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{log} (‘setlog’) is a satisfiability solver for formulas of the theory of finite sets
and finite set relation algebra (FS&RA). As such, it can be used as an automated
theorem prover (ATP) for this theory. {log} is able to automatically prove a
number of FS&RA theorems, but not all of them. Nevertheless, we have observed
that many theorems that {log} cannot automatically prove can be divided into a
few subgoals automatically dischargeable by {log}. The purpose of this work is to
present a prototype interactive theorem prover (ITP), called {log}-ITP, providing
evidence that a proper integration of {log} into world-class ITP’s can deliver a
great deal of proof automation concerning FS&RA. An empirical evaluation based
on 210 theorems from the TPTP and Coq’s SSReflect libraries shows a noticeable
reduction in the size and complexity of the proofs with respect to Coq.
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1. INTRODUCTION

Interactive theorem proving (ITP) [1] is increasingly
used in the formalization and proof of results of
mathematics and logic, and also a widely used approach
to formal verification of hardware and software. ITP’s
such as Coq [2], Isabelle/HOL [3] and HOL Light [4]
vary in the level of expressivity and automation, but
typically support rich specification languages including
higher-order logic or dependent type theory. Since
interactive theorem proving is labor intensive, thus
costly and limited, much research has been devoted to
the development of automated reasoning.

SMT solvers [B] implement decision procedures for
the satisfiability problem of formulas of specific theories.
Since they have significantly improved their power in
the last decades, it has become increasingly common
for ITP’s the use of SMT solvers as efficient automated
theorem provers (ATP) for the corresponding theories.
As a consequence, users of mainstream ITP’s can call
ATP’s [0, [7] and SMT solvers [8, [9] to automatically
advance their proofs. These ad-ons exploit the idea
of mixing interactive and automated proof steps. Our
proposal fits in this line of work as we propose to
integrate {log} as a special purpose ATP into ITP’s.

{log} is a satisfiability solver accepting an input
language at least as expressive as the class of full set
relation algebras on finite sets (FS&RA) [10]. FS&RA

essentially corresponds to the first-order fragment of
formal notations such as Alloy [11], B [12] and Z [13]
restricted to finite sets. In consequence, this input
language can be used as a specification language for
a large class of software systems and {log} as a tool to
reason about them.

{log} can automatically provdd 97% of the theorems
on Boolean algebra (BOO), relation algebra (REL) and
set theory (SET) gathered in the TPTP library [I4]
that can be expressed in its input language (in .3 s
each in average), see [I5]. Since the equational theory
of FS&RA is undecidable [16], {log} cannot decide the
satisfiability of all the formulas it accepts. Moreover,
{log} can take too long to decide the satisfiability of
some formulas. For example, it takes a long time to
prove the following result:

feA—-BAranf=BAgeB—C

(T1)
ANheB—-CANfog=foh = g=nh

where A, B and C denote any finite sets, A — B
denotes the set of all (finite) functions from A to B
(in this context a function is a binary relation where no
two ordered pairs have the same first component) and
ran f is the range of f. Nevertheless, since g = h <=

4By an abuse of language, from now on we will say that {log}
can or cannot prove a theorem to mean that it can decide or not
the satisfiability of its negation (see Remark [2] below).
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g C hAhC g, the proof of (T can be reduced to the
proofs of the following two implications, on which {log}
spends a few seconds:

feEx—>xANranf=BANg€ B — %
ANhEx—=xANfog=foh = gCh

feEx—>xANranf=BAgeE*x—x
ANhe€B—3xANfog=foh = hCy

Here x means that the corresponding hypotheses can be
dropped (for example, f € x — * says that it does not
matter what the domain and range of f are). Thus,
by dividing the proof of (Td) into subgoals and by
dropping the appropriate hypotheses in each, {log} can
automatically do the rest.

We have noticed that in practice the approach
above succeeds on proving many results that {log}
cannot automatically prove. As a consequence, in this
paper we present {log}-ITP, a prototype interactive
theorem prover where users can enter any {log}
formula and interactively prove it. More precisely, in
{log}-ITP users can divide the proof into subgoals,
drop hypotheses and call {log} to perform the actual
mathematical steps. This follows the way other tools,
such as Atelier B [I7] and the Coq’s why3 [I8] tactic,
work. We point out that {log}-ITP is just a vehicle
to provide evidence that a proper integration of {log}’s
rewriting system into world-class ITP’s can deliver a
great deal of proof automation concerning FS&RA.

In order to validate our proposal in practice we
perform a number of proofs with {log}-ITP and Coq.
On these theorems {log} either does not terminate or
takes a very long time to do it. This comparison shows
promising results as Coq proofs are harder and longer
than {log}-ITP’s (see Section M for details).

As SMT solvers, {log} generates a solution when
it determines that a formula is satisfiable. Indeed,
{log} provides a finite representation of all the (possibly
infinitely many) solutions [I0]. In the context of
integrating {log} into an ITP, this means that if {log}
is called to advance a proof but it happens that the goal
is not provable from the premises, a counterexample is
generated. This counterexample might help the user
to adjust the theorem or the theory which contains it.
QuickChick has been proposed as a tool to decrease the
number of failed proof attempts in Coq by generating
counterexamples before a proof is attempted [19]. This
tool relies on a random counterexample generator.
Although {log} counterexamples are generated in a
deductive fashion, it is also more limited as it works
only for a specific theory.

Let us finally mention that traditional ATP’s such
as E prover [20] and Vampire [21] can automate proofs
of FS&RA. Since they can efficiently solve many FOL
problems, they work by encoding set theory in (most
often) untyped first-order logic. One of the simplest
encodings applies extensionality and rewrites away all
definitions, thus arriving at formulas based on set

membership. However, these encodings must deal with
typing information when sets do not have the same set
support. The easiest way to deal with this issue is to
omit all type information, but this approach is unsound.
Another way to deal with types is to annotate terms
with type tags or guards. This considerably increases
the size of the problems passed to generic ATP, with
a dramatic impact on their performance [22, [23].
Another approach to proof automation in set theory
is to use polymorphic provers. Our work follows this
approach as {log} can be seen as a specialized prover
for polymorphic set theory. The empirical assessment
presented in this paper confirms the results reported by
other polymorphic provers [23] 24] 25| 26| 27].

This paper is structured as follows. The logic
language supported by {log} and some of its main
features are presented in Section 2l Section [3] describes
{log}-ITP which is empirically evaluated in Section @
We give our final conclusions in Section

2. {LOG}: A SATISFIABILITY SOLVER
FOR FINITE SETS AND RELATIONS

In this section we provide a brief, informal introduction
to the {log} system [29]. A formal presentation of
{log}’s language can be found in deeper

presentations can be found elsewhere [10] 15} 28].

2.1. The {log} language

{log} [29] is a satisfiability solver implemented in Prolog
whose input language is denoted L. This is a multi-
sorted first-order predicate language with two distinct
sorts: the sort Set of all the terms which denote sets
(including binary relations) and the sort O of all the
other terms. Thus, we do not introduce distinct sorts
for sets and binary relations. Binary relations are just
sets of ordered pairs. This allows sets and relations
to be freely mixed; in particular all set operators are
directly applicable to binary relations.

NoOTE 1 (Background on binary relations). Let R and
S be binary relations, and A a set. Then, we define
following relational operators: relational composition,
RoS = {(x,2) | y((z,y) € RA (y,2z) € S)}; converse
(or inverse) of R, R~ = {(y,z) | (z,y) € R}; the
identity relation on A, idA = {(z,z) | = € A};
domain of R, domR = {z | Jy((xz,y) € R)}; range
of R, ranR = dom R~; domain restriction of R on
A, A< R = id(A) o R; range restriction of R on A,
R A = Roid(A); domain anti-restriction of R on A,
A< R =R\ (A< R); range anti-restriction of R on A,
Re A = R\ (R > A); relational image of A through
R, R[A] = ran(A < R); and relational overriding of R
by S, R®S = (dom S < R)US. A binary relation is
a (partial) function if no two of its ordered pairs have
the same first component. Given that functions are just
binary relations, all relational operators can be applied
to functions. O
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In Lpr set operators are encoded as constraints
over the domain of finite hybrid sets. For example:
un(A, B,C) is a constraint interpreted as C' = AU B.
{log} implements a wide range of set and relational
operators (cf. Note 2]). For instance, € is a constraint
interpreted as set membership; = is set equality;
dom(R, D) corresponds to domR = D; A C B
corresponds to the subset relation; comp(R,S,T) is
interpreted as T = R o S; and apply(F,X,Y) is
equivalent to pfun(F) A [X,Y] € F, where pfun(F)
constrains F' to be a (partial) function. Formulas
in {log} are conjunctions (A) and disjunctions (V) of
constraints. Negation is introduced by means of so-
called negated constraints. For example nun(A, B, C)
is interpreted as C' # AU B and ¢ as the negation of
¢. In general, if 7 is a constraint, nm corresponds to
its negated form. For formulas to fit inside the decision
procedures implemented in {log}, users must only use
this form of negation.

In turn, terms can be either uninterpreted Herbrand
terms (as in Prolog) or set terms, i.e., terms with the
following form and interpretation: () to denote the
empty set; {x u A}, called extensional set, which is
interpreted as {z} U A, where A is a set term; and
A x B to represent the Cartesian product between the
sets denoted by set terms A and B.

In {log} sets are always finite and untyped and they
are allowed as set elements (i.e., sets can be nested).
As the second argument of an extensional set can be a
variable, sets in {log} can be unbounded.

NOTE 2 (Binary relations and expressivenes). Lgr
turns out to be at least as expressive as the class
of full set relation algebras on finite sets. A full set
relation algebra [16] over a base set A, denoted R(A),
is the relation algebra where relations are subsets of
A x A. A mapping from formulas of a R(A) with A
finite to Lpg formulas can be easily defined [10]. The
class of full set relation algebras on finite sets is the
class of relation algebras J3(A) where A is a finite set.
Further, Lzr allows for the definition of the class of
full set heterogeneous relation algebras on finite sets.
An heterogeneous relation algebra deals with relations
between two arbitrary sets A and B, i.e. with subsets
of A x B [33]. We use the acronym FS&RA to denote
such a class, for any A and B finite.

The class of full set heterogeneous relation algebras
roughly corresponds to the first-order fragment of
formal notations such as Alloy [1I], B [12] and Z
[13]. A large class of programs can be specified within
this fragment. The limitation of Lggr to finite sets
is not so severe as many programs operate only on
finite data structures. Therefore, Lpr can be used as
a specification language for a large class of software
systems and {log} as a tool to reason about them
[311, 34 [35] (301 [32]. O

2.2. A rewriting system for Lzr

{log} implements a rewriting system for Lzr formulas,
called SAT R, whose global organization is shown in
Algorithm [[l Basically, SATsr uses two procedures:
sort_infer and STEP.

Algorithm 1 The solver SATsx.
formula.
O + sort_infer(P);
repeat
P’ + P;
® + STEP(D)
until ® = @’;
return ¢

® is the input

Lpr does not provide variable declarations. For this
reason, sort_infer(®) automatically adds either a set
or a rel constraint for each variable X in ® which is
required to represent, respectively, either a set or a
binary relation according to the intended interpretation
of the terms or constraints where X occurs.

STEP applies specialized rewriting procedures to
the current formula ® and returns either false or a
modified formula. Each rewriting procedure applies a
few non-deterministic rewrite rules which reduce the
syntactic complexity of Lpr constraints of one kind.
The execution of STEP is iterated until a fixpoint is
reached, i.e., the formula is irreducible. STEP returns
false whenever (at least) one of the procedures in it
rewrites ® to false.

The rewriting procedures implemented in {log} can
be divided into two classes: those for set constraints
and those for relational constraints. The former were
introduced in [36] and extensively discussed from then
on. They constitute the base for a decision procedure
for finite sets based on set unification and set constraint
solving. The latter were introduced more recently
[10, 15]. Roughly, there are 50 rewriting procedures
adding up 175 rewrite rules.

Here we just show some of the most representative
rewrite rules in Figure [ (the reader can find a
comprehensive list online [37]). Note that these rules
are recursive. Rule () finds all possible solutions for
the equality between two non-empty extensional sets.
The second and third disjuncts take care of duplicates
in the right- and left-hand side terms, respectively, while
the last disjunct takes care of permutativity of the set
constructor {-u-}. Specifically, the last disjunct can be
read as ‘y must belong to A, x must belong to B and
there exists a set N containing the remaining elements
of both A and B’. In turn, rule (@) finds all possible
solutions of a set union operation when the result is a
non-empty extensional set, where N, Ny and Ny are
new variables (implicitly existentially quantified). Note
that set unification is used to avoid possible repetitions
of t in C. Also observe that the disjunction captures
the three possible solutions: ¢ belongs to A, ¢t belongs
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{zuA} ={yuB} —
r=yNA=DB
Ve=yA{zuvA} =B (1)
Ve=yANA={yuB}
VA={yuN}A{zuN} =B
un(A, B, {tuC}) —
{tuC}={tuN}At¢N
AN(A={tuNi} ANun(Ny,B,N) @)
VB ={tuNi} Aun(A,N1,N)
VA={tuN}
A B = {tu N2} A un(Ny, Na, N))
inv(R, {(y,z)uS}) —

R ={(z,y) u N} Ainv(N,S) ®)

FIGURE 1. Representative rewriting rules

to B and t belongs to A and B. Finally, rule (@)
finds the binary relation whose converse is a non-empty
extensional relation in a very simple way.

The rewriting system implemented by {log} has been
proved to be a semi-decision procedure [I0]. More
precisely, it has been proved that: a) when Algorithm [II
terminates, the returned formula preserves the set
of solutions of the input formula; b) the returned
formula is false if and only if the input formula is
unsatisfiable; and c) if the returned formula is not false
it is trivial to calculate one of its solutions (basically
by substituting all set variables by the empty set). In
this context, a ‘solution’ is an assignment of values
to all the free variables of the formula. Furthermore,
when {log} terminates, it has the ability to produce
a finite representation of all the (possibly infinitely
many) solutions of the input formula, in the form of
a finite disjunction of Lpr formulas. In other words,
whenever {log} terminates, it either produces a proof
of unsatisfiability or a finite representation of all the
solutions.

2.3. Using {log}

Users interact with {log} by simply entering a formula;
there are no user commands. If the formula is
unsatisfiable {log} will simply return false and if it is
satisfiable it will return a finite representation of all its
solutions.

ExaMpPLE 1. For example, the following is a
satisfiable formula (note that binary relations can be
freely combined with extensional sets, and set operators
can take relations as arguments):

un(4, B,{(1,1), (h,3)uC x D})

Nid(E,A)Ninv(B,BYA1¢ E (4)

The relevant part of a solution returned by {log} is:

A={(3,3)uNs},B={(1,1)u Na},

h=3,E={3uN}

Constraint: 3 ¢ C,un(Na, N3,C x D),id(N1, N3),
inv(Na, Na), ...

where N, are fresh variables. That is, each solution
is composed of a (possibly empty) conjunction of
equalities between variables and terms and a (possibly
empty) conjunction of constraints. The conjunction of
constraints is guaranteed to be trivially satisfiable. [

In this context, {log} can be used as a set-based,
constraint-based programming language. Users can
give values to what they consider to be input variables
in the formula and {log} will return values for the
remaining variables. For instance, if () is thought as
a program where A and B are inputs and the user
enters @) conjoined with A = {(2,2),(3,3)} AB =
{(1,1),(1,2),(2,1)}, the answer willbe h =3,C = D =
{1,2}, E = {2,3}. In {log}, formulas are programs.

Given that {log} is a satisfiability solver we can use
it also as an automated theorem prover. To prove
that formula ® is a theorem, {log} has to be called
on —® waiting an false answer, meaning that —® is
unsatisfiable (and thus @ is a theorem).

ExaMPLE 2. We can prove that set intersection is
commutative by asking {log} to prove the following
formula is unsatisfiable:

inters(A, B,C) Ninters(B,A,D) NC # D

As there are no finite sets satisfying this formula, {log}
returns false. The formula can also be written as:

inters(A, B, C) A ninters(B, A, C) O

All these properties along with programming facilities
not discussed in this paper [29], make {log} a versatile
verification tool [31], (34} 35, [30] 32].

3. AUTOMATING
PROOFS

COMPLEX FS&RA

As we have pointed out, {log} may not terminate or
may take a very long time when it is used to prove
some theorems of FS&RA. However, we have observed
that in practice the proofs of many of such theorems
can be divided into a few subgoals each of which can
be automatically and quickly discharged by {log}. In
fact, these proofs follow a recurring pattern: divide the
proof by introducing some assumptions, drop zero or
more hypotheses in each subgoal and call {log} to do the
hard, annoying mathematical work. This would imply
that complex theorems of FS&RA can be easily proved
by calling {log} at the right points.

In order to provide evidence of these observations, we
have developed a proof-of-concept ITP on top of {log}
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that we call {log}-ITP. This is a freely available +500
LOC Prolog program [38] that allows users to declare
a {log} formula as a theorem and attempt to prove it
interactively through some proof commands. First, we
will show a typical proof using {log}-ITP, and then we
will give technical details about the proof system.

REMARK 1 (Limitations). It is important to bear in
mind that {log}-ITP is intended to be an ITP only for
theorems of FS&RA and only to empirically validate
our proposal. This means that it cannot be compared
in no way with general-purpose ITP’s such as Coq or
Isabelle/HOL.

3.1. A typical proof

(TI) is declared as a {log}-ITP theorem with the
theorem command:

theorem(T1,
pfun(f) N f C A x BA dom(f,A) A ran(f, B)
A pfun(g) A g C€ B x C A dom(g, B)
A pfun(h) Nh C B x C
A dom(h, B) A comp(f, g, N) A comp(f, h,N),
g=nh)

where the first parameter is just a name for the theorem,
the second one is a (possibly empty) conjunction of
hypotheses and the third one is the thesis, both entered
as {log} formulas. Note that f € A — B is encoded
in {log} as pfun(f) A f C A x B A dom(f, A) and that
fog = fohisencoded as two comp constraints yielding
the same result (V).

As we have said, an automated proof of (TT)) would
take a long time. However, the interactive proof shown
in Figure[2] takes only a few seconds of computing time.
There, T represents the hypotheses of (T1)). The proof
starts with the rewrite command which splits the proof
into the two subgoals shown in Figure Attempting
to use {log} to prove these subgoals by means of the
command prove would consume as much time as the
proof of the initial goal because they are essentially the
same. As the proof of these two subgoals is symmetric,
we will explain in detail only the first one. In this case
the user can use the following drop command, which
expects a list of {log} constraints:

drop([f € A x B, dom(f, A),

5
g C BxC,hC B xC,dom(h, B)]) (5)

These constraints are expected to be part of I' in
which case they are removed from it, thus yielding the
following hypotheses:

pfun(f) A ran(f, B) A pfun(g) A dom(g, B)
A pfun(h) A comp(f, g, N) A comp(f,h,N)

called I'; in Figurel Now, prove discharges the current
subgoal in a few seconds. Since in this case {log}

succeeds in proving the goal, the system shows to the
user the remaining subgoal. A similar course of action
is taken to discharge the remaining subgoal, where a
different list of constraints is passed in to the drop
command.

In Section B3] we discuss some aspects of this proof
and present the complete proof script in (Gl).

3.2. Proof commands

In this section we present in detail the main proof
commands of {log}-ITP (see Figure ). Some of them
are direct implementations of well-known inference rules
while others implement a few such rules in a single proof
step.

REMARK 2 (Interfacing with {log}). As we already
said, as {log} is a satisfiability solver, it can be used
as an ATP. Indeed, if {log} finds that formula ¢ is
unsatisfiable in FS&RA, then —¢ is a theorem (in
FS&RA). Thus, when {log} is used as a back-end
system for an ITP, formulas must be negated before
sending them from the ITP to {log}. However, with
the intention to simplify the presentation, we are not
going to mention this negation process in the remaining
of the paper. This implies that, for example, when
in the command called prove (Figure B) we say that
I' = A is sent to {log} it actually means that its
negation I' A =A is sent to it. O

Concerning Figure [3 the assume command can be
seen as the implementation of a special case of the
Cut rule; cases corresponds to conjunction introduction;
and drop is a specialized version of the Weakening rule
where the antecedent is weakened in order to deliver to
{log} exactly the necessary hypotheses that yield the
consequent.

define waits for a constraint = € {un, inv, id, comp}.
The last argument of 7 is expected to be a new variable
and all the others must be variables in the current scope
(of the proper sort). For instance, if in the current
scope R is a binary relation then the user can issue
define(inv(R, S)), where S is a new variable, in which
case inv(R,S) is added as a new hypothesis. This
is sound because what we are doing is no more than
asserting that the converse of R is called S. Now
the user can make assumptions on S. For example,
assume(pfun(S)), which means that S (i.e., the converse
of R) is a function. Without such a command it would
be impossible to consider assumptions on expressions
assembled from variables in the current scope, as in
{log}-ITP set and relational operations are represented
as predicates.

The prove command simply calls {log} on the current
subgoal. In this case, there are three possible behaviors:
a) {log} answers that the current subgoal is indeed
valid and so it is proved and the next one (if any) is
shown to the user; b) {log} answers that there is a
counterexample (for instance if too many hypotheses
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ove o8} ove 1ok
) P TiFgCh . P T2FgCh
, op TFgCh rop TFhCyg
rewrite TF g= A
FIGURE 2. {log}-ITP proof of theorem T1 or (TT])
LA Tl 'kEp, A TFEEA g TFA
assume(¢p) T-A cases TEonEA rop(¢) T.oF A
define(r) Lir(...,n)FA setlog(I' = A)
erine(m prove
T'FA 'kA

I, (v =t)[n/x] - p[n/x]
'k (v=t = ¢)[n/z]

I, (w=w)[n/z] - &n/x]
'k (w=u = &)[n/z]

F'EVz:v=t = ¢

'EVz:w=u = ¢

F'FMVz:v=t = Q) ANVz:w=u = &)

rewrite

'k 7(v,w)

FIGURE 3. Main {log}-ITP proof commands as inference rules

have been dropped) in which case a proper error
message is printed; and ¢) {log} takes too long and the
user decides to interrupt the command. In b and ¢ the
proof is unchanged. In b users can execute command
counterex to get a counterexample witnessing why the
goal failed (recall the discussion on the generation of
counterexamples in the introduction).

rewrite calls {log} to rewrite the thesis; that is {log}
is called to apply a rewrite rule to the thesis (eg. one of
the rules of Figure ) thus generating one or more new
goals to prove—this last case occurs when the rewrite
rule is nondeterministic. The thesis is assumed to be
a single constraint. Each of these new goals should be
simpler to prove than the orginal one. For each new goal
generated by the rewrite rule, rewrite performs three
proof steps in one (see Figure [3]):

1. It applies conjunction introduction to the goal. If
the subgoal is a conjunction of constraints, then
the user will prove one after the other.

2. It applies universal introduction on each subgoal
generated in step [II As the new goal will in
general be a universally quantified formula, these
quantified variables are ‘introduced’.

3. It applies conditional introduction on each subgoal
generated in step [[I As in the previous step, the
new goal will in general be a conditional and so
hypotheses are ‘introduced’ as well.

For example, if T' F pfun(f) is the current goal, the net
effect of rewrite is shown in Figure @ where z, y, z, v
and N are new variables. If, for instance, {log} does
not terminate on I" - pfun(f), after rewrite the user has
two simpler goals to prove. In particular, the one on
the right most often can be automatically and quickly
discharged with prove. In Figure M rewrite produces

those two subgoals because in Lgr we have:

pfun(f) <
(Vv : v € f = pair(v))
ANV, y,z: (2,y) € fA(1,2) € f=y=2)

where v € f is equivalent to f = {vu N} for some new
variable N, which yields the equalities seen in Figure [4
Then, when conjunction, universal quantification and
implication are introduced as in Figure Bl we get the
result shown in Figure [l

Actually, the inference rule given for rewrite in
Figure Bl is a simplification of the real rule. Here
we assume that the current thesis is a constraint
7 depending on two variables (v and w), which
when rewritten by {log} delivers a conjunction of two
universal formulas (in the real case it can be any number
of them). These formulas have all the same form
equalities = predicate, where equalities is a (possibly
empty) conjunction of equalities of the form var = term
where var is one of the variables on which 7 depends on;
and predicate is a (possibly empty) conjunction of Lzr
constraints. In Figure B] we assume that the equalities
in each conjunct have exactly one equality.

It is important to remark that {log}-ITP does not
need a command, for instance, to perform equality
substitution because this is performed by {log} when
prove is executed. In effect, if prove is issued, for
example, on ', f = {v u N} F pair(v), then {log} will
substitute f by {vu N} inT.

3.3. Discussion

As can be seen in Figure Bl many {log}-ITP’s proof
commands correspond to standard inference rules
present in ITP’s. Then, they can be easily replaced
by the proof commands present in a particular ITP.
As concerns proof automation, the drop command
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F,f:{(:c,y),(:c,z)uN}Fy:z

I, f={vuN}t pair(v)

L' F pfun(f)

FIGURE 4. Example of a rewrite step

plays a central role. In effect, it allows to call {log}
with the minimal set of hypotheses as to prove the
goal. This implies a reduction of the proof term and
consequently of the computing time. As opposed to the
usual fact that the more hypotheses are available during
an interactive proof, the better, dropping hypotheses is
decisive to the success of our approach. Indeed, when
an ATP is called to perform a proof step, unnecessary
hypotheses may make it walk through many actually
useless proof paths (and, in the case of tools like {log},
that might not terminate in some cases, they can take
an infinite proof path). Hence, by dropping unnecessary
hypotheses the prover has fewer proof paths to walk
through, thus augmenting the chances to end the proof
and to do it faster.

On the downside, the key role of drop sensibly changes
the proof style as now the user must determine which
hypotheses are superfluous to prove a subgoal instead
of using them to prove it.

We also note that our approach tends to reduce the
influence of a good lemma engineering. That is, users
usually plan which lemmas go first and which follow,
so as to use the former in the proofs of the latter. For
example, the Coq proof of (TT) is the followingE:

move=>is_function_F is_function_G
is_function_H range_F_eq_B rel_comp_eq.
apply/eqP; rewrite egEsubset; apply/andP;
split.
- exact: (auxT is_function_F is_function_G
range_F_eq_B rel_comp_eq).
- symmetry in rel_comp_eq.
exact: (auxT is_function_F is_function_H
range_F_eq_B rel_comp_eq).
where auxT is a helper lemma whose importance was
made evident after the first proof attempt (TT]). Indeed,
auxT states that g C h holds if the hypotheses of ()
are satisfied. Its proof is the following:

move=>[fun_cond_F _ _] [_ domain_G_eq_B _]
range_F_eq_domain_G rel_comp_eq;

apply/subsetP => p p_in_G.
have: p.1 \in range F.

rewrite range_F_eq_domain_G -domain_G_eq_B.

apply/in_domainP; exists p.2.

by rewrite -[(p.1,p.2)]surjective_pairing.
move=> /in_range_restP [a [_ pair_in_F]].
have: (a,p.2) \in rel_comp F H.

by rewrite -rel_comp_eq;apply/in_rel_compP;

exists p.1; split;

5The reader does not need to understand the proofs, just to
have an idea of their length and complexity.

[exact: pair_in_F |
rewrite -[(p.1,p.2)]surjective_pairing].

move=> /in_rel_compP [b [in_F in_H]].
have pl_eq_b: p.1 = b by apply:
((((fun_cond_F (a,p.1)) (a,b)) pair_in_F)

in_F).
by rewrite [p]lsurjective_pairing pl_eq_b.

Now, compare Coq’s proof of (T)) with {log}-ITP’s

(cf. Section BI):

rewrite. (6)
—drop([f C A x B, dom(f, A),
g C B x C,dom(g,B),h C B x (),
prove.
—drop([f C A x B, dom(f, A),
g C BxC,h C BxC,dom(h,B)]),
prove.

where no helper lemma is necessary and the complex
proof of auxT is replaced by dropping hypotheses and
then calling {log}. On the other hand, as in Coq, the
user still needs to guide the proof by splitting the initial
goal into ¢ C h and h C g and the symmetry used in
the Coq proof (i.e., symmetry) is still present in the
{log}-ITP proof, when symmetric drop commands are
executed. Hence, were {log} available in Coq the proof
of (TT) would not need the helper lemma and it would
still be compact and semi-automatic.

However, there is still room for further automation.
CoqHammer [6] uses external ATPs to automate Coq
proofs. CoqHammer helps in automating the proof of
(@TD:
move=> is_function_F is_function_G

is_function_H range_F_eq_B rel_comp_eq.
apply/eqP; rewrite eqEsubset; apply/andP;
split.
- hammer.
- hammer.

where hammer needs lemma auxT to prove both
subgoals. However, hammer cannot prove auxT
automatically. Then, were CoqHammer and {log}
available, the Coq proof of (TI)) could be almost
automatic: first use drop and prove to prove auxT; and
then use hammer to prove () as above.

CoqHammer depends on a good lemma engineering.
Conversely, {log} does not depend on such engineering
but it can only prove results of FS&RA. A combination
between a general tool like CoqgHammer with special-
ized provers such as {log}, seems to be a promising
strategy towards proof automation.
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4. EMPIRICAL ASSESSMENT

As we have said, our intention is to provide
evidence that integrating {log}’s rewriting system into
mainstream ITP’s will yield a noticeable increment in
proof automation concerning FS&RA. This is {log}-
ITP’s single purpose. To this end, we performed 210
proofs with {log}-ITP and Coq in order to compare
their complexity and length. In an attempt to avoid as
much as possible a bias towards {log}-ITP, 21 proofs
correspond to problems listed in the REL and SET
collections of the TPTP library ((Id)) is an example)
which satisfy that {log} either does not terminate or
takes a very long time to do it when it is applied to
prove them®. The remaining 189 proofs correspond to
lemmas included in Coq’s SSReflect finite set library,
finset] [39). We chose finset for three reasons: a)
it has been designed as to make it easy to prove those
lemmas in Coq; b) a fragment of finset’s set theory
keeps a clear relationship with respect to {log}’s; and
¢) it would provide evidence that proof automation of
real Coq results can be achieved with our proposal.
Finally, the Coq proofs were performed by one of the
authors (with experience in working with SSReflect),
while {log}-ITP’s were done by another author.

As concerns the TPTP problems, they are encoded
in Coq by extending SSReflect’s finset. SSReflect
is a proof language extending Coq with additional
tactics oriented to support long mathematical proofs.
finset defines a type for sets over a finite type. It
includes definitions such as set membership, union,
Cartesian product, etc. However, it does not include
set relation algebra definitions such as the identity
relation, converse (or inverse), composition, and
(partial) function. Since these are necessary to reason
about Lpr formulas, we defined them in Coq. For
example, our Coq set-based definition of function from
A to B (i.e., f € A— B) is the following:

Definition is_function_from_to
(S1 S2:finType) (R:{set (81 * S2)})
(A:{set S1}) (B:{set S2}) :=
[/\ is_function R, domain R = A
& (range R) \subset B].

where is_function, domain and range are defined in a
similar fashion, but where \subset is part of SSReflect’s
finite type interface (on which finset is based on).
We also give a set-based definition of the relational
composition of two binary relations:

Definition rel_comp (S1 S2 S3:finType)
(R1:{set (S1 * S2)}) (R2:{set (82 * 83)}) :=
[set p | [ exists u, ((p.1, w) \in R1)
&& ((u, p.2) \in R2)1].

6{log} automatically and quickly proves all the other problems
of TPTP.SET and TPTP.REL expressible in its input language
[10].

"The remaining 147 lemmas of finset are not expressible in
the input language of {log} as they include operators such as
generalized union or powerset.

These extensions to finset lead to the following
encoding of theorem (TT)):

Theorem T1 A B C (F:{set (81 * S2)})
(G H:{set (52 * 33)})

is_function_from_to F A B ->

is_function_from_to G B C ->

is_function_from_to H B C ->

range F = B >

rel_comp F G = rel_comp F H -> G = H.

A similar encoding was used to state the 189 lemmas

of finset, as {log}-ITP theorems. For example, the
following finset lemma:

Lemma setCU A B :

Tt (A :|:B)=": A :&: ":B
where ~: is complement (7), :|: is U and :&: is N, is
encoded as the following {log}-ITP theorem:

theorem(setCU,
ACTABCTAun(A,B, M)
A un(Mq, Mo, T) A M || Mo A un(A, M3, T)
NA | MsAun(B, My, T)\ B || My,
inters(Ms, My, M))

where T' corresponds to the variable T of type finType
declared in the section containing Lemma setCU (i.e., all
sets of this section are subsets of T).

Table [[l summarizes the results of the evaluation. As
we have said, {log} is unable to automatically prove
any of the 21 TPTP theorems (thus, for the TPTP
theorems, the AUTO entry is set to zero). On the other
hand, Coq needs 690 proof commands to prove them,
while {log}-ITP can do it with 219, of which only 146
are other than the prove command. This is a reduction
of about 68% in the number of proof commands (and
about 79% if prove is not counted). By ‘proof command’
we understand all the characters accommodated in the
same line (which intend to represent basic mathematical
proof steps). For example, for us, this is a single
Coq proof command: by move=> a; apply/setP=>
x; rewrite inE; case: eqP => ->. In this sense,
{log}-ITP proof commands tend to be simpler than
Coq’s. Actually, the 690 proof commands used in Coq
to prove the TPTP problems are composed of about
1030 applications of SSReflect tactics, which represent
35,014 characters while those used in {log}-ITP just
3,662 characters. Then, apart from the gain in the
number of proof commands, there is notable gain in
their complexity (= 90%). Finally, collectively all the
prove commands consume 55 s of computing time which
means that the automated part of each theorem is
executed in 2.6 s in average. On the other hand, the
completion of all the Coq proofs took around 10 man-
hour; while completing all the {log}-ITP took around
1 man-hour.

As concerns the problems taken from finset, Table[I]
indicates that {log}-ITP automatically proves 97% of
them (in 1 s in average). In this case the gain in the
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COLLECTION # Auto % COMMANDS CoMPUTING TIME Ava COMPUTING TIME

CoQ {log} NON-prove
TPTP 21 0 0 690 146 55 s 2.6 s
SSReflect finset 189 183 97 223 6 182 s 1s
SUMMARY 210 183 87 913 158 237 s 1.1s

TABLE 1. Summary of the empirical evaluation

number of proof commands is minimal. However, it
should be noted that in {log}-ITP 183 problems are
proved via the same command (prove), while the Coq
proofs require, roughly, 214 different commands. In
other words, a Coq user needs to reason on how to prove
183 theorems, while a {log}-ITP user does not. This
fact can be quantified if only the non-prove commands
are considered, as they amount to only 2% of the Coq
commands.

The Coq proofs present in these experiments are
the result of some degree of lemma engineering. For
instance, in the TPTP Coq proofs we first proved
21 helper lemmas and then the 21 theorems used
as experiment. The helper lemmas correspond to
properties that are used several times in the proofs
of the 21 theorems. These can be simple properties,
such as the characterization of the fact that an ordered
pair belongs to the relational composition of two binary
relations, or more complex ones, such as the helper
lemma auxT described in Section B3] (which is applied
twice in the proof of (T thanks to the use of
symmetry). Without this lemma engineering, proofs
would be longer and more complex. As usual, many
of these helper lemmas make themselves evident after
some of the main theorems are proved. In {log}-ITP no
lemma engineering was used (actually, there is no way
to use or apply a previous lemma in the current proof).
This is another indication of a gain in simplicity when
{log}-ITP is used.

This evaluation suggests that an integration of {log}
into Coq would produce more fully automated FS&RA
proofs and would semi-automate many others.

The full data set of our ex-
periments can be found online at:

evaluated the approach by implementing a prototype
ITP where users can call {log} as a proof command.
The prototype was assessed on 210 theorems and
compared with Coq. The assessment shows good
results in: a) the number of automated proofs; b) the
computing times needed to complete them; and c¢) the
reduction in the length and complexity of interactive
proofs that call {log} to discharge subgoals.

Concerning future work, in the case of Coq we
see two possible integration strategies. The most
obvious one is to use {log} as an external ATP, along
the lines of SMTCoq [§] or CoqHammer [6]. In
this case proof reconstruction might be difficult or
infeasible. A second integration strategy may consist in
implementing {log}’s rewriting system as a Coq tactic.
The first steps of this approach have already been done
by Dubois and Weppe [40]. Depending on the way this
is done, as a side effect, this approach might yield a
formal verification of {log}. It remains as open issues,
though, whether the size of the proof term produced
by the new tactic will be more manageable than in the
first strategy and whether or not the tactic will be fast
enough as to be worth it.
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APPENDIX A. SYNTAX AND SEMANTICS

OF Lpr

In this appendix we provide a formal, detailed
introduction of the syntax and semantics of Lzr.

The input constraint language accepted by {log},
Lpr, is a first-order predicate language with terms
of two sorts: terms designating sets (including binary
relations), and terms designating ur-elements. Terms
of either sort are allowed to enter in the formation
of set terms (in this sense, the designated sets are
hybrid), no nesting restrictions being enforced (in
particular, membership chains of any finite length can
be modeled). In a term which is not a variable
and designates an ur-element, the main functor (be
it a constant or a function symbol) will act as a
free (‘uninterpreted’) Herbrand constructor; a special
set constructor, and a handful of reserved predicate
symbols endowed with a pre-designated set-theoretic
meaning, are also available. Formulas are built in
the usual way by using conjunction, disjunction and
negation of atomic predicates. A number of complex
operators (in the form of predicates) are defined as Lar
formulas, thus making it simpler for the user to write
complex formulas.

Appendix A.1. Syntax

The syntax of Lpgr is defined primarily by giving the
signature upon which terms and formulas are built.

DEFINITION A.1. The signature Ygr of Lpr 1S a
tuple (F,1I1,Set, O, V) where:

o F is the set of function symbols partitioned as F =
FsUFx, where Fg ={0,{-u-},-x-} and Fx is a
set of uninterpreted constant and function symbols,
including at least the binary function symbol (-,-).

o Il is the set of predicate symbols partitioned as
II = g UIlp Ul i, where Ilg = {=,#, €, ¢, un, || },
Iy = {set, nset, rel, nrel, pair, npair} and Il =
{id, comp, inv}.

e {Set, O} is the set of sorts.

e V is a denumerable set of variables partitioned as
Y = Vs U Vo, where Vs and Vo contain variables
of sort Set and O, respectively. O

To complete the definition of Lz, in addition to the
signature it is necessary to specify the sorts of function
and predicate symbols: if f € F (resp., m# € 1) is of
arity m, then its sort is an n + 1-tuple (s1,...,8n41)
(resp., an n-tuple (s1,...,sy)) of non-empty subsets of
the set of sorts {Set,O}. This notion is denoted by
f : <517 AR 5n+1> (resp., by ™ <517 RS 5n>)

DEFINITION A.2. The sorts of the function symbols
in F are as follows:

o () : ({Set});

o {-u-}: ({Set, O}, {Set}, {Set});

o - x -: ({Set}, {Set}, {Set});

o (-,-): {{Set, O}, {Set,0},{0});

o f: ({O},....{0}) € {ON™*! if f € Fx is of

arity n.

The sorts of the predicate symbols in 11 are as follows
(symbols =, #, €, ¢ and || are infiz; all other symbols
in IT are prefix):

e pair, npair, set, nset : ({Set, O});

=, 7&: <{Seta O)}a {Seta O}>7

o c,¢: ({Set, O}, {Set});

e un, comp : {{Set}, {Set}, {Set});

e ||, id, inv : ({Set}, {Set});

o rel, nrel : ({Set}). O

We can now define the set of admissible (i.e., well-
sorted) Lpg terms.

DEFINITION A.3. All BR-terms and their sorts are
build inductively as follows:

e cach variable v € V is a BR-term of sort ({Set})
if v e Vg or sort ({O}) if v € Vo.
oif f € F is a function symbol of sort

(S1y..+ySn+1), and for each i = 1,...,n, t;
is a BR-term of sort (s}) with s, C s;, then
flt1, ... tn) is a BR-term of sort (Sp41)- O

Note that the sort of any BR-term t is always of the
form ({Set}) or ({O}). In the former case we simply
say that t is of sort Set, or a set term, and in the latter
case that ¢ is of sort O. In particular, BR-terms of the
form {-u-} are called extensional set terms. The first
parameter of an extensional set term is called element
part and the second is called set part. Observe that one
can write terms representing sets which are nested at
any level.

The following notation is introduced to make reading
of set terms simpler: {¢;,%a,...,¢, Ut} as a shorthand
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for {t;1 u {ta u ---{t, ut}---}} and the notation

{t1,t2,...,tn} as a shorthand for {¢1,ts,...,t, v 0}.
ExaMPLE 3. The following are set terms:
-0

- {a, (b,c)}, i.e., {au{(b,c) uD}}, where a, b and ¢
are constants of sort O

-{zu A x {yu B}}, where z,y are variables of sort
Set or O, and A, B are variables of sort Set.

- {zu A}, where z is a variable of sort Set or O, and
A is a variable of sort Set.

On the opposite, {x u (a,b)} is not a set term because
(a,b) is not of sort Set. O

Finally, from Lgr terms, we define Lgr formulas.

DEFINITION A.4. All BR-formulas are build induc-
tively as follows:

o if m € 11 is a predicate symbol of sort (s1,...,8n),
and for each i = 1,...,n, t; is a BR-term of
sort (st)y with s; C s;, then w(t1,...,tn) is a BR-
constraint, a particular case of BR-formula.

o if a and B are BR-formulas, then so are o A 3
and oV f3. O

EXAMPLE 4. The following are BR-formulas:

a€ANa¢ BAun(A,B,C)AC = {z}
un(A,B,C)ANA| CAinv(R,A)ANR # 0

where a is a constant of sort O, z is a variable of sort
Set or O, and A, B, C and R are variables of sort Set.
On the contrary, un(A4, B, (z,y)) is not a BR-formula
because un(A, B, (z,y)) is not a BR-constraint ((z,y)
is not of sort Set as required by the sort of un). [l

Appendix A.2. Semantics

Semantics of BR-formulas is given by defining a suitable
interpretation structure for Lz .

Sorts and symbols in ¥gr are interpreted according
to the interpretation structure R = (D, (-)*), where D
and (-)® are defined as follows.

DEFINITION A.5 (Interpretation domain). The inter-
pretation domain D, of the interpretation structure R,
is partitioned as D = Dset U Do where:

® Dsee is the collection of all hereditarily finite
hybrid sets built from elements in D; and

e Do is a collection of other objects, including
ordered pairs of elements in D. O

Hereditarily finite sets are those sets that admit
(hereditarily finite) sets as their elements. Note that,
finite binary relations and functions, as defined in
Note 2, belong to Dset.

DEFINITION A.6 (Interpretation function). The in-
terpretation function (-)R, of the interpretation struc-
ture R, is defined as follows.

e Each sort S € {Set, 0} is mapped to the domain
Ds.

e For each sort S € {Set, O}, each variable x of sort
S is mapped to an element ™ in Ds.

The constant and function symbols in Fg are inter-
preted as follows:

o () as the empty set;
o {zu A} as the set {zR} U A®; and
e A x B as the set A® x BR.

The predicate symbols in 11 are interpreted as follows:

ez =y as 2 =y~;

ez cAasa®e AR;

e un(A, B,C) as C® = AR U BR;

e A|| B as AR N BR =);

o set(z) as 2™ € Dse;

e pair(z) as ™ € {(a,b) : a,b € D};

e rel(R) as R® C {(a,b) : a,b € D};

e id(A,R) as R® =id A®;

e inv(R,S) as S® = (RR)~;

e comp(R,S,T) as TR = RR 0 S®; and

e any symbol ' in {#, &, nrel, nset, npair} is
interpreted as —m for the corresponding symbol
m in {=,€,rel,set,pair}, where — is logical
negation. O

The interpretation structure R is used to evaluate
each RIS-formula @ into a truth value ®% =
{true, false} in the following way: RZS-constraints are
evaluated by (-)® according to the meaning of the
corresponding predicates in set theory as defined above;
RIS-formulas are evaluated by (-)® according to the
rules of propositional logic.

In particular, observe that equality between two
set terms is interpreted as the equality in Dse; that
is, as set equality between hereditarily finite hybrid
sets.  Such equality is regulated by the standard
extensionality ariom, which has been proved to be
equivalent, for hereditarily finite sets, to the following
equational axioms [30]:

{z,zuA} ={zu A}
{z,yu A} = {y,zu A}

NoTE 3. Lpr can be extended to support other set
and relational operators definable by means of suitable
Lpr formulas. Dovier et al. [36] proved that symbols
in IIg are sufficient to define constraints implementing
the set operators N, C and \. Cristid and Rossi extend
that result in [I0] showing that symbols in IIg U IIp
are sufficient to define constraints implementing all the
operators defined in Note

As any of these constraints can be replaced by its
definition, we can completely ignore the presence of
them in Lz formulas. O

NoTE 4 (Negation). The negated versions of both
set and relational constraints can be introduced as Lzr
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formulas [36] [10]. For example, =R = S is introduced
as the following BR-formula:

((z,y) € RA(y,2) € S)V ((2,9) € RA(y,2) € 5)
V nrel(R) V nrel(S)

( and y are implicitly existentially quantified). Thanks
to the availability of negative constraints, (general)
logical negation is not strictly necessary in Lpg. |

DATA  AVAILABILITY STATEMENT The data un-

derlying this article are available in Dropbox at
https://www.dropbox.com/s/c6z45thxlvriqlh/setlogITP.zip7d1=0,
and can be accessed with the URL just given.


https://www.dropbox.com/s/ c6z45thxlvr1q1h/setlogITP.zip?dl=0
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