
Fair Exchange

Henning Pagnia1, Holger Vogt2 and Felix C. Gärtner3

1University of Cooperative Education, Mannheim, Germany
2Department of Computer Science, Darmstadt University of Technology, Germany

3École Polytechnique Fédérale de Lausanne, Switzerland

Email: fcg@acm.org

The growing importance of electronic commerce and the increasing number of

applications in this area has lead research into studying methods of how to per-

form safe and secure online business transactions over the Internet. A central

problem in this context is that of fair exchange, i.e., how to exchange two elec-

tronic items in a fair manner. We give a general introduction into the research

area of fair exchange and discuss several formalizations of fairness. We find that,

although a considerable number of fair exchange protocols exist, they usually

have been defined for special scenarios and thus only work under particular as-

sumptions. Furthermore, these protocols provide different degrees of fairness and

cause different communication overhead. To alleviate this, we present a generaliz-

ing framework defining a suite of protocol modules which allows us to implement

different fair exchange protocols. Depending on the properties of the exchanged

items an appropriate fair exchange protocol can be selected and applied. Our

study is accompanied by a comprehensive survey of the relevant literature.

Received month date, year; revised month date, year

1. INTRODUCTION

“Electronic commerce” (short: e-commerce) via the In-
ternet is one of the most important markets today and is
expected to flourish for at least the next decade. While
there is still a notable fraction of companies that utilize
the Internet solely for advertising and company-internal
communication, some have started to use the network
for the full range of business transactions including the
sale of goods and services. This is particularly attrac-
tive in the case of digital services which can be entirely
rendered via an electronic network. Examples for such
services are the delivery of video or audio data, the elec-
tronic purchase of computer software, the transfer of
digital money, the writing of a digital receipt, or query-
ing a database, but also the provision of telephone lines
or Internet access.

Several business models have been adopted, for ex-
ample subscriptions are in common use. Here, the cus-
tomers must subscribe to the service and pay a fixed
amount of money on a regular basis, e.g., monthly, for
using the service. Alternatively, pay-per-use can serve
as a different business model having the advantage that
customers do not need to tie down to a specific service
provider and potentially even allowing them to keep
their anonymity.

The advantages of pay-per-use are so evident that
we expect the broad establishment of pay-per-use ap-
plications for digital services in the near future. Proto-
cols supporting this must be carefully constructed be-
cause they have to take special properties of the di-

verse services into consideration. A common property
of many digital services is that they normally cannot
be revoked, i.e., once the service has been granted the
service provider has no effective means to force the re-
cipient to return it without keeping a private copy. This
is particularly crucial if the two business partners reside
in different countries where different regional law reg-
ulations apply. Therefore, the exchange of the digital
services (with the payment being one of them) should at
best be performed simultaneously in order to guarantee
fairness for both involved parties. Unfortunately, real
simultaneousness cannot be achieved because in gen-
eral, granting a digital service comprises the transmis-
sion of several bits so service delivery is not atomic.
This also implies that delivery always requires a cer-
tain amount of time and, hence, during the exchange
a network failure might occur or either party might in-
tentionally interrupt the transmission at any time. The
exchange process might end unfair if in such a situation
one party has already completed service delivery while
the other has not.

As an example consider two mutually anonymous
parties wanting to simultaneously disclose their iden-
tity. For this, they can exchange digital identity cards
which are electronically signed by a trusted issuer in
order to prevent unauthorized modification. In order
to ensure fairness (i.e., simultaneousness) a third party
must be involved which may at first collect both iden-
tity cards and forwards them subsequently. Since both
business partners must trust the third party to perform

The Computer Journal, Vol. 00, No. 0, 0000

2 H. Pagnia, H. Vogt and F. C. Gärtner

correctly and honestly, the third party is referenced to
as a trustee. In order to reduce the trustee’s load dif-
ferent protocols have been proposed. A special class of
optimistic protocols [1] incorporates the trustee only in
case of failures or conflicts. Others weaken the degree
of fairness which is achieved.

An additional problem occurring in this context is
how each party can check if the other has correctly de-
livered the service and whether it is the desired one.
In our example, each party could betray by sending
not its identity card but something else (e.g., today’s
weather forecast). If the checking for correctness lies
in the responsibility of each party then fairness cannot
be guaranteed since a honest party unveils its identity
while a malicious party does not. With an active trustee
as described above the problem can easily be solved
by letting the trustee perform the necessary correctness
checks (i.e., verifying whether the exchanged items are
valid identity cards). However, still a party might de-
liver somebody else’s valid identity card instead of its
own. In order to protect against this fraud, a public key

infrastructure and a challenge-response protocol can be
utilized. The example demonstrates that correctness
checks play an important role to fair exchange and that
protocols intended to solve the fair exchange problem
should not leave them unconsidered.

The fair exchange protocols which have been pre-
sented in literature are diverse and largely incompara-
ble even in the amount of fairness they offer. We will
show that many existing protocols (including optimistic
ones) can be understood as a composition of different
protocol modules with distinct functionality. By sep-
arating the concerns and identifying these modules we
are able to construct a general framework for modeling
fair exchange protocols and thus give a better under-
standing of the fair exchange process itself. We thereby
focus on the general interaction pattern of these pro-
tocols rather than the cryptographic primitives used to
implement them.

The remainder of this article is structured as follows.
We state our system assumptions, give some informal
definitions of fair exchange, and discuss special prop-
erties of what is exchanged in Section 2. In the same
section, we examine how items can be specified and how
their validity can be checked. Subsequently, in Section
3 we describe several approaches to rigorously formalize
the fair exchange problem and discuss under which as-
sumptions it can be solved. In Section 4, we introduce
a generalizing framework which allows us to implement
several different fair exchange protocols. Then we can
select the appropriate protocol depending on the prop-
erties of the exchanged items and on the required fair-
ness level. After providing an extensive review of the
work relevant to the context of fair exchange in Sec-
tion 5, we conclude our paper with a summary and a
discussion of our approach in Section 6.

2. DEFINING FAIR EXCHANGE

In this section we will informally define the major terms
used in this paper. Many of these terms will be formal-
ized in Section 3.

2.1. System Assumptions

A fair exchange takes place within a network of comput-
ers which are connected e.g., through the Internet. We
model this situation as a distributed system consisting
of a set of processes which can send and receive messages
between each other over reliable FIFO communication
channels. This means that mechanisms exist which en-
sure that no messages are lost or altered in transit and
that they are eventually delivered to the destination
process. (Under certain reasonable assumptions reli-
able channels can be implemented on top of unreliable
channels [2].) The delays introduced by these mecha-
nisms among other reasons justify the assumption that
the system is asynchronous [3] meaning that there is no
bound on the message delivery delay or on the relative
processing speeds of the processes.

A problem specification is a high-level description of
the required behavior of the processes involved. Infor-
mally spoken, a specification states under which condi-
tions certain process events must never occur and under
which conditions other events must eventually occur. A
protocol is a low-level description of the actual system
behavior. It is a precise description about which ac-
tions a process should perform in response to actions
of other processes. A particular execution of a proto-
col satisfies a specification if the execution adheres to
the event descriptions of the specification. Due to the
nondeterminism of the network a protocol may have
several different executions. A protocol satisfies (or im-
plements) a specification if all its executions satisfy the
specification.

Fair exchange protocols usually involve the use of
symmetric and asymmetric crypto systems [4] allowing
to encrypt, decrypt or digitally sign data. We assume
that the communication channels are secured through
appropriate means that ensure integrity, confidential-
ity and authenticity of information while in transit and
that protocol messages contain unique identifiers and
sequence numbers to prevent replay of messages or parts
of them.

We model malevolent parties involved in the fair ex-
change by processes which do not follow the protocol
they are supposed to follow, i.e., they might arbitrarily
stop executing steps or send corrupted messages. How-
ever, it is assumed that malevolent parties are not capa-
ble to encrypt, decrypt or digitally sign messages unless
they have access to the necessary keys. Non-malevolent
parties do not crash and behave according to their pro-
tocol.

The Computer Journal, Vol. 00, No. 0, 0000

Fair Exchange 3

2.2. Informal Definitions

We now give an intuitive understanding of the fair ex-
change problem. We follow the presentation of Asokan
[5] with modifications made by Pagnia and Vogt [6]. We
assume two participating parties A and B. Each party
starts with an electronic item i and a description d of
what that party would like to receive in exchange for
i. In the notation we will identify the items using sub-
scripts, i.e., iA is A’s item and dB is a description of B’s
desired item.2 We assume that there exists a verifica-
tion function which takes an item and a description and
returns the value true only if the item matches the de-
scription. There are two possible termination states of
the protocol, either success or abort . Both parties have
means to check whether and in which state the protocol
has terminated.

A fair exchange protocol is a protocol which imple-
ments the following three requirements:

1. (Effectiveness) If both parties behave according to
the protocol, both parties do not want to abandon
the exchange and both items match the description
then, when the protocol has completed, A has iB
and B has iA and both reach a success termination
state.

2. (Termination) A party which behaves according to
the protocol will eventually reach either a success

or an abort termination state.
3. (Fairness, preliminary definition) If at least one

party does not behave according to the protocol or
if at least one item does not match the description,
then no honest participant wins or loses anything
valuable.

The formulation of the Effectiveness requirement is
rather delicate since it is only required to hold “if both
parties do not want to abandon the exchange” [7]. This
precondition is necessary because in asynchronous sys-
tems messages can be delayed for an arbitrary (but fi-
nite) amount of time. Hence, at any time it is not possi-
ble, say for a well-behaving party A, to distinguish the
two cases where either (a) party B is correctly follow-
ing the protocol but the network is slow, or (b) B has
stopped to follow the protocol overall [8]. Hence, the
precondition allows to define a very weak notion of a
timeout in asynchronous systems with the risk that ex-
changes do not succeed because parties “time out” too
early.

The same reasons (i.e., asynchrony) may lead to a
different notion of termination, which we call weak ter-

mination. Briefly spoken, weak termination means that
the final state of the exchange of, say, party A depends
on an action performed by party B. Effectively, this
means that if B does not perform this action, A will
never be notified. Hence, A will never “know” the final
outcome of the exchange. For example, consider the

2Note that Asokan [5] uses dA to denote the description of the
item desired by B.

case where A has started an exchange with B and is
waiting for a message from B upon which the protocol
outcome for A depends. As long as A is still waiting,
both outcomes (success or abort) are still possible. If
A never receives this message, the outcome should be
abort. But due to asynchrony, A cannot decide whether
a message from B will arrive or B has stopped to par-
ticipate in the exchange. Due to this fact, to make the
correct termination decision, A would have to wait for-
ever, which is undesirable. Note that A still has more
guarantees than “no termination”: For example, if A by
default decides on abort and changes to success in case
a message is received, A can still rely on the fact that
eventually its decision will be correct. With “no ter-
mination”, even this is not guaranteed. Obviously, this
weakened version of termination should be avoided if
possible. In general, the protocols described in this pa-
per achieve the stronger notion of termination. If not,
we will discuss the reasons why this may be sufficient.

Definitions of fair exchange often differ in their un-
derstanding of the fairness requirement. For example,
Asokan [5] distinguishes between strong and weak fair-
ness. The fairness requirement described above is called
strong fairness. For weak fairness it is required that —
in case of a failed exchange — either party can prove
that it has behaved correctly, i.e., it has followed the
prescribed exchange protocol. As part of an external
dispute, the proof must be shown to an external arbiter,
e.g., a court of justice, who has the power to establish
fairness, usually by forcing both parties into coopera-
tion. The problem with this is that in most countries it
is still unclear what such a proof might be in order to
be acceptable as evidence in a lawsuit.

In any case, a lawsuit is expensive and its outcome
might be rather uncertain. Therefore, it is desirable
to resolve as many conflicts as possible within the ex-
change system itself. If the arbiter is sufficiently pow-
erful it can automatically process the proofs and decide
how to proceed. The advantage of this is that conflicts
are now automatically processed within the exchange
system, thus increasing the degree of fairness.

In extension to the definitions of Asokan [5], we pro-
pose the following hierarchy of fairness guarantees [9]:

F6: Fairness can be guaranteed automatically by the
system without further communication with the
other party.

F5: Fairness can be guaranteed automatically by the
system with eventual cooperation of the other
party.

F4: Fairness can be achieved automatically by the sys-
tem through providing a compensation for a suf-
fered disadvantage.

F3: Fairness can only be guaranteed outside of the sys-
tem by an external dispute without further coop-
eration of the other party.

F2: Fairness can only be guaranteed outside of the sys-
tem by an external dispute with eventual coopera-

The Computer Journal, Vol. 00, No. 0, 0000

4 H. Pagnia, H. Vogt and F. C. Gärtner

tion of the other party.
F1: Fairness can only be achieved outside of the system

by an external dispute by providing a compensa-
tion for a suffered disadvantage.

F0: No fairness.

The fairness definitions F6 to F4 are supposed to be
stronger than the others because conflicts can be re-
solved automatically without the need for a subsequent
external dispute. In general, we would like to achieve
a level of fairness which is as high as possible in the
hierarchy. However, higher levels of fairness are more
difficult to ensure.

Strong fairness by the definition of Asokan [5] corre-
sponds to F6. As Asokan does not make any assump-
tions about the willingness of the parties to cooperate,
F5 can also be regarded as strong fairness in the sense
of Asokan [5]. Gärtner et al. [10] call F5 eventually

strong fairness. The difference between F6 and F5 lies
in the additional assumption made about the partici-
pants, i.e., they can be eventually forced to cooperate.
For example, if a participating party stores all its data
on a remote computer which is managed by an inde-
pendent service provider, it may be possible to techni-
cally enforce access to this data by “official” means (i.e.,
through a special message signed by the arbiter). In
general, fairness F5 can be achieved by using a trusted
computing environment [11] on the user’s machine. The
term “eventual cooperation” still makes sense in asyn-
chronous systems if the help of such official means is
not called for immediately.

The categories F3 and F2 match Asokan’s weak fair-
ness definition. The distinction between F3 and F2 is
similar to that made between F6 and F5 only that means
outside of the technical fair exchange system are refer-
enced. For example, consider the case where a misbe-
having participant is brought in front of court and is
sentenced to pay for a received item. If the partici-
pant now reluctantly pays the debts, then fairness F2 is
achieved since the assumption of “basic cooperation” is
made about a misbehaving party. However, even if this
assumption is not made, it is possible to collect debts
in practice even without cooperation of the other party.
For example, calling a bailiff (or the sheriff) ensures
fairness F3.

The categories F4 and F1 describe a different fair-
ness concept in which it is assumed that a non-delivered
item can be substituted by a different one (e.g., a pay-
ment) which compensates the loss. Because this does
not match the original intention of the exchange process
we have ranked compensation as a method to achieve
fairness weaker than the others.

2.3. Properties of Exchanged Items

Certain item properties can be exploited by fair ex-
change protocols. Some of these properties refer to
the item descriptions which participating parties must
give before engaging in fair exchange. Before discussing

these properties and ways on how to ensure that items
in fact have these properties in Section 2.4, we will first
consider a different class of properties, namely those
that can help the third party to resolve conflicts. In
this section, we describe some of these properties in
more detail, mainly generatability and revocability [5].

2.3.1. Generatability

A generatable item is an item which can be generated
by the trustee in case the receiving party can prove that
it has behaved correctly. Depending on the effectiveness
of generatability we distinguish:

Strong generatability: It is guaranteed that the
trustee will be able to generate such an item.

Weak generatability: The trustee can try to gener-
ate such an item, but he may fail in generating it,
if a participating party has misbehaved (e.g. by
sending a garbled message). If this is the case, the
trustee will always detect such a misbehavior and
he will be able to provably determine the cheating
party.

The difference between strong and weak generatabil-
ity is that the strong notion always ensures successful
item generation whereas weak generatability can only
succeed, if nobody has misbehaved. Nevertheless weak
generatability can still support conflict resolution, if
just one party misbehaved: As fairness can only be pro-
vided to honest parties (i.e., parties which follow the
specified protocol), the trustee is allowed to disadvan-
tage a provably misbehaving party in order to restore
fairness for the honest party.

We now give some examples to illustrate our defini-
tion of strong and weak generatability. These examples
show different methods to make arbitrary items gener-
atable. In the first two examples strong generatability
is achieved, while the last two examples result in weak
generatability.

1. A party forwards a copy of its item to the trustee
who checks it against the item description and
stores it for a possible subsequent dispute. The
party is provided with a signed receipt which can
be presented to any other party as a proof that the
item is generatable by the trustee.

2. A party forwards a copy of its item to the trustee
who checks it according to a given item descrip-
tion. Then the trustee encrypts the item and signs
the encrypted item together with the description.
Finally the party is provided with the signature,
the encrypted item and the decryption key. Dur-
ing an exchange the party can use the encrypted
item and the description together with the signa-
ture as a proof that the trustee is able to generate
the item by decrypting the encrypted item.
The advantage of this approach compared to the
first one is that the trustee only needs to store the

The Computer Journal, Vol. 00, No. 0, 0000

Fair Exchange 5

decryption key for a possible dispute. This signif-
icantly reduces the storage space required at the
trustee.

3. A party encrypts its item with a random key. This
key is then deposited at the trustee who returns
a receipt for it, which the party can from now on
use as a proof for the weak generatability of the
item. Note, that this receipt is not a proof for the
strong generatability of the item, since it cannot
be guaranteed that the encrypted item can suc-
cessfully be decrypted with the key which is stored
at the trustee.

4. A party encrypts its item with a random key, en-
crypts this random key with the trustee’s public
key and signs both ciphertexts as a commitment
that the trustee will be able to decrypt these val-
ues. The ciphertexts and the signature are then
forwarded to the other party as a proof for the
generatability of the item. The receiving party can
neither decrypt the random key nor the item, but
the trustee can do so if the encryption has been
performed correctly. This results in weak gener-
atability, because — if the item generation failed
— the trustee can at least detect who is responsi-
ble.

These examples manifest a tradeoff between the
strength of generatability and the burden placed on
the trustee: The burden on the trustee decreases from
method 1 to method 4 whereas the generatability prop-
erty is weakened. While in method 1 the trustee must
store the entire item, he only needs to store the de-
cryption key in method 2 and 3. Method 4 is the most
efficient one in terms of storage space and communica-
tion: the trustee can use a single key — namely the
own private key — for decrypting any item which was
made generatable and the trustee is only contacted in
the case of a failure.

It is also possible to utilize some specific item prop-
erties in order to make items generatable. Especially
in order to make digital signatures strongly generatable
certain techniques have been developed which are re-
ferred to as verifiable escrow [12, 13]: A signature can be
encrypted with the public key of the trustee and sent to
the other party together with a cryptographic proof that
really a correct signature was encrypted. Then the re-
ceiver knows that the trustee can decrypt (and thus gen-
erate) the signature. Often this approach is also called
“verifiable encryption” [12, 14–17]. A different, quite ef-
ficient implementation of verifiable encryption relies on
off-line coupons [13]. These coupons are retrieved from
the trustee in advance and simplify the verification that
the correct signature was encrypted. Another approach
for verifiable escrow [18, 19] is based on convertible sig-
natures [20]. Here an undeniable signature, which is
only interactively verifiable, can be converted to an or-
dinary signature by a trustee, if the customer asks the
trustee to generate this signature.

Special item properties also help to generate signa-
tures on a contract [7]: The trustee may be granted
the right to issue a replacement for a signed contract.
If this replacement is later equally accepted as a valid
contract, the trustee can generate a missing signature
on a contract by simply generating this replacement.

There are other items with special properties which
are relevant to generatability, for example payments
based on electronic coins (e.g., ECash [21]). Basically,
such a payment consists of a signature from the issuing
bank and thus it can be made generatable as described
for digital signatures using verifiable escrow. However,
this may not be enough to achieve strong generatability:
In an on-line payment system like ECash a payment is
only valid, if it contains a valid signature, which has not
been deposited in another payment before. This means
that even though the signature is strongly generatable,
the generation of the payment might fail, if it has been
deposited earlier. Then weak generatability can only be
achieved, if the bank can tell the trustee whether the
customer or the merchant tried to cheat by spending
the coins twice.

2.3.2. Revocability

An item is called revocable if a trustee can revoke it in
case it has sufficient evidence to do so. Thus, revoca-
tion can be used to undo an exchange that cannot be
completed. We distinguish two different forms of revo-
cability:

Strong revocability: It is guaranteed that the trustee
will be able to revoke such an item.

Weak revocability: The trustee can try to revoke
such an item, but he may fail in revoking it. How-
ever, such a failure proves that the weakly revoca-
ble item really has been delivered to the party that
desired this item.3

It should be noted that items must not be revoca-
ble by a party itself. Otherwise, after a correctly ter-
minated fair exchange, one of the parties could easily
revoke the delivered item and thus gain an unfair ad-
vantage over the other party. The consequence is that
the exchange of such items can never be regarded as
fair.

The following examples illustrate the difference be-
tween strong and weak revocability.

1. Several payment systems (e.g., credit cards) sup-
port revocation of payments. To achieve strong
revocability a payment system should only permit
revocation, if a trustee requests to do so.

2. In practice many payments will only be revocable
for a certain time period (e.g., for some weeks).
After that the revocation will fail, which means
that only weak revocability is achieved, if it is not

3This latter property is sometimes called non-repudiation of
receipt [22].

The Computer Journal, Vol. 00, No. 0, 0000

6 H. Pagnia, H. Vogt and F. C. Gärtner

guaranteed that revocation will always be started
in time.

3. Digital certificates may grant its owner certain
rights: Travel agencies may sell their customers
digital tickets that grant them a seat on a cer-
tain flight. If only the trustee (maybe in coopera-
tion with the airline) can revoke such a ticket, we
achieve weak revocability, because revocation will
fail after the customer has taken this flight. But
then the trustee has a proof that the customer has
to pay for this flight.
This example also applies to other scenarios, where
a customer buys a right to use some service (e.g., a
cinema ticket, access to a database, etc.). However,
it is essential that only the trustee can revoke such
a right of a customer.

2.3.3. Compensation

Compensation means that a trustee will be able to pro-
vide a participant with compensation instead of the ex-
pected item. It is a necessary requirement that both
parties estimate the value of the expected item and the
compensation to be equal. Then the exchange will still
be fair, if compensation is delivered instead of the ex-
pected item.

Compensation can be viewed as a special form of gen-
eratability, as the trustee is able to generate something
of equal value. However, there is one big difference to
generatability: In case of compensation there is the dan-
ger that the participant has received the item, but ad-
ditionally asks for compensation. This may be unfair, if
the participant can benefit from utilizing both, the item
and the compensation. In contrast, this problem does
not exist for generatable items, as their delivery is idem-

potent meaning that it makes no difference whether the
item is received once or multiple times.

2.3.4. Time-Sensitivity

In practice, items which lose their value over time exist.
For example, a birthday present should be delivered till
the birthday party starts, the TV program for Monday
is useless on Tuesday, and only the most recent stock
market information will be useful. According to Asokan
[5] such items are called time-sensitive.

The difficulty with time-sensitive items is that no-
body but the receiver knows when a sent item really
arrived. Thus the receiver may claim that there was
some delay until he got the item and that it was already
useless then. But the receiver is not able to convince
somebody else that the item arrived too late — no mat-
ter if this is true or not. Even if a trustee is involved, he
will not be able to decide correctly whether there was
some delay that made the item useless or not. If the de-
livering party has to resend an updated version of the
time-sensitive item, then this may be unfair, if the re-
ceiver is able to utilize both items. Again we see that
the exchange of items, whose transmission is not idem-

potent, can lead to some problems. Dealing with time
sensitive items in asynchronous systems may seem im-
possible because due to arbitrary message delays there
can be no guarantee that time-sensitive items are still
useable when they arrive. However, dealing with such
items may still be possible. The idea is to separate re-
ceiving the item over the network and delivering it to
the user by utilizing trusted hardware on the user’s ma-
chine [23, 24]. Before delivery, the user is asked whether
the item still has value to him. If yes, the item is de-
livered immediately, as only local communication with-
out significant delay is required. Otherwise the item is
discarded. As the use of secure and tamper-proof hard-
ware is a research topic of its own, we will not consider
time-sensitive items in the rest of this paper.

2.4. Item Validation

Apart from “technical” properties (like generatabil-

ity which enables conflict resolution), exchanged items
must also satisfy the item description given by the par-
ties at the beginning of the exchange. Specifying these
properties as part of the description and validating the
items against it is an important but often neglected
problem which is inherent to all exchange protocols.

Validation means to check that the items are “as ex-
pected” and is the basis for any effective business trans-
action, even non-electronic ones. In order to be able to
do this it is important that a sufficiently detailed de-
scription exists for both items. For some kind of items,
for example digital money or digital signatures, the val-
idation is rather simple. Another example is a widely
used software package which can be checked by comput-
ing a cryptographic hash value and comparing it against
a trusted reference value which is publicly available [25].
Problems with this solution however can occur if the
software contains a serial number or an individual wa-
termark for copyright protection. Other items too are
difficult to check: For example, a common description
of a software package usually contains a list of features
which cannot be checked during a formal verification
process. Promises like “high performance” are not pre-
cise enough in order to be verified formally and easily
cause overexpectation. Therefore, for an accurate vali-
dation a complete and formal description is necessary.
Unfortunately in many cases this will be impossible to
derive, in most other cases it will be very costly. How-
ever, we assume that for the items a sufficiently accurate
description exists against which they can be verified.

A straightforward solution to the fair exchange prob-
lem is based on the concept of an active trustee. If
such a trustee is available, the exchange can proceed
as follows: Both parties, A and B, send their item to
the trustee. The trustee checks whether A has sent the
item which B wants to have and vice versa. If both
checks succeed, the trustee forwards A’s item to B and
B’s item to A. This type of protocol is a fair exchange

protocol with an active trustee.

The Computer Journal, Vol. 00, No. 0, 0000

Fair Exchange 7

The validity check of the items must be performed by
the trustee in order to ensure fairness. But note that be-
cause the items in consideration for exchange will usu-
ally be different ones in each instance of the problem,
the activity of checking the items will be different every
time the trustee is used. Thus, prior to executing the
exchange, both A and B must indicate to the trustee
how he should check the other’s item for validity.

In the context of mobile code, one solution is for both
A and B to devise a specific check method which takes
the other’s item as an input and returns true only if the
item actually has the desired features. This approach is
rather flexible because it enables to check an item in all
ways allowed by the underlying programming language.
For example, it is possible to calculate cryptographic
checksums over the entire item or over parts of it, it
could compare parts of the item with some test data,
or it could perform file format checks (e.g., “is the data
a JPEG image?”).

Subsequently, A devises a method checkB and B de-
vises a method checkA. Both A and B send the code of
this methods to the trustee before the fair exchange
takes place. Within the fair exchange protocol, the
trustee uses checkB to check the item sent by B and
checkA to check the item sent by A. Only if both meth-
ods return true the trustee will complete the exchange.

The problem with this solution stems from its flex-
ibility: If arbitrary code is allowed within the check
routines, it is possible to cheat. To understand this,
imagine that A devises a routine checkB(item) which
first sends item to itself (i.e., to A) and then returns
false. As a result, the exchange is in danger of end-
ing in an unfair situation where A has obtained B’s
item but B has not received A’s item. Consequently, it
is necessary to guarantee that nothing “bad” happens
within the check routines.

The “bad things” which may happen refer to the pres-
ence of information flow from inside the check routine
to another party. This should include information flow
through hidden channels [26], which is particularly diffi-
cult. In some contexts, it is even necessary to have infor-
mation flow from inside to outside of the check routine.
For example, if one item consists of electronic money,
it is impossible to prevent double spending without on-
line access to a bank. This means that the check routine
must make an online query when checking the money.
In this case we can only ensure that the amount of in-
formation flow out of the check routine is bounded.

It is sometimes useful for a party to run the other
party’s check routine on an item before engaging in the
fair exchange to prevent selling an item which is inap-
propriate in advance. However, a problem exists if a
party wants to perform “semantic” checking by using
heuristics. Instances of this problem are, e.g., plau-
sibility checks on a credit card number or simple spot
checks on mass-produced articles. Consider for example
the following scenario: A is looking for a text contain-
ing a set of keywords and so it devises a method checkB

which simply scans the item for these words. The code
of this method is sent to B so that B can validate that
nothing bad happens therein. But knowing the code of
checkB, B can easily fool A by piecing together an arbi-
trary text containing these keywords. While not being
unfair in a formal sense, the disclosure of its customized
check routine lowers a party’s confidence in the quality
of the received item.

Next we describe three possible solutions for the prob-
lem of item checking. Thereby we make it possible to
select the best solution for a specific scenario.

2.4.1. Parameterized check routines

One solution is to use a predefined check routine from
a specialized library. For example, the trustee could
provide a set of publicly accessible methods, e.g., to
check whether a file represents a valid JPEG image. In
this case either party could simply send the identifier of
the desired check routine to the trustee.

Alternatively, the trustee could offer a generic check
routine which is parameterized with a predefined range
of values. This could be, for example, a routine which
scans the input for a set of keywords (the parameter
of the routine would be the set of words). Extending
this idea, the generic check routine would take an ex-
pression in a formal “item description” language as an
argument. A drawback of this approach is that this re-
quires the definition of a rather complex language which
is sufficiently expressive in order to allow the check for
all relevant item properties.

2.4.2. Syntactic Check

Instead of using generic check routines, A and B could
still be allowed to write their own methods. In this case
it must be possible to automatically verify that their
respective routines play according to the rules. For
example, by automatically scanning the parties’ code
before invoking it, it is possible to check whether a
method contains the invocation of a send command.
If no other way exists to smuggle information out of the
check function, then fairness can be guaranteed. How-
ever, for leaking information usually other possibilities
than using the send command exist. Fraudulent parties
are likely to garble their harmful actions within inno-
cent looking code, and preventing the parties from per-
forming such malicious actions solely by using syntactic
checks is a difficult task.

2.4.3. Sandboxing

A more powerful solution for verifying that the check
routine well-behaves is to monitor its execution. Any
attempt to execute an unfair command will be recog-
nized at run-time. It will result in an immediate termi-
nation and rejection of the check routine. This approach
for protecting the participating parties from malicious
code is comparable with the sandbox model for Java ap-
plets. Compared to the syntactic check, sandboxing is

The Computer Journal, Vol. 00, No. 0, 0000

8 H. Pagnia, H. Vogt and F. C. Gärtner

more immune against innocent looking, obfuscated code
which is intended to deceive the other party. Another
advantage of this security concept is that the timely ter-
mination of the check routines can also be monitored.
If the execution time exceeds a previously defined time
limit, the trustee stops computation and aborts the ex-
change. A limitation of sandboxing is its flexibility:
Any command must either be allowed or forbidden. If
for example communication is forbidden, then it is im-
possible to obtain certificates from a key server.

The solutions again manifest a complex tradeoff be-
tween (1) the level of confidence attainable, (2) the flex-
ibility of describing desired item properties, and (3) the
complexity of “verifying” the check routines. Parame-
terized check routines and a syntactic check are proba-
bly the methods most easily implementable in practice.
However, they either lack flexibility in describing item
properties (parameterized check routines) or confidence
in the “safety” of the check routine (syntactic check).
Sandboxing on the other hand offers both these advan-
tages but requires complex mechanisms and program-
ming language support.

2.5. Summary

This section has introduced the fair exchange prob-
lem as the combination of effectiveness, termination
and fairness properties. From the literature we know
that fairness can be understood in many different ways
and we have proposed a hierarchy of well-separable fair-
ness definitions to alleviate this problem. The efficiency
and correctness of fair exchange protocols critically de-
pends on specific properties of the exchanged items. We
have discussed the most important of these properties,
mainly the strong and weak notion of generatability and
revocability, and have given examples to manifest their
importance. Finally, we have studied the problem of
item validation and presented ways on how to increase
the security of this important task. All this builds the
foundation for concrete protocol design: We show in
Section 4 how to exploit the discussed item properties
to build fair exchange protocols which achieve varying
levels of fairness.

3. FORMALIZING THE FAIR EXCHANGE

PROBLEM

The more practically motivated definitions of fairness
(“nobody wins or loses something valuable”) which have
been presented in section 2.2 are precise enough for a
general understanding of the concept. However, if it
comes to a more rigorous verification of fair exchange
protocols, the present definitions lack the necessary
level of detail to be of use. In this section we survey the
existing attempts to completely formalize fairness in the
context of electronic commerce to make fair exchange
protocols amendable to rigorous verification. This sec-
tion is aimed at more theoretically interested readers

and can be skipped if practical interests are of more
concern.

3.1. Formalizations based on game theory

Game theory can be used to rigorously define the fair-
ness condition of exchange protocols. In this approach,
the individual moves of the participants within a pro-
tocol are turns in a multi-player game. Briefly spoken,
a protocol is fair if any player cannot achieve an ad-
vantage over the other player without the other player
gaining a similar advantage during the game.

Buttyán [27] uses this approach and completely for-
malizes fairness using the notions of game trees and
strategies [28]. A strategy is a description of how a
player moves in response to another player’s move and
a game is a pair of strategies. Specific fair exchange pro-
tocols can then be formalized as a game (sA∗, sB∗) for
two correctly behaving players A and B. A misbehaving
player, say A, is modeled as a player who follows a dif-
ferent strategy sA (involving moves that were not part
of the original protocol). The advantages which differ-
ent players can achieve at different points in the game
must be estimated and formalized as a payoff function.
A positive value indicates an advantage (i.e., gaining
access to the other player’s item), a negative value a
disadvantage. A protocol is said to be fair if for ev-
ery possible strategy sA of A, the outcome of the game
when A plays sA and B plays sB∗ (i.e., B behaves cor-
rectly) is such that A can have a positive payoff only
if B has a positive payoff as well. Of course the same
must hold vice versa.

3.2. Cryptographic definitions of fairness

Modern cryptographic methods allow to precisely define
the security of a system. For example, in the simulate-

ability paradigm [29, 30] a relation called “at least as se-
cure as” is established between two systems S1 and S2,
where S2 usually is an ideal system and S1 a real sys-
tem supposed to implement the same service as the ideal
system. Briefly spoken, S1 is at least as secure as S2 iff
the “view” of the honest user in S1 is indistinguishable
from its view in S2. Indistinguishable means that the
two views are either identical or that the probability
that any probabilistic polynomial-time “distinguisher”
algorithm can compute the difference is negligible [30,
p. 109]. Note here that statements about security are
always probabilistic and are based on explicit restric-
tions on the power of an adversary (i.e., polynomially
bounded computation resources).

While not based on game theory, Asokan, Shoup and
Waidner [14] also use the term “game” to define the
fairness property of such an ideal exchange system. In
this game, where participating parties are polynomially
bounded interactive turing machines, a well-behaving
party A and the trustee T follow their protocol in a
purely reactive fashion. The execution of the game is

The Computer Journal, Vol. 00, No. 0, 0000

Fair Exchange 9

driven by an adversary B∗ which has complete power
over the network and whose actions are merely re-
stricted by the following rules:

• B∗ cannot sign or decrypt messages for which B∗
does not have the appropriate key, but can inter-
act arbitrarily with T obtaining T ’s signature on
adaptively chosen messages.

• Whenever A signals its intention to make a move
or wants to receive a message, then B∗ eventually
lets A proceed in that move and eventually supplies
the next message to A, respectively.

• Interactions of A with T are not restricted by B∗.

The restrictions imply that A can follow its protocol
and eventually terminate by outputting an item eA. In
this case, B∗ also terminates and outputs eB∗. B∗ wins
the game if eB∗ = iA but eA 6= iB∗. A protocol is fair
if the probability that B∗ wins the game is negligible.

Overall, rigorously proving that a protocol in fact sat-
isfies the requirements of fair exchange remains non-
trivial. This is especially true for the above definitions
of fairness or if the system model is randomized. In
these cases, machine support using verification tools
(like model checkers) is practically impossible so proofs
must be done by hand and remain a cumbersome, error-
prone affair.

3.3. Trace-based formalizations of fairness

There have been attempts to formalize fairness using
trace-based concepts from concurrency theory for which
mechanical proof support systems exist. An example is
the formalism of Cervesato et al. [31] in which Chadha,
Kanovich and Scedrov [32] have studied fair contract
signing protocols. In this section, which is based on
Gärtner et al. [10], we study the basic possibilities of
formalizing fairness in this context.

3.3.1. A fair exchange system

Within this theory, a system is considered to be a black
box within an environment. The system interacts with
the environment through a set of input/output vari-
ables called the interface. While the environment and
the system may read input and output variables, the
former may only be written by the environment while
the latter may only be written by the system. A fair
exchange system can be modeled as in Fig. 1, i.e., as
a black box with three input variables i, d, m and two
output variables e and s per party. Again, we will sub-
script these variables with the identifier of the party to
which they belong, e.g., iA is the input item of party
A. The variables i and d have the same meaning as
explained in Section 2.2, i.e., i is the input item and
d is the description of the desired item. The variable
s indicates the state of the protocol and can evaluate
to success (in case of a successful protocol completion),
abort (unsuccessful protocol completion) or an unde-
fined value ⊥ (protocol is still running). In case of a

successful protocol completion, e should contain the ex-
changed item. The variable m is a specification variable
indicating whether or not a party is malevolent, i.e., the
party will not behave according to the protocol.

-

-

-

-

-

-

-

-

-

-

mA

iB

mB

iA

dA

dB

sB

eB

sA

eA

A

B

ix input item
ex output (exchanged) item
dx description of desired item
mx flag indicating malevolence
sx success/abort indication

FIGURE 1. A fair exchange system.

3.3.2. States, traces and properties

A state of a system like the one shown in Fig. 1 is an
assignment of values to the variables of the interface. A
trace (or execution) is a (possibly infinite) sequence of
states of the system and a property is defined as a set
of traces. A system in itself defines a property, i.e., the
set of all traces which the protocol running within the
black box may produce at the interface. A system Σ
satisfies a property P iff all traces of Σ are in P .

3.3.3. Safety and liveness

There are two special kinds of properties called safety

and liveness. A safety property informally states that
“something bad will never happen”. Safety properties
can be thought of as invariants, i.e., sets of states which
usually describe the “safe”, “legal” or “good” states of
the system. Formally, a safety property S is a set of
executions which is prefix-closed, i.e., for every execu-
tion e ∈ S and every prefix α of e, α must also be in
S. Partial correctness and the effectiveness condition of
fair exchange are examples of safety properties.

A liveness property informally states that “something
good will eventually happen”. A finite trace α is said
to be live for a property L, if there exists an execution
e ∈ L of which α is a prefix. A property L is called a
liveness property if every partial execution is live for L.
Intuitively, a liveness property states that any partial
system execution α is “not lost”, i.e., it is always pos-
sible to extend α to still reach some goal. Termination,
starvation freedom, and eventual delivery are examples
of liveness properties.

The Computer Journal, Vol. 00, No. 0, 0000

10 H. Pagnia, H. Vogt and F. C. Gärtner

3.3.4. Strong fairness as a safety property

Safety and liveness were introduced by Lamport [33]
and later formally refined by Alpern and Schneider [34].
It has been argued that almost all important system
properties can be expressed as a combination of a safety
and a liveness property [34, 35]. Consequently, there
have been attempts to model the fairness requirement
of fair exchange within this context.

In a previous paper [10], the present authors have
investigated the question whether fairness is a safety or
a liveness property. The category F6 of strong fairness
formulated as

• (Strong Fairness) If B behaves correctly and if the
protocol has terminated, it is never the case that
A has B’s item and B does not have A’s item; and
vice versa.

was shown to be a safety property. The inherent as-
sumption behind this formalization is that items are
atomic (i.e., they can only be exchanged in their en-
tirety) and not revoked after protocol termination. If
we assume that the output can only be written once, the
property is a safety property because we can tell in finite
time whether it is violated (i.e., after both outputs have
been written). Using a safety property is a natural way
of formalizing fairness because it is close to invariant-
based protocol analysis which is rather common [36].
While other authors often do not separate their cor-
rectness conditions into safety and liveness parts, the
relevant aspect of fairness is usually a safety property
[32, 36].

3.3.5. Fairness as a liveness property

In the same direction, the notion of weak fairness was
investigated. Informally, weak fairness means that a
possible disadvantage can occur but that it can be even-
tually refuted. If the disadvantage within the system is
not permanent, i.e., there exist means within the sys-
tem (e.g., by requesting help from a trusted third party)
to eventually refute the disadvantage, then this notion
of weak fairness can be formalized as a liveness prop-
erty. Since the outcome of the exchange is similar to
strong fairness, this form was called eventually strong

fairness and corresponds to fairness category F5. To
refute a disadvantage, there must exist some additional
assumptions about a misbehaving party. Such an as-
sumption could be, for example, that a misbehaving
party will (or can be forced to) eventually cooperate.
(Note that the means to force a party to cooperate are
fully within the automated system.) However, such as-
sumptions are not very realistic in the usual settings of
electronic commerce.

Schneider [37] investigates system properties which
can be automatically enforced onto a system by me-
chanical means. He presents a theoretical result which
shows that liveness properties cannot be automatically
enforced without making additional assumptions about
the misbehaving node. Thus, specifying weak fairness

as a liveness property has important practical implica-
tions. If we cannot guarantee a certain behavior of the
participating nodes, weak fairness as “liveness” cannot
be achieved within the automated system.

3.3.6. Weak fairness as a safety property

However, if the disadvantage were permanent (i.e., there
are no means to refute it within the system), a pro-
tocol must ensure that a participating party has col-
lected enough evidence to prove to an arbiter outside of
the system that it behaved correctly. In this direction,
fairness would be regarded as a safety property again.
Gärtner et al. [10] argue that this is weak fairness in
the sense of Asokan [5] which corresponds to F2/F3.

3.4. Impossibility results

3.4.1. Fair exchange without a trusted third party

Recall the situation of fair exchange where two parties
A and B want to exchange atomic digital items over a
message passing infrastructure. At some point in time,
the items must be transmitted over the network. But
who should send the item first in a situation of mutual
distrust? No matter who begins, there is always the
danger of the protocol ending in an unfair situation.

In 1980, Even and Yacobi [38] elaborated this idea
to formally prove that there is no fair exchange pro-
tocol without a trusted third party in these situations.
The proof is by contradiction: Assume a protocol ex-
ists which achieves strong fairness in the given scenario
without the help of a trusted intermediate. The proto-
col must consist of a sequence of communication rounds.
A communication round consists of sending a message
from A to B and back again. Because the protocol is a
fair exchange protocol, it must terminate. More specifi-
cally, at some point in time A must receive B’s item, i.e.,
after n communication rounds A has sufficient informa-
tion about B’s item but this is not true after n−1 com-
munication rounds for A. Because of mutual distrust,
B will obviously only participate in round n if it has
acquired sufficient information about A’s item in some
round n′ < n. However, this contradicts the fact that
the protocol used achieves strong fairness. Even and
Yacobi conclude that there is no fair exchange protocol
under these assumptions. Work by Schunter [30] has in-
vestigated similar impossibilities for optimistic contract
signing protocols.

3.4.2. Properties of a trusted third party

Since fair exchange is impossible without a TTP, it is
natural to investigate the minimal system conditions
under which fair exchange is possible. What properties
must a third party satisfy in order to be helpful in the
exchange? While a formal investigation into the pre-
cise meanings of these terms is still lacking, two aspects
seem particularly relevant in this context: trustworthi-

ness and availability.
Trustworthiness means that the parties which partic-

The Computer Journal, Vol. 00, No. 0, 0000

Fair Exchange 11

ipate in the exchange “know” the protocol which the
TTP is executing. This ensures that a TTP will not
conspire with one of the participating parties. Knowl-
edge about the TTP’s (expected) behavior is only
achievable by detailed code inspection and the use of
secured hardware. This task is usually delegated to ex-
perts and so trusting the TTP means trusting these
experts. Certain protocols can slightly reduce the level
of trust in the TTP. For example, in some protocols
[25, 39] the TTP alone cannot gain useful information
about the exchanged items. Other protocols [7] make
certain forms of misbehavior of the TTP detectable by
the participants.

Availability means that it is not only important to
know which protocol the TTP is executing, but also
that the TTP will follow the protocol, i.e., that the
services of the TTP will eventually be available. This
means that the TTP must satisfy certain reliability re-
quirements. In asynchronous systems, we conjecture
that the minimal requirements are that the TTP must
have stable storage and be at least eventually-up in the
crash-recovery model of distributed systems [40]. This
means that the TTP may store information persistently
and will eventually respond to every request by one of
the participating parties.

3.4.3. Separation of item validation and exchange

The discussion about reliability features of the trusted
third party has implicitly focused on its exchange func-
tionality. To satisfy fairness, it is not only important
to exchange items “atomically” but also to validate the
items at some point during the protocol. Validation
can be partially delegated to the participants: The idea
of this approach is to encrypt the items with random
keys and have the participants check certain properties
on the encrypted items [41]. However, in this approach
the item validation problem recurs when trying to ex-
change the keys themselves.

Exchange and validation of items needs not be done
by the same trustee. It is technically possible to provide
two separate trusted hosts: one which performs the ex-
change and one which is tailored to item validation.
Apart from clearly separating the concerns involved,
this approach also offers the potential to build highly
optimized trusted third parties with higher processing
capacities that are less viable to become bottlenecks.

3.5. Summary

In this section we have studied the fair exchange prob-
lem from a theoretical viewpoint. We have shown how
to formally model the fairness requirement and how
these formalizations can help in the understanding of
which system parameters influence the exchange pro-
cess.

4. EFFICIENT FAIR EXCHANGE PROTO-

COLS

In this section we show how different notions of fairness
can be realized by combining appropriate program mod-
ules to an exchange protocol as shown in Fig. 2. The
advantage of this modular approach is that for different
scenarios suitable solutions can be composed. These so-
lutions rely on the properties of the exchanged items,
the power of a third party, the effort which is acceptable
for the exchange, or on other properties like anonymity
of the parties. This section is an enhancement of previ-
ous work by Vogt et al. [9].

4.1. Modular fair exchange protocols

In an exchange protocol at least the two parties A and
B are involved. In the case of failures we also require
the cooperation of a trustee T . The party A has an
item iA and B possesses the item iB .

In order to ease presentation we do not consider com-
pensation as a method to gain fairness. It can however
be incorporated into our approach in a straightforward
manner. At any point in time during the execution of
the basic exchange modules (M1, M2, and M3) an hon-
est participant may become impatient and want to en-
force termination of the exchange. In this case the user
will interrupt the execution of the protocol and — de-
pending on its current state and the properties of items
— directly invoke modules M4 or M5 for conflict reso-
lution. Similarly, a protocol run is aborted or resolved
if a message is received which indicates that the other
party is misbehaving (e.g., a message which contains
the wrong information or an invalid signature).

4.1.1. Module Definitions

Module M1: Negotiate

In a first step A and B negotiate about the exchange.
They have to agree on a formal description of each
other’s item which enables them to verify whether the
item received during the exchange protocol is the one
which was expected. When both parties know which
items shall be exchanged, they also agree on which fair
exchange protocol should be used and which modules
are used in order to implement it. Additionally, they
agree on the name of the trustee possibly involved. Af-
ter completion of “Negotiate” the exchange itself can
be started.

Module M2: Prepare to exchange

Before the exchange can be started the participating
parties have to make sure that conflict resolution will
be possible. For generatable items it has to be checked,
if they are really generatable4 as agreed on in module
M1. This means that if the exchange protocol relies

4Note that contrary to generatability the revocability of an
item needs not be checked in advance, because only the party
that provides the revocable item may be disadvantaged.

The Computer Journal, Vol. 00, No. 0, 0000

12 H. Pagnia, H. Vogt and F. C. Gärtner

resolve
Conflict resolution: Conflict resolution:

abort

4M :
2

Prepare
to exchange

M :
1

Negotiate

M :
3

Exchange
5

M :

Begin

M :

Abort Successful exchangeEnd: External disputeEnd:

FIGURE 2. Composing fair exchange protocols by using the modular approach

on the generatability of an item, then the party which
expects this item has to verify the generatability. If
this check fails, it is still safe for the party which has
not sent anything yet to stop executing the protocol. A
party which has already sent useful information should
start M5 to abort the exchange.

Module M3: Exchange

The items are now exchanged between the participating
parties. In active protocols the trustee can simply de-
liver the items. If the exchange protocol is optimistic,
the following two rules have to be observed:

1. The owner of a generatable item should wait for
the other item before he sends his item. This en-
ables him to first check if the other item meets the
description.

2. If an item is revocable, its owner should send it
first, as he will be able to revoke it, if the other
party doesn’t send the expected item.

The exchange may either end with both parties possess-
ing the expected items or in the case of a failure with (at
least) one party receiving nothing valuable. In the first
case fairness F6 is achieved, so that the protocol can ter-
minate at this point. In the second case fairness must
be re-established in one of the subsequent steps. One
possible solution is to start an external dispute which
however guarantees only a lower degree of fairness (F1,
F2, or F3). Alternatively, the modules M4 and M5 can
be used if the items are generatable or revocable.

Module M4: Conflict resolution: resolve

This module can only be used by a party that expects
the trustee to provide the item in exchange for his own
item. If the desired item provides strong generatabil-
ity, the trustee will succeed in generating the item, thus
establishing fairness F6. If the item is only weakly gen-
eratable, the trustee may either succeed or fail. In the

first case the protocol terminates with fairness F6, but
in the second case additional steps are necessary: An
external dispute can be started. Alternatively, a fur-
ther attempt to achieve F6 fairness can be made by
executing module M5. We note that in most cases with
weakly generatable items the generation will not fail,
as any misbehavior is provable to other parties (e.g., an
external arbiter) and thus serves as a proof against the
misbehaving party.

Module M5: Conflict resolution: abort

This module is used by a party which wants to abort
the exchange. This can be achieved by either exploiting
the revocability of an item or by preventing that the
trustee delivers a missing item. In contrast to module
M4 which tries to “force” both parties into a successful
exchange, this module aims at “resetting” the exchange
so that neither party receives anything valuable.

In case of revocable items the trustee will revoke the
item for its provider, if this party can ensure that he
has been following the exchange protocol correctly so
far and was not able to get the expected item from the
other party. If the item provides strong revocability, the
trustee will revoke the item and thus establish fairness
F6. The same result is achieved if the trustee succeeds
in revoking a weakly revocable item. If the revocation
of a weakly generatable item fails, fairness has to be
established by other means: An external dispute can
be started.

This module can be invoked even if items are not re-
vocable, e.g., in cases where a party has sent a generat-
able item and wants to withdraw it from the exchange
before the trustee can generate it. However, in such
cases there is always the chance that resetting the ex-
change fails because the other party has initiated mod-
ule M4 beforehand. Then the trustee can always finish
the exchange by delivering the stored item.

The Computer Journal, Vol. 00, No. 0, 0000

Fair Exchange 13

4.1.2. Discussion

We can now set up fair exchange protocols by combin-
ing these modules. This approach is very flexible, be-
cause it provides several protocol variations: If after the
execution of a module the fair exchange is completed,
then subsequent steps using the other modules are not
needed. It is also possible to use only a subset of the
five modules by simply omitting one or more modules
according to paths displayed in Fig. 2. However, the
sequence of the modules must not be changed because
this would violate their preconditions. Note that the
participating parties can follow distinct paths through
the diagram, but they must end up in the same termi-
nation state, if the protocol ensures F6 fairness.

If a protocols makes use of modules M4 and M5, it
would be possible to execute module M5 before M4, as
both modules try to achieve the same degree of fairness.
However, it is the aim of module M4 to successfully fin-
ish the exchange, while M5 only tries to roll back the
exchange. Thus, we recommend to always execute M4

first, because it tries to fulfill the effectiveness require-
ment even in the case of failures.

4.2. Module implementation

In this section, we provide a set of sample module im-
plementations for the scenario where a customer C and
a vendor V want to exchange payment and product.

Each implementation block begins with a description
of its preconditions like special item properties given
in an “Assumes:” clause. We then use the notation
〈event〉 : 〈description〉 to describe the individual steps
of the implementation, where 〈event〉 can be sending
a message from participant X to Y (designated by
X → Y) or some local computation of a participant
(designated by its name). The 〈description〉 is a brief
explanation of the type of message sent or the type of
actions performed locally. We denote encryption and
decryption functions using key x by ex and dx, respec-
tively. We use the capital letters DX and EX whenever
an asymmetric cryptosystem is applied for party X . A
participant can also produce digital signatures. To ease
reading, we will abbreviate signing a message m by X
and obtaining a signature s by s := signX (m). Finally,
we also assume the availability of a strongly collision-
free cryptographic hash function h. The cryptographic
prerequisites are well-studied in the literature [4].

We now provide implementations for the modules
specified in Section 4.1.1. In some cases we provide
an alternative implementation for a single module. We
show later in Section 4.3 how to assemble these imple-
mentations to fair exchange protocols.

4.2.1. Implementation of module M1

A straightforward way to implement the negotiation
module is the following:

Module implementation I1

Assumes: —

C → V : descprod, T , set of possible protocols sup-
ported by C

V : choose a protocol
V → C : descpay, T , chosen protocol

The customer and the vendor exchange the descrip-
tion of the items which they want to receive and agree
on a trustee T which can possibly be invoked. The cus-
tomer also proposes exchange protocols that are accept-
able to him and the vendor dynamically chooses one of
these protocols with which he wants to proceed.

For the following implementations it is assumed that
for every message it is known to which protocol, which
run of a certain protocol, and which step of the pro-
tocol it belongs. This prevents attacks that may be
constructed by mixing steps from different protocols.

4.2.2. First implementation of module M2

The “Prepare to exchange” module can be implemented
like this:

Module implementation I2a

Assumes: The item descriptions, T , and the proto-
col have been agreed upon

C → V : order product
V : choose a random key R

encrypt product with R, i.e.,
EP := eR(product)
compute hash H := h(EP)
encrypt R for the trustee, i.e.,
RT := ET (R)
SV := signV (descprod, descpay, T, H, RT)

V → C : SV , EP , RT

C : compute hash H := h(EP)
verify signature SV

In this implementation the customer receives the
product encrypted with a random key R, the key R en-
crypted with the trustee’s public key, and a signature
from the vendor to commit on this exchange. Note that
this signature is assumed to have no meaning outside
the fair exchange protocol. This can be guaranteed, if
the use of the corresponding signature key is restricted
to fair exchange protocols only.

The main idea of this implementation is that the fur-
ther exchange process is reduced to the exchange of pay-
ment and R. Furthermore, the trustee will be able to
compute R, if the vendor has sent the correct value RT .
This results in weak generatability for the product as
explained in Section 2.3.1.

During execution of this module, it is still possible to
abort the exchange if, for example, the signature verifi-
cation has revealed a bad signature.

The Computer Journal, Vol. 00, No. 0, 0000

14 H. Pagnia, H. Vogt and F. C. Gärtner

4.2.3. Second implementation of module M2

The implementation above is specifically designed for
optimistic fair exchange protocols. For an exchange in-
volving an active trustee, the module M2 can be imple-
mented in the following manner.

Module implementation I2b

Assumes: T and the protocol have been agreed upon

C → T : payment, descprod

V → T : product, descpay

T : check payment, check product versus
descprod

Because the trustee possesses both, payment and
product, he can check in advance, if these items match
their description. If one of the checks fails, the exchange
will be aborted without losing fairness.

During the execution of this module, it is possible
that an abort request arrives from one of the partici-
pating parties (e.g., because such a party invoked an
implementation of module M5 asynchronously). In this
case, T can decide to abort the exchange as it has not
yet sent anything to either of the parties. This behavior
still satisfies fairness F6.

4.2.4. Third implementation of module M2

A variation of implementation I2a is now given where
the payment is “made” weakly generatable. Prior to
the execution of this module the vendor must have for-
warded his product and its description to the trustee,
who then checked that the product matches the given
item description. As a reply the vendor received the
encryption of the product EP := eR(product), the cor-
responding random symmetric key R, and the trustee’s
signature ST := signT (descprod, EP). Using this sig-
nature the vendor can now prove that his product is
strongly generatable by the trustee as we already ex-
plained in example 2 in Section 2.3.1.

Module implementation I2c

Assumes: The item descriptions, T , and the proto-
col have been agreed upon. The trustee ensured that
the product is strongly generatable.

C : encrypt payment for trustee, i.e.,
EM := ET (payment)
SC := signC(descprod, descpay, T, EM)

C → V : EM, SC

V : verify signature SC

sign the generatable en-
crypted product, i.e., SV :=
signV (descprod, descpay, T, EP, ST , EM)

V → C : EP, ST , SV

C : verify signatures ST and SV

Customer C makes his payment weakly generatable
by encrypting it with the public key of the trustee. The
encrypted payment together with the customer’s signa-
ture SC is sent to V , who verifies this signature. If this
check fails, the vendor can simply abort the exchange.

Otherwise, V returns the information for generating the
product, namely the encrypted product, the trustee’s
signature ensuring generatability of the product, and
the vendor’s signature which links the product to the
payment. C verifies both signatures ST and SV and
only proceeds if both are correct. If he detects some
failure, he needs to abort the exchange using module
M5, as only this prevents V from finishing the exchange
with module M4.

4.2.5. First implementation of module M3

The exchange module can be implemented like this:

Module implementation I3a

Assumes: C has the encrypted product

C → V : payment
V : check payment

V → C : R
C : decode product, i.e.,

product := dR(EP) = dR(eR(product))
check product against descprod

As mentioned earlier, this type of exchange is called
optimistic [1], because no third party is required unless
a conflict occurs. As most exchange processes can be
assumed to run without failures, optimistic protocols
can substantially reduce the load that is put on the
third party. If a conflict occurs, the disadvantaged party
must decide which actions should be used in order to
re-establish fairness.

4.2.6. Second implementation of module M3

If the exchange should be performed with an active
trustee, an alternative implementation should be used
for module M3. Because the trustee has already checked
both items, he performs the exchange by simply for-
warding the items to the waiting parties. If one of the
parties does not receive the desired item, he asks the
trustee to resend it.

Module implementation I3b

Assumes: T has checked product and payment, ex-
change not aborted

T → C : product
T → V : payment

4.2.7. First implementation of module M4

Module M4 is a solution for re-establishing fairness by
finishing the exchange, if the previous modules failed to
achieve fairness. In case the product is generatable it
can be implemented like this:

The Computer Journal, Vol. 00, No. 0, 0000

Fair Exchange 15

Module implementation I4a

Assumes: C has the encrypted product and the
decryption key RT

C → T : descprod, descpay, payment, H , RT , SV

T : verify signature SV

decode key: R := DT (RT)
check payment, deposit payment

T → C : R
C : decode product, i.e.,

product := dR(EP) = dR(eR(product))
check product against descprod

The trustee decodes R, which he sends to the cus-
tomer in exchange for the payment. The product is
decoded by the customer, so that he has to check it by
himself. This implementation obviously relies on the
vendor, who has to provide the correct values, so that
the trustee can generate the correct key R. Since the
vendor might have sent incorrect values, actually weak
generatability of the product is provided.

4.2.8. Second implementation of module M4

For an exchange of two generatable items we must dis-
tinguish whether C or V invokes the module.

Module implementation I4b for C

Assumes: C has generatable product EP and the
signatures of the trustee and vendor (i.e., ST , SV),
exchange not aborted

C → T : descprod, descpay, EM, EP, ST , SV

T : check ST and SV

decrypt payment, i.e.,
payment := DT (EM)
check payment
store payment
recover stored R corresponding to EP

T → C : R
C : decode product, i.e.,

product := dR(EP) = dR(eR(product))

The product is assumed to be strongly generatable so
that the trustee always succeeds in generating it for the
customer.

For the vendor, the protocol looks slightly different:

Module implementation I4b for V

Assumes: V has weakly generatable money EM and
the customer’s signature SC , exchange not aborted

V → T : descprod, descpay, product, EM, SC

T : check product
generate payment by decrypting EM or
retrieving a stored payment
check payment
store product

T → V : payment
V : check and deposit payment

As the payment is only weakly generatable, we re-
quire T to check it before anything valuable is sent. If

the payment turns out to be invalid in I4b for V , the
trustee knows that C misbehaved and thus aborts the
exchange. Note that for some payment systems it might
be necessary to let the trustee immediately deposit the
payment at the bank instead of keeping a local copy.

Note that the trustee will not generate anything if
the customer has previously succeeded in aborting the
protocol with M5.

4.2.9. First implementation of module M5

We can efficiently implement module M5 as follows:
The trustee checks the validity of the weakly generat-
able product. A detected failure results in revocation of
the payment, if it was already sent to the vendor. This
guarantees fairness F6 after execution of this module.

Module implementation I5a

Assumes: The payment is strongly revocable and C
has the encrypted product as well as the decryption
key RT

C → T : payment, descprod, descpay, T , EP , RT ,
SV

T : compute hash H := h(EP)
verify signature SV

check payment
decode key R := DT (RT)
decode product, i.e.,
product := dR(EP) = dR(eR(product))
check product versus descprod:
if “product OK” then

T : deposit payment
T → C : R

C : decode product, i.e.,
product := dR(EP)

elseif “product not OK and payment
was already sent to the vendor”

then
T : revoke payment

Compared to the implementation I4a the trustee ad-
ditionally has to check, whether the product is accord-
ing to the item description descprod. In most cases
this significantly increases the computations done by
the trustee.

4.2.10. Second implementation of module M5

Even if no item is revocable, module M5 can be used
to prevent the trustee from proceeding further in the
exchange, e.g. by generating items and delivering them.
If the trustee has already completed the exchange (e.g.
in module M3 or M4), he resends the desired item.

The Computer Journal, Vol. 00, No. 0, 0000

16 H. Pagnia, H. Vogt and F. C. Gärtner

Module implementation I5b

Assumes: —

C → T : abort request
T : if “exchange has been completed” then

T → C : product
else

T : remember the exchange as
“aborted”

T → C : confirmation for the abort

The implementation for the vendor is just the same,
except that he receives the payment instead of the prod-
uct.

4.3. Composing protocols

The module implementations described in the previous
section can be assembled in different ways according to
the rules displayed in Fig. 2. We now describe possible
compositions.

P1: Fair exchange with active trustee.

The combination of modules 〈I1, I2b, I3b, I5b〉 results in
the basic active exchange scheme for fairness F6 which
has been used in several protocols [25, 42]. Both parties
can force the exchange to terminate by invoking I5b.

P2: Optimistic fair exchange with weak fairness.

The combination 〈I1, I2a, I3a, external dispute〉 results
in an optimistic fair exchange protocol which has been
presented and discussed in detail by Asokan [5]. This
protocol achieved only weak fairness F2/F3 and can
re-establish fairness only in an external dispute. Spe-
cial item properties like the weak generatability of the
product are not automatically exploited by the proto-
col. Instead these properties only support the external
dispute.

P3: Optimistic fair exchange with weakly generatable

products.

In contrast to protocol P2, the combination
〈I1, I2a, I3a, I4a, external dispute〉 exploits the weak
generatability of the product and can thus achieve
fairness F6 in cases where P2 relies on an external
dispute. However, since this item is only weakly gen-
eratable, P3 may also need an external dispute, if the
vendor misbehaves. Thus the protocol achieves only
weak fairness F2/F3 in general. The advantage of P3 is
that it first makes an attempt to re-establish fairness
automatically inside the system. Only if this fails, an
external dispute is started.

P4: Optimistic fair exchange with strongly revocable

payments.

The combination 〈I1, I2a, I3a, I5a〉 of module implemen-
tations exploits the revocability of the payment and
weak generatability of the product to achieve strong

fairness F6. In contrast to P3 the trustee can even guar-
antee fairness, if the vendor cheats by sending an incor-
rect item. After the trustee detects such a kind of fraud,
he will revoke the payment and thus undo the exchange.

The protocol guarantees only the weaker notion of
termination to the vendor. After sending the encrypted
product in I2a the vendor has to wait for the customer
to proceed. This is not a disadvantage for the vendor,
as he can quit executing the protocol and will still re-
ceive the payment as soon as the customer will finish
the exchange with I5a. A detailed description of this
optimistic fair protocol has been published in [6].

P5: Optimistic exchange with strongly and weakly gen-

eratable items

The combination 〈I1, I2c, I3a, I4b, I5b for C〉 is an in-
stantiation of the optimistic fair exchange protocols pro-
posed by Asokan, Shoup and Waidner [7]. Due to the
strong generatability of the product and the weak gener-
atability of the payment an external dispute can always
be avoided.

In I2c the vendor may simply quit, if he detects a
failure or if he is not willing to wait longer. If the cus-
tomer wants to resolve a conflict in I2c, he has to start
I5b which instructs the trustee not to proceed with the
protocol. During the execution of I3a the customer re-
lies on I4b to resolve conflicts by exploiting the strong
generatability of the product. This guarantees fairness
F6 and termination for the customer.

If the vendor does not receive the payment in I3a,
he consequently does not send R to C and starts I4b

instead. Then the trustee tries to finish the exchange
by generating the payment and storing the product for
the customer. An interesting case arises if the customer
not yet executed I4b and the trustee fails to generate
the payment because C encrypted wrong values. As the
product has not yet been sent to C, the trustee answers
the customer’s attempt to cheat by simply aborting this
exchange. This ensures fairness F6 and termination for
V .

P6: Efficient optimistic fair exchange with strongly re-

vocable payments.

The combination 〈I1, I2a, I3a, I4a, I5a〉 is a very efficient
optimistic fair exchange protocol which was previously
presented by Vogt et al. [9]. Due to the strong revo-
cability of the payment it achieves fairness F6 similar
to the protocol P4. However, this protocol tries to re-
duce the participation of the trustee as far as possible.
If the customer did not receive the decryption key for
the product during module M3, the trustee first in I4a

tries to generate the decryption key without checking
whether the decryption of the product works correctly
or not. It is assumed that in most cases this simple
and efficient implementation I4a is sufficient to estab-
lish fairness. Thus the overhead of executing an imple-
mentation of module M5 is avoided.

The Computer Journal, Vol. 00, No. 0, 0000

Fair Exchange 17

Only if the decryption of the product fails, the cus-
tomer will execute I5a. There the trustee additionally
checks the correctness of the product, which might be
quite costly, and revokes the payment in the case of
a failure. This finally guarantees fairness F6 under all
circumstances.

However, similar to P4 this protocol guarantees only
the weaker form of termination to V , since V may only
be informed about a successful completion of the ex-
change if C starts a conflict resolution which results in
T depositing the payment.

P7: Fair exchange with active participation of a

lightweight trustee.

Combination 〈I1, I2a, I4a, external dispute〉 is another
implementation which uses the active participation of
a trustee in every exchange. However the capabilities
of the trustee are limited to the exchange of the pay-
ment against the decryption key of the product. But as
the decrypted product might still turn out to be incor-
rect, the protocol can only achieve weak fairness F2/F3

in an external dispute.
The NetBill payment protocol [43] uses a similar idea

to ensure fairness.

P8: Another fair exchange variant with active trustee.

Module combination 〈I1, I2a, I5a〉 is a variation of pro-
tocol P1. After the exchange has been prepared in I2a,
an active trustee is used to finally perform the swap of
product and payment in I5a. It should be noted that
although the implementation I5a is executed it is not
necessary to use a payment system with revocability.
The reason for this is that the payment was not sent to
the vendor during the previous steps and hence it does
not need to be revoked if a failure is detected by the
trustee.

4.4. Discussion

Table 1 gives an overview of the composed protocols.
In the table we have also noted the item properties
assumed by the protocols and the fairness guarantees
achieved.

The protocol modules (not their implementation) can
be regarded as an abstraction of the general interac-
tion pattern of fair exchange protocols. This is why it
is possible (in contrast to other work [44, 45]) to not
only model optimistic protocols in our framework, but
also those involving an active TTP as well as optimistic
protocols with revocable items. Well-known protocols
(such as other optimistic ones by Boyd and Foo [18],
Garay, Jakobsson and MacKenzie [46] or Markowitch
and Saeednia [44]) all follow the same interaction pat-
tern and so can be formulated within our framework
(with different module implementations). As it has
been demonstrated in this paper, formulating existing
protocols (like the ones mentioned above) within our
protocol framework may reveal new possibilities of mod-

ule combinations leading to improved exchange proto-
cols. Note that the framework was designed to incor-
porate asynchronous protocols as well as synchronous
ones. The only difference here is that the notion of a
party “wanting to abandon the exchange” is defined in
terms of real-time bounds.

Not all fair exchange protocols can be adapted to our
framework. For example, we do not see how gradual

exchange protocols (which rely on special assumptions
and achieve a different notion of fairness) can be formu-
lated as a composition of our protocol modules. We will
discuss these protocols in the context of related work in
the following section.

5. RELATED WORK

The problem of fair exchange has been studied under
many different headings and from many different per-
spectives. For example, contract signing, key exchange
and certified mail all share aspects of the problem.

Sometimes, fair exchange has been mentioned in the
context of protocols for non-repudiation [22, 47–49].
The property of non-repudiation ensures that partici-
pants collect evidence so that the other party cannot
deny that a particular event has taken place. For ex-
ample, non-repudiation of receipt means that a party
has obtained a proof that the other party has received
a particular message. In some sense, non-repudiation
can be achieved using a fair exchange protocol with
one item being a receipt for the other item. However,
in contrast to the general definition of fair exchange,
there is a dependency between the exchanged items,
because, like in certified email, the receipt must con-
tain an explicit reference to the original message (e.g.,
its hash value). Most existing fair exchange protocols
can be augmented to provide non-repudiation. How-
ever, it should be clear that a minimal fair exchange
protocol (i.e., a protocol which satisfies the effective-
ness, timeliness and fairness properties of Section 2 and
no other properties) is not per se powerful enough to
provide this feature [5]. Another question is whether it
is possible to build fair exchange protocols by using pro-
tocols for non-repudiation (like those for certified mail
[50–52]). Fair exchange can be implemented by letting
both parties separately exchange their items, each of
them using a non-repudiation protocol. Using such an
approach, strong fairness cannot be achieved because it
cannot be guaranteed that both protocol parts are exe-
cuted atomically. However, the non-repudiation proofs
can be used in an external dispute to establish weak
fairness.

Atomicity was identified as a generic property of e-
commerce protocols by Tygar [43]. The understanding
is closely related to the notion of an atomic transaction
from the field of databases and comprises all the usual
properties of fair exchange including non-repudiation.
Viewing fair exchange as a distributed transaction has
conceptual advantages since it offers an analogy to a

The Computer Journal, Vol. 00, No. 0, 0000

18 H. Pagnia, H. Vogt and F. C. Gärtner

properties of fairness for protocol/
TTP payment product customer vendor references
active * * F6 F6 P1 [25, 42], P8

active * WG F2/F3 F2/F3 P7 [43]
optimistic * WG F2/F3 F2/F3 P2 , P3 [5]
optimistic SR WG F6 F6, α P4 [6], P6 [9]
optimistic WG SG F6 F6 P5 [7]

* = none
SG = strongly generatable
WG = weakly generatable
SR = strongly revocable
α = with “weak” termination

TABLE 2. Summary of the protocol compositions and achievable fairness levels depending on item properties.

concept which is quite well understood [53]. Also,
atomic commitment protocols like “two-phase commit”
(2PC) [54] can be adapted quite easily to enable fair ex-
change. Consequently, the transactional view has lead
to fair exchange protocols requiring transaction coor-
dinators which in terms of fair exchange resemble an
active trusted third party [43, 55, 56]. This rather im-
plementation centric view can be regarded as a disad-
vantage of the transactional approach to fair exchange.
As discussed in Section 2, the transactional view also
slightly obscures the security aspect of the transaction
[56]. An advantage of the transactional view of fair
exchange probably is its straightforward methodologi-
cal support for multi-party fair exchange [39, 55, 56]. In
multi-party fair exchange more than two parties want to
fairly exchange items with each other. This resembles
the situation in which a customer has filled a virtual
shopping basket with closely related items from differ-
ent vendors and wants to pay electronically for all items.
The standard example consists of a customer who wants
to book a flight, rent a hotel room and a hire a car for a
business trip: Any missing item renders the other items
useless.

The transactional view can be regarded as a con-
tinuation of the early basic research on fair exchange
because the earliest fair exchange protocols that have
appeared in literature involve the active participation
of a trusted third party in every run. Such protocols
have been presented by Bürk and Pfitzmann [42] and by
Franklin and Reiter [25]. However, requiring the active
participation of a trusted third party in every exchange
has some obvious drawbacks (such as the potential per-
formance bottleneck or the need for permanent avail-
ability). These drawbacks can be partly circumvented
by optimistic fair exchange protocols [1, 7, 30]. In opti-
mistic exchange protocols both participating parties try
to handle the exchange on their own and only call for the
participation of a trusted third party if something went
wrong during the exchange. If the protocol is known
to ensure fairness both parties are aware that they can-
not gain an advantage by acting maliciously. Therefore,

the situation in which the assistance of the trustee is re-
quired is not likely to happen in practice. Recently, the
optimistic approach has also been extended to multi-
party fair exchange [57–59].

The fairness level of optimistic exchange protocols
depends on whether items are generatable, revocable or
the like. If items do not possess such special proper-
ties, only weak fairness is achievable. Postulating that
an item is revocable is usually only justified for a small
class of items, e.g., payments or certain types of priv-
ileges. This could be an explanation for the fact that
most of the work in this area concentrates on gener-
atable items and how to make items generatable, e.g.,
signatures [12, 16, 18, 19].

Some protocols try to avoid the use of a trusted third
party, for example, by relying on special notions like a
publicly visible blackboard [60] or the use of the exist-
ing Internet infrastructure [52]. In any case, to resolve
conflicts, a trusted authority is required either inside or
outside of the system. Which of these notions can cor-
rectly be called a trusted third party depends on the
understanding of this term. Other authors weaken the
definition of fairness further and only provide strong
incentives to behave correctly [61–63].

The items in consideration for fair exchange can also
be “continuous” ones such as the provision of a com-
munication link. For the latter type of service gradual

exchange protocols [64, 65] can be used. The basic idea
behind gradual exchange is to repeatedly grant small
low-value portions of the services. Hence, interrupting
the exchange can only lead to one party gaining a small
advantage over the other. This minimizes the amount
of “unfairness” which a participating party may experi-
ence. A precondition for gradual exchange protocols is
that the services must be divisible into parts with “near-
to-equal” value. Obviously, the smaller these parts be-
come the more the communication overhead increases.
Conversely, when splitting the service into larger parts
there is a non-negligible risk of loss in case the protocol
is interrupted. In order to avoid this situation a differ-
ent protocol for fairly exchanging the individual parts

The Computer Journal, Vol. 00, No. 0, 0000

Fair Exchange 19

is required. For services or items which are not divisible
such a protocol must be used anyway.

In the context of key exchange and contract sign-
ing other concepts for fair exchange without a trustee
have been proposed: The first one is called gradual re-
lease of a secrets and has led to several protocol pro-
posals [61, 66–70]. Usually two keys, which are mostly
used for decrypting signatures, are exchanged bit by bit
in several rounds. Then both parties always have ap-
proximately the same knowledge about the decryption
key. If the communication is disrupted, the remain-
ing unknown bits can be computed by a brute force
search, which in principle enables both parties to com-
plete the exchange alone. However, it is essential that
both parties have near to equal computing power so that
they have to invest about the same amount of time and
money to complete the exchange. Another limitation
of this kind of exchange is that nobody knows, if the
other party is willing to complete an interrupted ex-
change by executing a brute force key search. Thus the
exchange can be unfair, if one party does not complete
the exchange while the other one does.

A different solution for an exchange without a trustee
builds on a probabilistic fairness definition [71–73]: The
probability that one party receives something while the
other one receives nothing is reduced to 1/n, where n is
a security parameter which is approximately the num-
ber of communication rounds. Basically, this means
that the probability of unfairness can be made arbitrar-
ily small. However protocols achieving this kind of fair-
ness rely on special item properties (e.g., contracts of a
certain form [71, 72]) or unusually system assumptions
(e.g., that the communication channels have a limited
time delay [73]) and thus cannot be regarded as being
practical.

In 1999, Garay, Jakobsson and MacKenzie [46] in-
troduced the notion of abuse-freeness in the context of
contract signing. A protocol is abuse-free if at any time
during protocol execution no party has the power to
prove to a third party that it can determine the out-
come of the protocol. For example, Alice may negotiate
an electronic employment contract with Bob which Bob
has signed already and sent to Alice. But Alice does not
actually want to work for Bob. Her aim is to negoti-
ate a better contract with Claire. Since Alice has the
power to determine the outcome of the exchange with
Bob, she can show this contract to Claire and demand
a higher salary. Protocols which are abuse-free avoid
this problem. Abuse-freeness has also been studied in
the context of multi-party contract signing [59, 74] and
has been the subject of formal analysis [32, 75–77].

The general area of contract signing has been the fo-
cus of other work in formal analysis of exchange pro-
tocols [32, 36]. Formal analysis is particularly difficult
because fair exchange not only involves an aspect of
atomicity but also an aspect of security. Formal analy-
sis also heavily depends on the system model and there
are many system parameters (synchrony, communica-

tion primitives, etc.) which have not been studied in
this context yet. Tool supported analysis is only pos-
sible in scenarios which often oversimplify the aspect
of security [36, 78]. As argued earlier, standard crypto-
graphic definitions of security lead to non-discrete sys-
tem models where proofs must be done by hand [30].

A recent line of research has investigated hardware
support for fair exchange [23, 24, 65, 79], where trust
is partly substituted by tamper-proof hardware devices
that are carefully designed to ensure fairness.

6. CONCLUSIONS

Fair exchange is a problem of substantial practical sig-
nificance in electronic commerce. Products, payments,
and services must be exchanged fairly to ensure the con-
tinuing growth of the electronic marketplace. In order
to increase the trust that participating parties place in
exchange services it is important to state precisely the
guarantees of different protocols with respect to fairness
and efficiency.

In this article we have presented a comprehensive
study of fair exchange. Firstly, we have studied the
problem from a practical viewpoint, focusing on intu-
itive definitions of fairness and a discussion of other
factors that influence the exchange process. Secondly,
we have presented a survey of formal definitions of fair
exchange.

Thirdly, we have presented a useful factorization of
the fair exchange problem, i.e., we have analyzed the ex-
change process and separated the functionality of differ-
ent phases into separate protocol modules. Combining
some of the possible implementations of these modules
results in a multitude of fair exchange protocols. This
helps to understand and compare these solutions with
respect to their efficiency and the degree of fairness they
offer. Finally, we have extensively surveyed the litera-
ture on fair exchange.

A better understanding of fair exchange has many
practical consequences. For example, customers and
vendors can now select a certain protocol that suits
the application or situation needs best. For example,
if products of considerable value (like a new CAD-
program) are exchanged, both parties will probably
favor a protocol which guarantees a strong fairness
F4/F5/F6 even if this comes at a higher cost (because
they might have to pay a trustee). On the other hand,
both parties might be willing to agree on a weakly fair
F1/F2/F3 protocol if they simply exchange the latest
football results.

Moreover, by our compositional approach it is now
possible to select exchange protocols for a given level
of fairness and given item properties dynamically. In
practical settings this enables a customer to choose an
item from an on-line catalog, select the desired level of
fairness and have the rest of the exchange be executed
automatically; it is no longer necessary for the user to
select a specific protocol which clearly is an important

The Computer Journal, Vol. 00, No. 0, 0000

20 H. Pagnia, H. Vogt and F. C. Gärtner

step towards more user friendliness.

ACKNOWLEDGEMENTS

We wish to thank Levente Buttyán for his comments on
an earlier version of this paper. We also thank Heiko
Mantel for helpful discussions and the anonymous ref-
erees for their detailed comments. This work was per-
formed while all authors were affiliated with the Depart-
ment of Computer Science of Darmstadt University of
Technology.

REFERENCES

[1] Asokan, N., Schunter, M., and Waidner, M. (1997)
Optimistic protocols for fair exchange. Matsumoto, T.
(ed.), 4th ACM Conference on Computer and Commu-
nications Security , Zürich, Switzerland, Apr., pp. 6–17,
ACM Press, New York.

[2] Basu, A., Charron-Bost, B., and Toueg, S. (1996)
Simulating reliable links with unreliable links in
the presence of process crashes. Proceedings of the
10th International Workshop on Distributed Algorithms
(WDAG96), Bologna, Italy, Oct., pp. 105–122, Spring-
er-Verlag.

[3] Schneider, F. B. (1993) What good are models and
what models are good? Mullender, S. (ed.), Distributed
Systems, chap. 2, pp. 17–26, Addison-Wesley, Reading,
MA, second edn.

[4] Menezes, A. J., Oorschot, P. C. V., and Vanstone, S. A.
(1997) Handbook of Applied Cryptography . CRC Press,
Boca Raton, FL.

[5] Asokan, N. (1998) Fairness in electronic commerce.
Ph.D. thesis, University of Waterloo, Canada.

[6] Pagnia, H. and Vogt, H. (1999) Exchanging goods and
payment in electronic business transactions. Proceed-
ings of the Third European Research Seminar on Ad-
vances in Distributed Systems (ERSADS), Madeira Is-
land, Portugal, Apr.

[7] Asokan, N., Shoup, V., and Waidner, M. (1998) Asyn-
chronous protocols for optimistic fair exchange. Pro-
ceedings of the IEEE Symposium on Research in Secu-
rity and Privacy , Oakland, CA, May, pp. 86–99, IEEE
Computer Society Press, Los Alamitos, CA.

[8] Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985)
Impossibility of distributed consensus with one faulty
process. Journal of the ACM , 32, 374–382.

[9] Vogt, H., Pagnia, H., and Gärtner, F. C. (1999) Mod-
ular fair exchange protocols for electronic commerce.
Proceedings of the 15th Annual Computer Security Ap-
plications Conference, Phoenix, Arizona, Dec., pp. 3–
11, IEEE Computer Society Press, Los Alamitos, CA.

[10] Gärtner, F. C., Pagnia, H., and Vogt, H. (1999) Ap-
proaching a formal definition of fairness in electronic
commerce. Proceedings of the International Workshop
on Electronic Commerce (WELCOM ’99), Lausanne,
Switzerland, Oct., pp. 354–359, IEEE Computer Soci-
ety Press, Los Alamitos, CA.

[11] Wilhelm, U. G. (1999) A Technical Approach to Privacy
based on Mobile Agents protected by Tamper-resistant
Hardware. Ph.D. thesis, École Polytechnique Fédérale
de Lausanne, Switzerland.

[12] Mao, W. (1997) Verifiable escrowed signature. Informa-
tion Security and Privacy – ACISP ’97 , Sydney, Aus-
tralia, Jul., vol. 1270 of Lecture Notes in Computer Sci-
ence, pp. 240–248, Springer-Verlag, Berlin.

[13] Asokan, N., Shoup, V., and Waidner, M. (2000) Opti-
mistic fair exchange of digital signatures. IEEE Journal
on Selected Areas in Communications, 18, 593–610.

[14] Asokan, N., Shoup, V., and Waidner, M. (1998) Op-
timistic fair exchange of digital signatures. Nyberg, K.
(ed.), Advances in Cryptology – EUROCRYPT ’98 , Es-
poo, Finland, Jun., pp. 591–606, Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin.

[15] Camenisch, J. and Damg̊ard, I. (1998) Verifiable en-
cryption and applications to group signatures and sig-
nature sharing. Tech. Rep. RS-98-32, BRICS, Depart-
ment of Computer Science, Aarhus University, Den-
mark.

[16] Ateniese, G. (1999) Efficient verifiable encryption (and
fair exchange) of digital signatures. Proceedings of 6th
ACM Conference on Computer and Communications
Security (CCS ’99), Singapore, Nov., pp. 138–146,
ACM Press, New York.

[17] Bao, F., Deng, R. H., and Mao, W. (1998) Efficient
and practical fair exchange protocols with off-line TTP.
Proceedings of the IEEE Symposium on Research in
Security and Privacy , Oakland, CA, May, pp. 77–85,
IEEE Computer Society Press, Los Alamitos, CA.

[18] Boyd, C. and Foo, E. (1998) Off-line fair payment pro-
tocol using convertible signatures. Advances in Cryp-
tology – ASIACRYPT ’98 , Beijing, China, Oct., vol.
1514 of Lecture Notes in Computer Science, pp. 271–
285, Springer-Verlag, Berlin.

[19] Chen, L. (1998) Efficient fair exchange with verifiable
confirmation of signatures. Ohta, K. and Pei, D. (eds.),
Advances in Cryptology – ASIACRYPT ’98 , Beijing,
China, 18–22 Oct., vol. 1514 of Lecture Notes in Com-
puter Science, pp. 286–299, Springer-Verlag, Berlin.

[20] Boyar, J., Chaum, D., Damg̊ard, I. B., and Peder-
sen, T. P. (1990) Convertible undeniable signatures.
Menezes, A. J. and Vanstone, S. A. (eds.), Advances in
Cryptology – CRYPTO ’90 , Santa Barbara, CA, Aug.,
pp. 189–205, no. 537 in Lecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin.

[21] Chaum, D. (1983) Blind signatures for untraceable pay-
ments. Advances in Cryptology – CRYPTO ’82 , Santa
Barbara, CA, Aug., pp. 199–203, Plenum, New York.

[22] Zhou, J. (1996) Non-repudiation. Ph.D. thesis, Univer-
sity of London.

[23] Vogt, H., Pagnia, H., and Gärtner, F. C. (2001) Us-
ing smart cards for fair exchange. Electronic Commerce
– WELCOM 2001 , Heidelberg, 16–17 Nov., vol. 2232
of Lecture Notes in Computer Science, pp. 101–113,
Springer-Verlag, Berlin.

[24] Vogt, H., Gärtner, F. C., and Pagnia, H. (2002)
Supporting fair exchange in mobile environments.
ACM/Kluwer Journal on Mobile Networks and Appli-
cations (MONET), to appear.

[25] Franklin, M. K. and Reiter, M. K. (1997) Fair ex-
change with a semi-trusted third party. Matsumoto, T.
(ed.), 4th ACM Conference on Computer and Commu-
nications Security , Zürich, Switzerland, Apr., pp. 1–5,
ACM Press, New York.

The Computer Journal, Vol. 00, No. 0, 0000

Fair Exchange 21

[26] Denning, D. E. (1976) A lattice model of secure infor-
mation flow. Communications of the ACM , 19, 236–
243.

[27] Buttyàn, L. (2001) Building blocks for secure services:
Autenticated key transport and rational exchange pro-
tocols. Ph.D. thesis, École Polytechnique Fédérale de
Lausanne, no. 2511.

[28] Morris, P. (2000) Introduction to Game Theory . Spring-
er-Verlag, Berlin.

[29] Pfitzmann, B., Schunter, M., and Waidner, M. (2000)
Secure reactive systems. Research Report RZ 3206
(#93252), IBM Research.

[30] Schunter, M. (2000) Optimistic Fair Exchange. Ph.D.
thesis, Universität des Saarlandes, Saarbrücken, Ger-
many.

[31] Cervesato, I., Durgin, N., Lincoln, P., Mitchell, J., and
Scedrov, A. (1999) A meta-notation for protocol anal-
ysis. Proceedings of the 12th Annual IEEE Computer
Security Foundations Workshop – CSFW’99 , Mordano,
Italy, Jun., pp. 55–69, IEEE Computer Society Press,
Los Alamitos, CA.

[32] Chadha, R., Kanovich, M., and Scedrov, A. (2001) In-
ductive methods and contract-signing protocols. Sama-
rati, P. (ed.), Proceedings of the 8th ACM Conference
on Computer and Communication Security , Philadel-
phia, PA, Nov., pp. 176–185, ACM Press, New York.

[33] Lamport, L. (1977) Proving the correctness of multi-
process programs. IEEE Transactions on Software En-
gineering , 3, 125–143.

[34] Alpern, B. and Schneider, F. B. (1985) Defining live-
ness. Information Processing Letters, 21, 181–185.

[35] Lamport, L. (1989) A simple approach to specifying
concurrent systems. Communications of the ACM , 32,
32–45.

[36] Shmatikov, V. and Mitchell, J. C. (2002) Finite-state
analysis of two contract signing protocols. Theoretical
Computer Science, 283, 419–450.

[37] Schneider, F. B. (2000) Enforceable security policies.
ACM Transactions on Information and System Secu-
rity , 3, 30–50.

[38] Even, S. and Yacobi, Y. (1980) Relations amoung pub-
lic key signature systems. Tech. Rep. 175, Computer
Science Department, Technicon, Haifa, Israel.

[39] Franklin, M. K. and Tsudik, G. (1998) Secure group
barter: Multi-party fair exchange with semi-trusted
neutral parties. Financial Cryptography – FC ’98 , An-
guilla, British West Indies, Feb., vol. 1465 of Lecture
Notes in Computer Science, pp. 90–102, Springer-Ver-
lag, Berlin.

[40] Aguilera, M. K., Chen, W., and Toueg, S. (2000)
Failure detection and consensus in the crash recovery
model. Distributed Computing , 13, 99–125.

[41] Sander, T. and Tschudin, C. (1998) Towards mobile
cryptography. Proceedings of the IEEE Symposium on
Research in Security and Privacy , Oakland, CA, May,
IEEE Computer Society Press.

[42] Bürk, H. and Pfitzmann, A. (1990) Value exchange sys-
tems enabling security and unobservability. Computers
& Security , 9, 715–721.

[43] Tygar, J. D. (1996) Atomicity in electronic commerce.
Proceedings of the 15th Annual ACM Symposium
on Principles of Distributed Computing (PODC ’96),

Philadelphia, PA, May, pp. 8–26, ACM Press, New
York.

[44] Markovitch, O. and Saeednia, S. (2002) Optimistic fair
exchange with transparent signature recovery. Finan-
cial Cryptography – FC 2001 , Grand Cayman, British
West Indies, 19–22 Feb., vol. 2339 of Lecture Notes
in Computer Science, pp. 339–350, Springer-Verlag,
Berlin.

[45] Liu, P., Ning, P., and Jajodia, S. (2000) Avoiding loss of
fairness owing to process crashes in fair data exchange
protocols. Proceedings of the IEEE International Con-
ference on Dependable Systems and Networks, Work-
shop on Dependability despite Malicious Faults, New
York, Jun., pp. 631–640, IEEE Computer Society Press,
Los Alamitos, CA.

[46] Garay, J. A., Jakobsson, M., and MacKenzie, P. (1999)
Abuse-free optimistic contract signing. Wiener, M.
(ed.), Advances in Cryptology – CRYPTO ’99 , Santa
Barbara, CA, 15–19 Aug., vol. 1666 of Lecture Notes
in Computer Science, pp. 449–466, Springer-Verlag,
Berlin.

[47] Zhou, J. and Gollmann, D. (1996) A fair non-
repudiation protocol. Proceedings of the IEEE Sympo-
sium on Security and Privacy , Oakland, CA, May, pp.
55–61, IEEE Computer Society Press, Los Alamitos,
CA.

[48] Zhou, J. and Gollmann, D. (1997) An efficient non-
repudiation protocol. Proceedings of the 10th IEEE
Computer Security Foundations Workshop, Rockport,
MA, Jun., pp. 126–132, IEEE Computer Society Press,
Los Alamitos, CA.

[49] Zhou, J., Deng, R., and Bao, F. (1999) Evolution of
fair non-repudiation with TTP. Information Security
and Privacy – ACISP ’99 , Wollongong, Australia, 7–
9 Apr., vol. 1587 of Lecture Notes in Computer Science,
pp. 258–269, Springer-Verlag, Berlin.

[50] Bahreman, A. and Tygar, J. (1994) Certified electronic
mail. Proceedings of the ISOC Symposium on Network
and Distributed Systems Security , San Diego, CA, Feb.,
pp. 3–19, IEEE Computer Society Press, Los Alamitos,
CA.

[51] Zhou, J. and Gollmann, D. (1996) Certified electronic
mail. Computer Security – ESORICS ’96 , Rome, Italy,
Sep., vol. 1146 of Lecture Notes in Computer Science,
pp. 160–171, Springer-Verlag, Berlin.

[52] Schneier, B. and Riordan, J. (1998) A certified e-mail
protocol. Proceedings of the 14th Annual Computer Se-
curity Applications Conference, Scottsdale, AZ, Dec.,
pp. 347–352, IEEE Computer Society Press, Los Alami-
tos, CA.

[53] Lynch, N. A., Merritt, M., Weihl, W., and Fekete, A.
(1994) Atomic Transactions. Morgan Kaufmann, San
Mateo, CA.

[54] Bernstein, P., Hadzilacos, V., and Goodman, N. (1987)
Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley, Reading, MA.

[55] Schuldt, H., Popovici, A., and Schek, H.-J. (1999) Give
me all I pay for – Execution guarantees in electronic
commerce payment processes. GI Workshop Informatik
’99: Enterprise-wide and Cross-enterprise Workflow
Management: Concepts, Systems, Applications, Pader-
born, Germany, 6 Oct., Springer-Verlag, Berlin.

The Computer Journal, Vol. 00, No. 0, 0000

22 H. Pagnia, H. Vogt and F. C. Gärtner

[56] Ketchpel, S. P. and Garcia-Molina, H. (1996) Mak-
ing trust explicit in distributed commerce transactions.
Proceedings of the 16th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS96),
Hong Kong, May, pp. 270–281, IEEE Computer Society
Press, Los Alamitos, CA.

[57] Bao, F., Deng, R., Nguyen, K. Q., and Varadharajan,
V. (1999) Multi-party fair exchange with an off-line
trusted neutral party. Proceedings of the 10th Interna-
tional Workshop on Database & Expert Systems Appli-
cations, Florence, Italy, 1–3 Sep., pp. 858–862, IEEE
Computer Society Press, Los Alamitos, CA.

[58] Markowitch, O. and Kremer, S. (2000) A multi-party
optimistic non-repudiation protocol. Information Secu-
rity and Cryptology – ICISC 2000 , Seoul, Korea, Dec.,
vol. 2015 of Lecture Notes in Computer Science, pp.
109–122, Springer-Verlag, Berlin.

[59] Baum-Waidner, B. and Waidner, M. (2000) Round-
optimal and abuse-free multi-party contract signing.
27th International Colloquium on Automata, Lan-
guages and Programming (ICALP ’2000), Geneva,
Switzerland, Jul., pp. 524–535, Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin.

[60] Pagnia, H. and Jansen, R. (1997) Towards multiple-
payment schemes for digital money. Hirschfeld, R. (ed.),
Financial Cryptography: First International Confer-
ence, FC ’97 , Anguilla, British West Indies, 24–28 Feb.,
vol. 1318 of Lecture Notes in Computer Science, pp.
203–215, Springer-Verlag.

[61] Syverson, P. (1998) Weakly secret bit commitment: Ap-
plications to lotteries and fair exchange. Proceedings of
the 11th IEEE Computer Security Foundations Work-
shop (CSFW ’98), Rockport, Massachusetts, Jun., pp.
2–13, IEEE Computer Society Press, Los Alamitos, CA.

[62] Jakobsson, M. (1995) Ripping coins for fair exchange.
Guillou, L. C. and Quisquater, J.-J. (eds.), Advances in
Cryptology – EUROCRYPT ’95 , St. Malo, France, 21–
25 May, vol. 921 of Lecture Notes in Computer Science,
pp. 220–230, Springer-Verlag, Berlin.

[63] Buttyàn, L. and Hubaux, J.-P. (2001) Rational ex-
change – A formal model based on game theory. Elec-
tronic Commerce – WELCOM 2001 , Heidelberg, Nov.,
vol. 2232 of Lecture Notes in Computer Science, pp.
114–126, Springer-Verlag, Berlin.

[64] Sandholm, T. W. and Lesser, V. R. (1995) Equilibrium
analysis of the possibilities of unenforced exchange in
multiagent systems. Mellish, C. S. (ed.), Proceedings of
the Fourteenth International Joint Conference on Arti-
ficial Intelligence, Montreal, Canada, Aug. 20–25, pp.
694–703, Morgan Kaufmann, San Mateo, CA.

[65] Zhou, J. and Lam, K.-Y. (1999) A secure pay-per-view
scheme for web-based video service. Public Key Cryp-
tography – PKC ’99 , Kamakura, Japan, Mar., vol. 1560
of Lecture Notes in Computer Science, pp. 315–326,
Springer-Verlag, Berlin.

[66] Even, S. (1982) A protocol for signing contracts. Ger-
sho, A. (ed.), Advances in Cryptology: A Report on
CRYPTO 81 , Santa Barbara, USA, Aug., pp. 148–153,
ECE Report No 82-04, U.C. Santa Barbara, Depart-
ment of Elec. and Computer Eng.

[67] Blum, M. (1983) How to exchange (secret) keys. ACM
Transactions on Computer Systems, 1, 175–193.

[68] Brickell, E. F., Chaum, D., Damg̊ard, I. B., and van de
Graaf, J. (1987) Gradual and verifiable release of a se-
cret. Advances in Cryptology – CRYPTO ’87 , Santa
Barbara, CA, Aug., vol. 293 of Lecture Notes in Com-
puter Science, pp. 156–166, Springer-Verlag, Berlin.

[69] Damg̊ard, I. B. (1993) Practical and provably se-
cure release of a secret and exchange of signatures.
Helleseth, T. (ed.), Advances in Cryptology – EURO-
CRYPT ’93 , Lofthus, Norway, May, vol. 765 of Lecture
Notes in Computer Science, pp. 200–217, Springer-Ver-
lag, Berlin.

[70] Boneh, D. and Naor, M. (2000) Timed commitments.
Advances in Cryptology – CRYPTO ’2000 , Santa Bar-
bara, CA, vol. 1880 of Lecture Notes in Computer Sci-
ence, pp. 236–254, Springer-Verlag, Berlin.

[71] Rabin, M. O. (1983) Transaction protection by beacons.
Journal of Computer and System Science, 27, 256–267.

[72] Ben-Or, M., Goldreich, O., Micali, S., and Rivest,
R. L. (1990) A fair protocol for signing contracts. ACM
Transactions on Information Theory , 36, 40–46.

[73] Markowitch, O. and Roggeman, Y. (1999), Probabilis-
tic non-repudiation without trusted third party. Pre-
sented at the Second Conference on Security in Com-
munication Networks (SCN99), Amalfi, Italy, no con-
ference proceedings.

[74] Garay, J. A. and MacKenzie, P. (1999) Abuse-free
multi-party contract signing. Distributed Computing –
DISC ’99 , Bratislava, Slovak Rep., 27–29 Sep., vol.
1693 of Lecture Notes in Computer Science, pp. 151–
165, Springer-Verlag, Berlin.

[75] Shmatikov, V. and Mitchell, J. C. (2001) Analysis of
abuse-free contract signing. Financial Cryptography –
FC 2000 , Anguilla, British West Indies, 21–24 Feb.,
vol. 1962 of Lecture Notes in Computer Science, pp.
174–191, Springer-Verlag, Berlin.

[76] Das, S. and Dill, D. L. (2001) Successive approximation
of abstract transition relations. Proceedings of the 16th
Annual IEEE Symposium on Logic in Computer Sci-
ence, Boston, MA, Jun., pp. 51–58, IEEE Computer
Society Press, Los Alamitos, CA.

[77] Kremer, S. and Raskin, J.-F. (2002) Game analysis
of abuse-free contract signing. Proc. of the 15th IEEE
Computer Security Foundations Workshop, Cape Bre-
ton, Nova Scotia, Canada, Jun., IEEE Computer Soci-
ety Press, Los Alamitos, CA.

[78] Kremer, S. and Raskin, J.-F. (2000) Formal verification
of non-repudiation protocols – A game approach. Tech.
Rep. 431, Université Libre de Bruxelles, Belgium, pre-
sented at the Workshop on Formal Methods and Com-
puter Security, Chicago, 2000.

[79] Pagnia, H., Vogt, H., Gärtner, F. C., and Wilhelm,
U. G. (2000) Solving fair exchange with mobile agents.
ASA/MA 2000 , Zürich, Switzerland, Sep., vol. 1882 of
Lecture Notes in Computer Science, pp. 57–72, Spring-
er-Verlag, Berlin.

The Computer Journal, Vol. 00, No. 0, 0000

