and n that we attributed to some
bytecode instructions above. We reverse most instructions
(roughly 150 of the 200 bytecode instructions) as follows.
When the instruction is reached, we push the top m items of
the operand stack onto the logging circular buffer. When
the instruction is reversed, we pop and discard the top n

items of the operand stack and then push the top m items
of the logging circular buffer back onto the operand stack.
This reverses the instruction. The instructions which can
be reversed in this way are those which can be treated as
though they operated only on the operand stack. This class
of instructions is referred to as STACK in the semantics.

MULTIANEWARRAY is reversed in a way similar to the
STACK scheme, except that the number of items of the
operand stack to be saved depends on a field of the bytecode
instruction, rather than the instruction itself.

We do not need to do anything additional in order
to reverse the NEW instructions, as they generate new
references on each forwards pass, which can be used
thereafter. The constructor is called by an INVOKESPECIAL
instruction after the NEW. When this instruction is reached
the constructor is stepped through and logged.

3.1.2. Local variables
Local STOREs take a value off the operand stack and store
it in a local variable. We reverse these as follows. When we
execute in the forwards direction, we push the old value of
the local variable onto the logging circular buffer, before
copying the value on the top of the operand stack into the
local variable. To reverse this, we move the local variable
value back to the operand stack and then the value saved on
the logging circular buffer back to the local variable.

IINC increments a local variable by a specified amount.
We reverse IINC directly, by subtracting the relevant value
rather than adding it.

WIDE instructions are used when there are very many
local variables and a wider index into the local variable
table is needed; or in the case of IINC, a large increment
is required. We reverse each WIDE instruction in the same
way as its non-WIDE counterpart.

3.1.3. Fields
We have to reverse array STOREs taking into account the
need for the second and third items from the top of the
operand stack when locating the address to be stored into.
Thus, in the forwards direction, we push onto the logging
circular buffer: the old value of the array element together
with the second and third items of the operand stack. We
then copy the value on the top of the operand stack into the
array. To reverse this, we load the values from the logging
circular buffer onto the operand stack. We use these to locate
the array element and to copy its value onto the operand
stack. We then copy the old saved value on the logging
circular buffer into the array.

GETSTATIC loads a static field, pushing it onto the
operand stack. We reverse this by popping off the top value
of the operand stack.

We reverse PUTSTATIC in a way similar to the local
stores, except that we are dealing with a field instead of a
local variable.

GETFIELD loads a non-static field onto the operand
stack. We reverse GETFIELD as follows. In the forwards
direction we push the object reference on the top of the
operand stack onto the logging circular buffer, then we get
the field in the usual manner. We reverse this by popping the
top value off the operand stack and then loading the top item
of the logging circular buffer onto the top of the operand
stack.

We reverse PUTFIELD in a manner similar to the array
stores, as here we need the object reference on the operand
stack to locate the field.

3.1.4. Branches, subroutines and jumps
Since the program counter value of every instruction is
stored on the program counter buffer, no special treatment
of branches, subroutines or jumps is required. These
instructions are all dealt with as part of the STACK scheme.
As the program counter often merely increases by one,
some space could be saved by compressing the data on
the program counter circular buffer. However, this may
introduce an unacceptable time overhead.

3.2. Reversing method transitions

We now consider the reversal of RETURNs and INVOKEs.
That is, we reverse all those instructions which result in
transitions between methods. In [7], Biswas and Mall
discuss the reversal of function calls. They observe that
when a function exits, its stack frame and local variables are
lost. Hence, these values need to be stored before leaving
the function, so that they can be restored when stepping back
into the end of the function.

3.2.1. Method transitions: running forward normally
A method call consists of pushing the actual arguments and,
if necessary, the object of the method to be called onto the
operand stack. Then one of the INVOKE instructions is
called. This pops these values from the operand stack and
a C function is called in the Kaffe JVM, which runs the Java
method being called. On entry into the new method, space
is allocated for a new operand stack and local variables.
This space is discarded on exiting from the method. The
operand stacks of the calling and called methods are separate
and exist as local variables of the respective function calls in
the Kaffe JVM.

Thus, in order to be able to reverse method calls, we
must save the arguments before the method call and save
the operand stack and local variables just before the method
returns.
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3.2.2. Method transitions: running forward modified
When a method is called, we pass an extra parameter to the
corresponding function call in the Kaffe virtual machine.
This value indicates whether to run the method forwards
or backwards and whether to step into or over the method.
As discussed below, there are actually two ‘forwards into’
values and other values used when reversing an exception.

We also modify the function in Kaffe which runs
the bytecode for a method to return a value indicating
whether the method exited from the beginning or the end.
The method can also return values which indicate that an
exception is being reversed.

We store tagged values on the program counter circular
buffer. The program counter is in the range 0x0 to 0xFFFF,
as the maximum size of any method in a Java class file is
0x10000 bytes; see [8, Section 4.10]. The program counter
circular buffer stores 32-bit integers so that we can use larger
integers to store extra data. We define

start = 0x20000

end = 0x20001

offset = 0x10000.

At the start of a method, if it is being logged, we push
start to the program counter circular buffer and similarly end
at the end.

When we call a method running forwards, the relevant IN-
VOKE is first called. This is modified to save the top portion
of the operand stack comprising of the arguments and, where
necessary, the relevant object to the logging circular buffer.
In the cases of INVOKESPECIAL, INVOKEVIRTUAL and
INVOKEINTERFACE, to do the reverse call we also need
the object reference, so a copy of it is made to push onto the
logging circular buffer later. The method is then called.

The method returns when execution reaches one of the
RETURN instructions. Before returning, we push the entire
operand stack and all of the local variables onto the logging
circular buffer. Usually at a point of return, the operand stack
is almost empty; however, there is a significant overhead if
there are many local variables. Fortunately, in realistic code
this is uncommon.

After the method returns, if it exits at the end and if
appropriate, we push the object reference which we recorded
earlier onto the logging circular buffer. Then, only if the
method exits at the end, we push the value of the program
counter of the INVOKE instruction with offset added to it,
that is pc + 0x10000, onto the program counter circular
buffer. If the method exits out of the beginning, we jump
to the reverse execution code in the function call in Kaffe
running the Java calling method.

3.2.3. Reverse execution of method calls
In order to step back, we pop values off the two circular
buffers as appropriate. If we hit a start then we return the
value indicating that we have stepped out of the beginning
of the method.

If we hit a value on the program counter circular buffer
between 0x10000 and 0x1FFFF, we know that we have

to reverse a method call and we look up the value pc &
0xFFFF to find the INVOKE instruction needed to call the
method in reverse.

On entry into a method backwards, we first encounter
one of the RETURN instructions, which restores the local
variables and the operand stack. We then continue until
we reach the beginning and exit, or change direction and
reach the end of the method, in which case the calling
function transfers control to the forwards execution code in
the function call running the Java calling method, after the
return.

3.3. Exceptions

When an exception occurs, either caused by an ATHROW
instruction or the failure of some other instruction, the JVM
looks up the call stack for a handler and then, in the case of
Kaffe, uses a C long jump to jump into the handler.

Before an exception is dispatched, our modified code
looks up the call stack until it reaches the handler, pushing
onto the logging circular buffer the operand stacks and local
variables of every logged method it sees. We also note on the
program counter circular buffer the program counter value of
the instruction which faulted and the program counter value
of each INVOKE instruction in the call chain.

To reverse an exception, we first call the method which
caught the exception and jump straight to the instruction
which called the next method in the chain, having restored
the operand stack to the state that it was in just before that
call originally happened. We continue doing this until we
reach the method where the exception was thrown. Here we
restore the operand stack and local variables and then run
back to the beginning of the line containing the instruction
which faulted.

In some cases we could step back further and provide
different input, which would mean that on the second
pass the exception would not occur and the method would
terminate normally. In this instance it is important that when
the method returns, the method which called it continues as
it would normally. This is why when reversing we do not
simply call the method that threw the exception.

The implementation of exceptions relies on extra flags
being passed to and returned from the function which runs
the bytecode. These have the effect of causing the current
method to be re-run starting at a different program counter
value. We want to do this because when an exception in
Kaffe is caught in a method, rather than staying in the
method and jumping to the catch block’s program counter
value, the method is re-run with the program counter set
to the appropriate location. Further values are required for
the program counter circular buffer; see the final rule of
Figure 4.

4. OPERATIONAL SEMANTICS

4.1. Operational semantics without method calls

We now describe the notation used in the operational
semantics. We will extend the notation to cater for method
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calls in the next section. To give operational semantics for
the full Java language would be a tremendous task, so we
abstract away, in subsidiary functions, all those parts of it
which are not relevant to reverse execution.

We indicate the target program by the symbol P , and the
state by an ordered sextuple 〈pc, S,L, F ;D,C〉. The items
before the semicolon are the program counter (pc), the
operand stack (S), the local variables (L) and the object/class
fields (F ). The items after the semicolon are added to enable
reverse execution and are the logging circular buffer (D) and
the program counter circular buffer (C).

The judgement P � 〈pc, S,L, F ;D,C〉 ←→ 〈pc′, S′,
L′, F ′;D′, C′〉 indicates that the program running in the
forwards direction can make the transition indicated by
going to the right in one step. The program running in the
reverse direction can make the transition indicated by going
to the left in one step. Premises enclosed in square brackets
are only required in the forwards direction.

4.1.1. Special functions
P [pc] denotes the bytecode instruction at the program
counter location pc, with the bytecode arguments of the
instruction written after the instruction name. We refer
to sets of instructions and in an abuse of notation, add
the bytecode arguments after these as well. For example,
LOCALSTORES l indicates instructions which are a
member of the set LOCALSTORES and which operate on
the local variable l.

pops[P [pc]] and pushes[P [pc]] are the values m and n,
respectively, discussed above. nextpc(P [pc], pc) returns
the value that the program counter should change to after
executing the instruction at program counter value pc, in the
forwards direction.

We use the function trans to hide most of the aspects of the
JVM which are not relevant to reverse execution. It takes as
arguments the instruction, program counter, operand stack
and current local variables (P [pc], pc, S,L) and returns
a triple norm(pc′, S′, F+) consisting of the new program
counter, the new operand stack and any new fields to add.
F+ is a set and hence can take the value ∅ indicating that no
new fields are added. We need to obtain the new program
counter in this way, rather than by nextpc, because with
some instructions the next program counter value depends
on the operand stack. trans can also return the value
exn(pccatch, n, o), which indicates that the instruction threw
an exception. Here, pccatch is the program counter value of
the catch clause in the catching method. n is the number
of methods we are to jump back through and o is the object
representing the exception.

Java integer addition is represented by the symbol+J .

4.1.2. States
We denote the result of pushing the value x onto the stack S

by x · S. We denote the empty stack by ε and the result of
appending stack S′ onto stack S by S′ • S. The expression
|S| denotes the number of elements in the stack S.

If L[l = r] occurs on the left of a transition and L[l =
r ′] occurs on the right, this indicates that the value of the
local variable l has changed from r to r ′, all other values
remaining the same.

A similar notation is used for the fields, F . The domain of
F is the set of all fields that can exist in the target program,
which consists of the static fields of each class and non-
static fields of each object. Static fields are represented by a
single value i and non-static fields are represented by a pair
(o, i) consisting of the object o and field number i. The ith
element of the array a is represented by a[i]. The range of
F is all Java values and references. The instruction NEW
is classified under STACK, but in addition to generating a
new object reference, it creates a new object together with
all of its fields. These constitute the F+ in the rule for
STACK. The rule might appear to suggest that these extra
fields disappear when we reverse a NEW. This will only
occur, however, on a later garbage collection cycle.

We do not fully represent the effects of possible garbage
collection on F (see Section 6), nor of the acquisition and
release of monitors (see Section 7.1). Both of these would
unnecessarily complicate the semantics.

D and C are circular buffers, and we indicate the result of
pushing the value x onto the buffer D by x ·D and similarly
for C. Again we use the symbols ε and • for the empty
buffer and for appending a stack onto a buffer. The push
here is subtly different to that for S, in that if we push many
items onto D or C, then items begin to disappear from the
other end of the buffer.

The initial state is 〈0, ε, L, F ; ε, ε〉, where L and F

contain initial values for the local variables and fields.

4.1.3. The rules
We use similar notation to that used in [9] and [10] which
give operational semantics for a small version of the JVM.
The reader may like to inspect these before looking at our
operational semantics.

In Figure 1, we classify the JVM instructions. In Figure 2,
we give the operational semantics without method calls or
exceptions. In Figure 3, we give an example instantiation of
the STACK rule.

4.2. Operational semantics of method calls and
exceptions

We now add some notation. The sextuple is replaced
by a septuple 〈Q,M, S, L, F ;D,C〉. Q indicates a stack
of program counter values and M a stack of method
descriptors, with the symbols · and ε used as before. F ,
D and C are notationally unchanged.

Now, however, S and L indicate stacks of stacks.
The result of pushing the stack S onto the stack of stacks S

is denoted by S�S and the empty stack of stacks is denoted
[ ]. This is a notational convenience to enable us to simply
denote the popping of entire stack frames when we exit from
a method.

The initial state is 〈0 · ε, main · ε, ε � [ ], L� [ ], F ; ε, ε〉.
Here, L consists of the arguments to the Java application;

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002



REVERSE EXECUTION OF JAVA BYTECODE 613

INSTRUCTIONS = the set of Java bytecode instructions

LOCALSTORES = {ISTORE, LSTORE, ..., ASTORE}
ARRAYSTORES = {IASTORE, LASTORE, ..., AASTORE}

FIELDS = {GETSTATIC, PUTSTATIC, GETFIELD, PUTFIELD}
STATICINVOKES = {INVOKESTATIC}

OBJECTINVOKES = {INVOKEVIRTUAL, INVOKEINTERFACE, INVOKESPECIAL}
RETURNS = {IRETURN, LRETURN, ..., RETURN}
MONITOR = {MONITORENTER, MONITOREXIT}

STACK = INSTRUCTIONS \ ( LOCALSTORES ∪ ARRAYSTORES

∪ FIELDS ∪ STATICINVOKES ∪ OBJECTINVOKES ∪ RETURNS

∪MONITOR ∪ {IINC, WIDE, MULTIANEWARRAY, ATHROW} )

FIGURE 1. Classes of instruction.

Stack:

P [pc] ∈ STACK pops[P [pc]] = m pushes[P [pc]] = n

[trans(P [pc], pc, x1 · x2 . . . xm · S,L) = norm(pc′, y1 · y2 . . . yn · S, F+)]
P � 〈pc, x1 · x2 . . . xm · S,L, F ;D,C〉 ←→ 〈pc′, y1 · y2 . . . yn · S,L, F ∪ F+; x1 · x2 . . . xm ·D,pc · C〉

P [pc] = MULTIANEWARRAY m [trans(P [pc], pc, d1 · d2 . . . dm · S,L) = norm(pc′, o · S, F+)]
P � 〈pc, d1 · d2 . . . dm · S,L, F ;D,C〉 ←→ 〈pc′, o · S,L, F ∪ F+; d1 · d2 . . . dm ·D,pc · C〉

Locals:

P [pc] ∈ LOCALSTORES l [nextpc(P [pc], pc) = pc′]
P � 〈pc, v · S,L[l = x], F ;D,C〉 ←→ 〈pc′, S, L[l = v], F ; x ·D,pc · C〉

P [pc] = IINC l n [nextpc(P [pc], pc) = pc′]
P � 〈pc, S,L[l = x], F ;D,C〉 ←→ 〈pc′, S, L[l = x +J n], F ;D,pc · C〉

Fields:

P [pc] ∈ ARRAYSTORES [nextpc(P [pc], pc) = pc′]
P � 〈pc, v · i · a · S,L, F [a[i] = x];D,C〉 ←→ 〈pc′, S, L, F [a[i] = v]; x · i · a ·D,pc · C〉

P [pc] = GETSTATIC i [nextpc(P [pc], pc) = pc′]
P � 〈pc, S,L, F [i = x];D,C〉 ←→ 〈pc′, x · S,L, F [i = x];D,pc · C〉

P [pc] = PUTSTATIC i [nextpc(P [pc], pc) = pc′]
P � 〈pc, v · S,L, F [i = x];D,C〉 ←→ 〈pc′, S, L, F [i = v]; x ·D,pc · C〉

P [pc] = GETFIELD i [nextpc(P [pc], pc) = pc′]
P � 〈pc, o · S,L, F [(o, i) = x];D,C〉 ←→ 〈pc′, x · S,L, F [(o, i) = x]; o ·D,pc · C〉

P [pc] = PUTFIELD i [nextpc(P [pc], pc) = pc′]
P � 〈pc, v · o · S,L, F [(o, i) = x];D,C〉 ←→ 〈pc′, S, L, F [(o, i) = v]; x · o ·D,pc · C〉

FIGURE 2. Operational semantics without method calls.

P [pc] = IADD ∈ STACK pops[IADD] = 2 pushes[IADD] = 1
[trans(IADD, pc, x1 · x2 · S,L) = norm(pc + 1, (x1 +J x2) · S, ∅)]

P � 〈pc, x1 · x2 · S,L, F ;D,C〉 ←→ 〈pc + 1, (x1 +J x2) · S,L, F ; x1 · x2 ·D,pc · C〉

FIGURE 3. Example: STACK rule instantiated to IADD instruction.
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Invokes:

P [pc,m] ∈ STATICINVOKES m′ [newlocals(m′, x1 . . . xn · ε) = L′]
P � 〈pc ·Q,m ·M,x1 · x2 . . . xn · S′ � S, L, F ;D,C〉

←→ 〈0 · pc ·Q,m′ ·m ·M, ε � S′ � S, L′ � L, F ; x1 · x2 . . . xn ·D, start ·m · pc · C〉
P [pc,m] ∈ OBJECTINVOKES m′ [newlocals(m′, x1 . . . xn · o · ε) = L′]

P � 〈pc ·Q,m ·M,x1 · x2 . . . xn · o · S′ � S, L, F ;D,C〉
←→ 〈0 · pc ·Q,m′ ·m ·M, ε � S′ � S, L′ � L, F ; x1 · x2 . . . xn · o ·D, start ·m · pc · C〉

Returns:

P [pc,m] ∈ RETURNS [nextpc(P [pc′,m′], pc′,m′) = pc′′] objectinvoker = ff callee(pc′, m′) = m
P � 〈pc · pc′ ·Q,m ·m′ ·M,S′′ � S′ � S, L′′ � L′ � L, F ;D,C〉

←→ 〈pc′′ ·Q,m′ ·M,S′ � S, L′ � L, F ; |S′′| · S′′ • L′′ •D, (offset + pc′) · end · pc · C〉
P [pc,m] ∈ RETURNS [nextpc(P [pc′,m′], pc′,m′) = pc′′]

objectinvoker = tt [savedobject = o] callee(pc′, m′) = m
P � 〈pc · pc′ ·Q,m ·m′ ·M,S′′ � S′ � S, L′′ � L′ � L, F ;D,C〉

←→ 〈pc′′ ·Q,m′ ·M,S′ � S, L′ � L, F ; o · |S′′| · S′′ • L′′ •D, (offset + pc′) · end · pc · C〉
Exceptions:

[trans(P [pc1,m1], pc1, S1, L1) = exn(pccatch, n, o)]
P � 〈pc1 · pc2 . . . pcn ·Q,m1 ·m2 . . . mn ·M,S1 � . . .� Sn � S, L1 � . . .� Ln � L, F ;D,C〉
←→ 〈pccatch ·Q,mn ·M,o · ε � S, Ln � L, F ; (|Sn| · Sn) • Ln • . . . • (|S1| · S1) • L1 •D,

startcatch · throwlast ·mn · pcn · throwcont ·mn−1 · pcn−1 . . . throwfirst ·m1 · pc1 · C〉

FIGURE 4. Method call and exception operational semantics.

that is, an array of strings and arbitrary values for any other
local variables declared in the main method. The initial
value of F consists of all the static fields of the program.

We do not represent the effects of a method being marked
as synchronized, see Section 7.1.

The function newlocals constructs the new initial local
variables for the method when it is called. The flag
objectinvoker is true if the method that we are returning
from was invoked by one of the three members of OBJECT-
INVOKES and, in the case that it was, savedobject is the
value of o in the corresponding INVOKE instruction. callee
takes the location of an INVOKE instruction and returns
the method that it calls. This is needed when reversing a
RETURN.

In some places method pointers m or m′ are placed onto
the program counter circular buffer. These are used merely
to guide the reversal simulation code.

The operational semantics of method calls and exceptions
are given in Figure 4. In Figure 4, the letter m has been used
to denote a method, in contrast to Figure 2 where m denoted
an integer.

There are four types of method transition which can occur
during debugging, namely:

• stepping forwards into the start of a method;
• stepping forwards out of the end of a method;
• stepping backwards into the end of a method;
• stepping backwards out of the start of a method.

The first of these, for example, corresponds to the forwards
direction of the two INVOKE rules.

The rules given in Figure 2 can be interpreted in the
presence of method calls, by looking only at the top stack
on the stack of stacks, S, the top local variable frame on the
stack of local variable frames, L, and the program counter
value on the top of the stack, Q. P [pc] would be replaced
by P [pc,m], where m is the method currently on the top of
the method stack M and similarly for nextpc.

5. ARCHITECTURE

5.1. Overall scheme

We use Kaffe [11] as the host virtual machine for our
debugger because it is open-source. We switch off Kaffe’s
JIT engine because we wish to achieve controlled execution
by modifying the interpreter. We implement our debugger
for the Linux operating system, but Kaffe runs on many
platforms, so in principle it should be straightforward to port.

When debugging, two virtual machines are running.
The first is running the user interface. In the case of the
command line interface, any JVM can be used; but in
the case of the GUI, Swing is required. While editing or
compiling code with the GUI this is the only JVM running.

When, however, we start debugging, the user interface
creates, as a process, a modified version of the Kaffe JVM
running another Java program which we refer to as the
client. The user interface creates a server socket and the
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client creates a client socket, through which all debugging
instructions and replies from the debugger pass. Thus, in
principle, we could debug across the Internet. The command
line interface passes commands typed in directly to the
client. Thus, the GUI is entirely built on top of the command
line protocol.

The client loads the classes for the target program that
we wish to debug, using a ClassLoader. Thus, the client
and target are running in the same instance of the virtual
machine. The main thread of the client becomes the main
thread of the target, but before this happens, the client starts
a new thread to listen for instructions from the socket and to
act on them.

We need to invoke methods in the debugger, specifically
those in the client, from the Kaffe JVM code which is
running the target. In fact we can directly call the Java
methods in the client from the C code in Kaffe, almost as
though the relevant thread in the target had called those
methods. Thus, it is easy for the modified Kaffe code
to notify the client of matters which need to be reported
to the user interface. Essentially, it is as though we had
instrumented the bytecode with these method calls. To have
done this with our scheme would, however, have resulted in
large class files.

Interaction between the client and the target is minimized
and only occurs when the GUI must be told of some event so
that it can be reported to the user. In particular when running
to a breakpoint, the client is only informed of the change in
line number when a breakpoint has actually been reached.

Java was chosen as the language for the GUI so that Swing
could be used to construct the user interface. The use of Java
here is purely an engineering choice. As we communicate
across a socket, the user interface could be written in any
language capable of network communication. Java was
chosen as the language for the client as its main function
is to mediate between a single client socket and a number of
threads attempting to read from and write to it. This is a task
which can be much more naturally coded in Java than in C.

This scheme is similar to the Java Platform Debugger
Architecture (JPDA) [12] which also has a layer which runs
in the same virtual machine instance as the target and can
communicate with a front-end through a socket. In the
case of the JPDA, the communication may be through some
channel other than a socket.

We include a screen-shot as Figure 5.

5.2. Single stepping

The modified Kaffe JVM runs normally until it detects that
it is running a method contained in one of the source files
which the user has specified should be debugged. While in
this method, before each bytecode instruction is executed,
we check whether we have moved onto a new line of the
source code. If so, the modified Kaffe JVM calls the get
method of a synchronized first-in-first-out queue in the
client. The client adds instructions encoded by integers to
this queue as it receives textual commands from the user
interface.

FIGURE 5. Screen-shot.

We use a queue in order to keep the user interface
responsive. The user can issue several forward step
commands while the debugger is running to a breakpoint and
these commands will all be handled when the breakpoint is
reached.

When a forwards step instruction is received from the user
interface, then, an integer representing STEP is added to the
queue in the client. When the modified Kaffe JVM next
queries this queue, it receives this integer and runs the target
program until the line number next changes.

5.3. Stepping over methods

Stepping over forwards refers to stepping forwards one line
without stepping into methods. This is implemented by
allowing a special value to be passed to a method call which
specifies that the method should run to completion without
stopping to wait for instructions.

Stepping over backwards is implemented in an analogous
manner.

5.4. Breakpoints

We maintain a table of breakpoints in the modified Kaffe
JVM. Each breakpoint consists of a line number and a
corresponding source file. We also store a single Boolean
value which indicates whether we are currently running to a
breakpoint. When the command to run to the next breakpoint
is received, this flag is set to true. At the start of each line
thereafter, with this flag true, we test whether the new line is
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a breakpoint. If it is, we clear the flag and block waiting for
the next command from the client.

We use a similar scheme to run back to breakpoints: the
same breakpoint flag forces the reversal code to run until a
breakpoint is reached.

5.5. Which methods are logged?

Normally, logging of each thread begins when the thread
first enters a method in a source file which is open in the
debugger. Logging ends when that thread enters a method
whose source code file is not open and nothing deeper on
that thread is logged. The user is able, however, to specify
additional classes which should be logged, but not stepped
through. These can be used to act as a bridge between two
methods which are separated in the call chain by a method
in a file which is not open. This feature can also be used to
ensure that stateful library class calls are properly reversed.
By default all the classes in java.util are treated in this
way.

Alternatively an ‘initial method’ can be specified. In
this case logging starts with that method and code executed
before that method is reached will execute more quickly.
This can be particularly useful if the user is only interested
in debugging that method, or methods that it calls, and time-
consuming code is called before the method is reached.

In addition, it is possible to step through the bytecode
rather than the source code. Provided that both the bytecode
and source code of a class are open, the user can switch
between the two while debugging. Special watch values
can be used to inspect local variables and the operand stack.
We keep track of the types of the operand stack and local
variable slots, so that their contents can be displayed in an
appropriate format.

We call all top-level methods (those methods which are
not invoked by another Java method) with a special version
of the ‘forwards into’ parameter, which indicates that we
should not log the method unless it is in an open file or the
initial method. In this case, it passes the normal ‘forwards
into’ parameter to all methods it calls and to all methods they
call and so on.

6. GARBAGE COLLECTION

Java employs a garbage collection scheme which deallocates
memory when there are no more references to the objects
occupying it. We want to ensure that objects are only
garbage collected when they can no longer be accessed by
either forwards or reverse execution.

We do this by creating a special array of objects in the
client. When we push an object to the logging circular
buffer, we also add it to this array. The object will then be
spotted by the garbage collector and the memory it occupies
will not be freed.

It is essential that we do not put values which are not
objects, such as integers, into this array as this is likely to
crash the garbage collector. Thus, we keep track of which
operand stack slots and local variables currently contain

objects. Doing this does not have a significant overhead and
the logic involved is simple.

We do not need the local variable table to determine which
local variables are objects. The first few local variables are
the formal arguments to the method and we can deduce
which of these are objects by looking at the method’s
signature. The remainder initially contain trash and so
must initially be viewed as not containing objects. Only
when they are first initialized to values do we mark them
as containing objects or not.

7. MULTI-THREADING

We support multi-threading by a simple mechanism.
Each thread of the target program is run by a C thread in
Kaffe. For each such thread we create a corresponding
synchronized queue in the client. When an instruction is
passed to the debugger by the user, the client places the
instruction in the relevant queue. When the target thread next
queries its queue, it pops off the instruction and executes it.

The user interface has complete control over the direction
in which every thread is executing.

Each thread in the program being debugged is allocated
its own circular buffers and other necessary flags in the
modified Kaffe JVM.

7.1. Locks

The code contained in a synchronized method is protected by
a monitor, which can be recursively re-entered. A method
which is synchronized in the forwards direction is also
synchronized in the reverse direction. MONITORENTER
and MONITOREXIT are treated as mutual inverses.
Thus, the critical regions are the same in both directions.

7.2. Determinism

This scheme is not deterministic: subsequent forward runs
of the code are subject to different scheduling decisions.
However, the user has control over how the threads interact.
In particular one thread can be run forwards and another
backwards at the same time. It is for this reason that a
method running backwards is synchronized if the method
would be synchronized running forwards. There cannot be
two threads in a critical region at the same time whatever
the user does. We rely on the user to take threads back to
synchronization points when necessary.

When a thread terminates it can be helpful to hold it in
limbo, that is to catch it just before it terminates, so that it is
still possible to step back through it. This can be achieved by
setting a breakpoint on the return statement. This approach
will fail in the case that an exception terminates the thread.
In this instance, before the exception is dispatched, the user
is asked whether they wish to allow the exception to be
dispatched or to step back to the point just before it was
thrown.

Work has been done on deterministic replay of Java code,
see Section 12.3.
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TABLE 1. Benchmark results.

Linpack jBYTE (Z) jBYTE (R) Kopi

JVM/mode MFlops n1 n2 Index n1 n2 Index n1 n2 Time n1 n2

Java 1.4.0-rc (mixed) 96.8 1.0 1.77 1.0 1.34 1.0 2.64 1.0
Kaffe 1.0.6 JIT 25.7 3.8 1.41 1.3 0.819 1.6 1.86 0.70
Java 1.4.0-rc Interpreter 7.74 13 0.227 7.8 0.214 6.3 2.62 1.0
Kaffe 1.0.6 Interpreter 2.45 40 1.0 0.0486 36 1.0 0.0678 20 1.0 6.22 2.4 1.0
Debugger: no logging 1.84 53 1.3 0.0406 44 1.2 0.0580 23 1.2 7.27 2.8 1.2
Debugger: logging 0.345 280 7.1 0.0110 160 4.4 0.0162 83 4.2 16.45 6.2 2.6

8. NATIVE CODE AND EXTERNAL RESOURCES

Native methods can be divided into those which perform
some mathematical operation and those which access
external resources. Mathematical routines do not, in general,
need to be reversed as they have no side effects.

It is doubtful whether console I/O should be reversed, as
in debugging it can be useful to run the program backwards
over a command which reads input from the console, and
then give different input.

In Kaffe, file accesses which must be reversed go via
the calls: KOPEN, KCLOSE, KREAD, KLSEEK and
KWRITE. We intercept all such calls to find whether they
occurred on a thread currently in a logged region. If so,
we record any necessary data before the real call occurs.
KOPEN opens a file and is reversed by closing the file.
KCLOSE, when logged, is prevented from closing the file,
as on reversal we wish to keep the same file descriptor.
The reversal of KCLOSE does nothing. When KREAD or
KLSEEK is called, a record is made of the current position
in the file. These calls are reversed by seeking back to the
recorded position. When KWRITE is called, a note is made
on the logging circular buffer of all the data that is to be
overwritten. On reversal this data is written back to the file
in the correct location.

We have not implemented the reversal of calls which
delete files, manipulate the directory structure or involve
sockets, graphics or processes.

9. CASE STUDY: REVERSING A COMPILATION

We obtained the source and compiled code of version 1.5B
of the Kopi open-source Java compiler [13], which is written
in Java. The source code comprises just over 90,000 lines
of code including the comments. We started a debugging
session, set to log all of the Kopi classes and those of
java.util and java.io.

We then ran the compilation of a simple Java program,
which solves the Eight Queens problem, to the end and then
back to the beginning using roughly 20 Mbytes of logging
space. Having reached the beginning we ran the program
to the end again to check that all relevant states had been
properly reset by the reversal. We confirmed that the second

running of the compilation had generated correct output, that
is a class file which solves the Eight Queens problem.

By way of comparison, the Eight Queens program
itself can be run fully back to the beginning with about
2 Mbytes of logging memory and Linpack requires roughly
180 Mbytes. This large value for Linpack is a result of its
many, often nested, loops.

The ability to reverse the compiler is evidence of both the
completeness and the robustness of our debugger. A number
of exceptions are thrown during the compilation and they
are correctly reversed. At no point is too little or too much
pushed to or popped from the buffers.

10. PERFORMANCE MEASUREMENT

We benchmarked our debugger using the Linpack and
jBYTEmark benchmarks. For background information on
speed performance issues associated with the Java language,
see [14]. Table 1 shows the results of the tests, as reported by
each benchmark, normalized with a fast dynamic compiler
taken to be 1.0 (the n1 column) and normalized with the
unmodified Kaffe interpreter taken to be 1.0 (the n2 column).
All of the Linpack measurements were averages over 10
consecutive runs. The jBYTEmark benchmark consists of
several integer tests (the Z column) and several floating point
tests (the R column). The index value is, in each case, the
geometric mean of the results of the tests. The Kopi column
is a measurement of the time taken, in seconds, for the Kopi
compiler to compile the client part of our debugger.

Thus, logging is roughly 4 to 7 times slower than the
Kaffe interpreter, which is in turn roughly 20 to 40 times
slower than a recent dynamic compiler, when running the
benchmarks on our machine. The measurements were taken
on a 1.00 GHz Pentium III with 256 Mbytes of memory,
running Linux.

The ‘no logging’ value refers to executing Java code in
methods before the initial method is reached, if that mode
is being used. The ‘logging’ value refers to executing Java
code which is actually debugged.

If debugging a long running program and wishing to
debug a method which is not called for a long time, the user
can set that method to be the initial method. The ‘Debugger:
no logging’ value was obtained by specifying a non-existent
method as the initial method when running the benchmark.
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There is still a slowdown in this case, because each method
must be checked, on first entry, to see whether it is the initial
method.

Various optimizations are employed, generally to improve
speed at the cost of increased space usage. Information that
must be generated which is method specific is generated on
the first call to the method and stored for future calls.

Ultimately, however, this technique of reverse execution
places an overhead on individual bytecode instructions.
This is because some administration is required in the
functions which push values to the circular buffers.

This overhead is felt most when running a program
which frequently uses low-level bytecode instructions.
An instruction like NEW, however, takes a relatively long
time and the overhead of logging any lost data is small
in comparison. Linpack makes use of very few high-level
instructions and thus performs worst under our debugger.
jBYTEmark uses more high-level instructions and performs
better. The effect of logging is far less severe with a program
like the Kopi compiler. This is because the code is high-
level and involves very expensive operations such as file I/O.
Thus, our debugger is most practical for debugging high-
level object-oriented code and least practical for debugging
numerically intensive code.

Unlike checkpointing techniques, the extra memory usage
of our scheme does not depend on the amount of memory
normally used by the target.

Tolmach and Appel [6] report timings of their debugger
which can reverse execute Standard ML code. They give
measurements with the measurement corresponding to an
optimizing JIT compiler normalized to 1.0. Their interpreter
value is 52, their debugging without logging value is 2.3 and
their actual debugging value is 2.7. This suggests that our
logging method is 30 to 100 times slower than Tolmach and
Appel’s checkpointing method. Unlike Tolmach and Appel
we do not, however, incur any unusual compile-time costs
and we give the user considerable control over how much
extra memory is used when debugging. The differences
between the source languages SML and Java may impact
on the efficiency of various approaches.

11. FUTURE WORK—JIT COMPILER
INTEGRATION

It may be possible to JIT compile those methods which are
called before the initial method and to only interpret those
methods which we wish to log and step through. This would
make the tool considerably more practical.

12. RELATED WORK

12.1. Instrumentation

Tolmach and Appel [6] described the use of instrumentation.
The abstract states that, ‘Traditional source-level debuggers
for compiled languages actually operate at machine level,
which makes them complex, difficult to port, and intolerant
of compiler optimization’.

Despite this, our debugger operates at the virtual machine
level, although this is transparent to the user who is
able to inspect variables using the names in the source
code (see [15]) and to step through the code a source code
line at a time. Java’s use of a virtual machine with the same
bytecode for all platforms removes the porting problem.
That is to say, the problems highlighted by Tolmach and
Appel do not apply to a virtual machine in the same way that
they do apply to native code. Also, Java is compiled with
each line of the source code corresponding to a contiguous
block of bytecode instructions, which is necessary for the
LineNumberTable attribute to be generated. The debugger
is tolerant of many of the compiler optimizations used by
Java compilers and instructing the compiler to generate full
debugging information should ensure that no problematic
optimizations occur. Compiled Java class files usually
contain line number information.

12.2. Inverse programs

Biswas and Mall [7] developed the idea of the inverses
of some statements and hence the inverse of a program.
Their approach is to keep a trace file, which stores data
on the flow of control and lost states after an assignment
and an inverse program which contains the inverses of those
statements for which an inverse exists. In the examples
given in the paper, relatively few of the statements in the
source code have a corresponding statement in the inverse
program—generally it is increment, decrement and other
arithmetical statements.

Our implementation uses the technique of keeping a
record of the flow of control and lost data and for some
instructions we implement inverse instructions.

They do not report any benchmarking data on their
debugger.

12.3. Multi-threading

Choi and Srinivasan [16] have developed a tool which
allows a run of a multi-threaded Java application to be
deterministically replayed, which is useful in debugging.
The tool records thread scheduling information during the
first run of the program, which it uses to reproduce the
program’s behaviour during a replay.

12.4. TraceBack

TraceBack [17] is a commercial product, which allows Java
code to be deterministically replayed, in both directions,
after a failure. The technique involves instrumentation of
the bytecode file. One advantage of this is that the debugger
is not tied to a specific virtual machine. The tool builds a
graph of all possible execution paths and uses this to decide
where to insert ‘agents’ in the code which keep track of the
flow of control. When a failure occurs, the user can create
a ‘snapshot’ of that execution and then step backwards and
forwards within it.
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13. CONCLUSIONS

We used logging as our main approach, although the saving
of the operand stack and local variables on exit from a
method resembles checkpointing.

Checkpointing is characterized by the need to store an
amount of data of the order of the memory footprint of the
target in order to step back any distance. Certain techniques
can be used to reduce this and for a program with small
memory requirements this is also acceptable.

With our technique, the distance through which the user
can step back is roughly proportional to the size chosen for
the circular buffers, regardless of how much memory the
target program uses. As we stated above, the user has control
over the size of the buffers.

In the situation of a program requiring a large amount
of memory, a checkpointing debugger can only store a few
checkpoints. In this case, checkpointing involves a tradeoff
between the distance that we can step back and the speed of
reverse execution, determined by how often we checkpoint.
If we checkpoint frequently we can step back quickly, but
not very far.

With our technique the speed of reverse execution is
constant and we determine how far we can step back by the
size of the buffers.

We believe that logging is an elegant technique and that
there are many instances where it is less wasteful than
checkpointing. The more usual uses of native methods and
external resources can be catered for without checkpointing.

We have shown that a simple and intuitive scheme for
reversing instructions which only operate on the stack can
be extended to the entire JVM language.

Viewed as a debugger for pure Java, we find our
tool useful for developing Java applications. (It is also
quite enjoyable to experiment with stepping backwards and
forwards, particularly with multi-threaded programs.) The
reader may wish to obtain our debugger which is available
from http://www.dcs.ed.ac.uk/home/jjc/.
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